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Abstract: The joint control problem of the underwater manipulator is addressed in this paper, under
the influence of uncertainty factors such as model uncertainty, external disturbance, and manipulator
joint lag. In general, for the uncertainty factors, it is usually approximated online, but it is difficult to
select a reasonable value for the approximation error boundary, too conservative estimated values
would cause chattering problem easily. And the influence of joint lag on the manipulator control
should be considered in actual work. Unlike most previous control method, in this paper, the function
approximation technique (FAT), which uses the Legendre polynomial, is adopted to approximate the
uncertainty factors online. Then, based on the proportion integral differential (PID) sliding manifold
with the integral and differential of tracking error, a sliding model PID controller is designed to
speed up the response and reduce the effects of joint lag. For the error boundary, the adaptive law is
proposed, and it will reduce chattering of the control quantity under the steady state of the system.
It was proved that the joint error of the control system is uniformly asymptotic convergence through
the stability analysis. Finally, the effectiveness of the proposed approach is demonstrated with pool
comparison experiments of the underwater manipulator installed in the autonomous underwater
vehicles (AUVs).

Keywords: underwater manipulator; sliding mode control; function approximation technique; joint
lag; error boundary; uncertainty estimation

1. Introduction

In the complex sea, autonomous underwater vehicles (AUVs) play an irreplaceable role for various
missions, such as exploration of marine resource, environmental monitoring, seabed topographic
survey, and target search [1,2]. In recent years, with the deepening of marine development, simple
detection and target search cannot meet the operational requirements. However, the underwater
vehicle-manipulator system (UVMS), which consists of underwater vehicle and manipulators, and its
operating technology have been rapidly developed and widely used in the fields of scientific research
and ocean systems engineering for performing interactive tasks, such as opening and closing of valves,
cutting in coordination, and so on [3,4]. An AUV when equipped with a manipulator becomes a
kinematically redundant system, it has more degrees of freedom (DOF) than is required to perform a
task in its operational space. In TRIDENT EU FP7 project, an underwater electric manipulator was
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developed and equipped on multipurpose intervention-AUV [4]. An underwater electric manipulator
(MARIS 7080, 7 DOF manipulator) was equipped on semi-autonomous underwater vehicle for the
intervention mission (SAUVIM) [5].

In UVMS, the underwater manipulator is a key component, and its joint control accuracy directly
determines the operating accuracy of the UVMS. At present, underwater manipulators are mostly
control objects with joint redundancy, and the accuracy mainly depends on the control performance
of joints [6]. However, due to the nonlinear, time-variation of dynamic properties and other factors
(i.e., external disturbances such as ocean current disturbance) [7,8], the system dynamic model has
uncertainties, which will affect the joint control of the manipulator based on the dynamic model. Besides,
for most hydraulic manipulators, the joint control performance is also affected by joint lag [6,9,10],
which means that the joint lag will affect the control accuracy of manipulator joint. In conclusion, under
the influence of the above factors, it has great research significance and practical value to develop the
joint control technology of underwater manipulators for improving the accuracy and efficiency of
underwater operation.

Currently, many methods have achieved high control accuracy, which uses the online
approximation to deal with the uncertainty factors, and determine the controller and adaptive
law of parameter through stability analysis [11,12]. Among them, in view of the nonlinear and
uncertain identification ability [11–16], neural network and fuzzy control has been used in the joint
control of manipulator. In [13], a feedforward neural network is employed to learn the parametric
uncertainties, existing in the dynamical model of the robot manipulator, and the influence of weight
and bias weight of the two-layer neural network are considered, but this increases the difficulty of
designing the weight adjustment law, and an excellent neural network has relatively more control
parameters, and selection of initial values of neural network parameters will increase the difficulty of
the controller design and the complexity of the stability analysis, and also the adaptive adjustment of
control parameters will increase the load on the hardware system. In [14], a novel robust decentralized
control of electrically driven robot manipulators by adaptive fuzzy estimation and compensation of
uncertainty, and in the fuzzy controllers, it uses expert’s knowledge, the trial and error method, or an
optimization algorithm such as particle swarm optimization (PSO) to design the fuzzy rules, and the
design process may be more complicated and not online.

Recently, some researchers have proposed the regressor-free control of manipulators based
on function approximation technique (FAT) [17–20], in which the uncertainty factors have been
estimated or approximated using the Taylor function expansion [18], Fourier series [19], or Legendre
polynomial [17,20]. Compared with the neural network and fuzzy control, its control strategy is simpler,
and the influence of the initial value selection on the controller is reduced since the tuning parameters
are less. In [18], it uses the first-order Taylor series expansion to propose an adaptive estimator of
uncertainty for the robust control of electrically driven manipulators, to improve the computational
efficiency and ease of implementation, the higher-order terms of Taylor series expansion are ignored.
Instead, the higher-order terms may cause approximation errors and the estimator performance may
be reduced. However, for the Fourier series, due to the characteristic of the basis function of the Fourier
approximation, its approximation effect on the periodic function is the most obvious. Furthermore,
in [17], it uses the Legendre polynomial to approximate the uncertainty factors online, and the Legendre
coefficients can be tuned using the adaptive laws derived from the stability analysis. However, it is
difficult to select a reasonable value for the error boundary in [17], too conservative values would cause
high-frequency chattering of the system, and too low would increase tracking error. Furthermore, for
the underwater manipulator of this article (as shown in [9]), under the drive of hydraulic system, there
is joint lag in the joint control of the manipulator. However, the above control methods, such as [17],
do not consider the influence of joint lag on the trajectory tracking control.

For the above considerations, this paper proposes an adaptive sliding mode proportion integral
differential (PID) control method for underwater manipulator based on Legendre polynomial FAT.
In our work, a sliding model PID controller is designed to accelerate the system response and reduce
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joint lag. The adaptive law is used to estimate the error boundary, and reduce the chattering of the
system. Furthermore, according to the analysis of Lyapunov stability, it is demonstrated that the
tracking error can be uniformly asymptotically converged. Based on the pool experiments of the
joint step response and trajectory tracking, the effectiveness of the proposed method is verified by
comparing the joint error and control quantity of the proposed method and the comparison method
in [17].

This paper is organized, as follows. Section 2 describes the joint control problem of the underwater
manipulator, and gives the dynamics model and its uncertainties. In Section 3, the adaptive sliding
mode PID control method is studied based on Legendre polynomial FAT, and contains the stability
analysis. Then in Section 4, the effectiveness of the proposed method is verified by pool experiments.
Finally, we make a brief conclusion in Section 5.

2. Problem Formulation

In this section, under the influence of uncertainty factors such as model uncertainty and external
disturbance, the establishment of the dynamics model of the manipulator is mainly explained.
According to the [13,21,22], the dynamics model containing the above uncertainty factors is as follows:

H(q)
..
q + C(q,

.
q)

.
q + G(q) = τ+ F (1)

where, q,
.
q,

..
q ∈ Rn are the position, velocity and acceleration vectors for each joint. H(q) ∈ Rn×n is the

inertia matrix including extra mass, the matrix C(q,
.
q) ∈ Rn×n groups is the centripetal and Coriolis

forces, and G(q) ∈ Rn×n is the gravity matrix vector. F is the external disturbances (including water flow
and other external disturbances.). τ is the driving torque and n is the number of degrees of freedom.

According to the [23], the Equation (1) is transformed into a state space equation form
for description:

..
η(t) = F(η, t) + G(η, t)U + D(t) (2)

where, U = [τ1, τ2 . . . τn]T is the control vector for each joint. D(t) is the external disturbances after
conversion. F(η, t) and G(η, t) are the matrix vectors. In the Equation (2), F(η, t), G(η, t), and D(t) are
represented by the Equation (3):

F(η, t) = −H(q)−1[C(q,
.
q)

.
q + G(q)] (3a)

G(η, t) = −λH(q)−1 (3b)

D(t) = −H(q)−1F (3c)

In practice work, there exists uncertainty factors in the dynamics model, and the control of
manipulator is affected by external disturbances. Therefore, the nonlinear matrix vectors F(η, t), G(η, t),
and D(t) in Equation (2), which contains uncertainties, cannot be obtained exactly. So, we convert
Equation (2) to Equation (4).

U =
..
η(t) + H(η, t) (4)

H(η, t) =
[
G(η, t)−1

− I
] ..
η(t) −G(η, t)−1[F(η, t) + D(t)] (5)

where, the nonlinear term H(η, t) contains all uncertainty factors, and cannot accurately be described.
For this reason, we will approximate H(η, t) online.

In summary, the control objective of this paper is to design an adaptive controller U of the joints
control of underwater manipulator, which can effectively overcome the influence of uncertainties such
as model uncertainty, external disturbance. It aims to ensure the boundedness of the closed-loop
system, make the tracking error uniformly asymptotic converge.
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3. Controller Design Based on Legendre Polynomial FAT

This section addresses the adaptive sliding mode PID control method for the underwater
manipulator based on Legendre polynomial FAT, and then designs its adaptive sliding mode PID
controller. Moreover, based on the analysis of Lyapunov stability theory, it is theoretically proved that
the joint error is uniformly asymptotic convergence.

3.1. Uncertainty Factors Function Approximation Based on the Legendre Polynomial

This subsection describes the function approximation process of uncertainty factors H(η, t) based
on Legendre polynomial. Compared with the typical neural network and fuzzy control approximation
method [14,16], the approximation strategy using the Legendre polynomial FAT is simpler and needs
less computational power. Since the selection of the initial value of the parameter is reduced, it can be
effectively reduce the difficulty of stability analysis.

Next, the function approximation process based on the Legendre polynomial was described.

3.1.1. Legendre Polynomial Function Approximation

Suppose that V is the space of all real-valued continuous-time functions. According to the [17,20,24],
a nonlinear function h(x), which defined on the interval [x1 x2] in V, can be represented as the function
approximation of Equation (6a).

h(x) =
m∑

i=0

αiϕi(x) + εm(x) (6a)

where, ϕ0(x), ϕ1(x) . . . .. ϕm(x) is a m-th Legendre polynomial, and satisfies the orthogonal basis. εm(x)
is the approximation error, and bounded [20]. αi is approximation coefficient, as follows.

αi =
1
Ai

∫ x2

x1

h(x)ϕi(x)dx i = 0, 1, . . . . . .m (6b)

∫ x2

x1

ϕi(x)ϕ j(x)dx =

{
0 i , j

Ai i = j
(6c)

he Legendre polynomial requires that the nonlinear h(x) must be defined on the interval [−11] (i.e., [x1

x2] is [−11]). Therefore, ϕi(x) in Equation (6) can be defined by Equation (7).

ϕ0(x) = 1, ϕ1(x) = x
(i + 1)ϕi+1(x) = (2i + 1)xϕi(x) − iϕi−1(x)

(7)

Thus, the h(x) defined on the [−11] can be approximated by Legendre polynomial in the form of
(6), which the coefficients αi (i = 0, 1,..., m) are calculated by Equations (3) and (4), and the ϕi(x) (i = 0,
1,..., m) are given by Equation (7). Finally, the transformation of the matrix expression of the Equation
(6) can be obtained by the Equations (8) and (9).

h(x)LP = PTϕ(x) + εm(x) (8)

P = [α0 α1 . . . . . . . . . . . . αm]
T (9a)

ϕ(x) = [ϕ0(x)ϕ1(x) . . . . . . . . . ..ϕm(x)]
T (9b)

where, h(x)LP is the approximation function after transformed; αi is vectorized to obtain the
approximation coefficient P.

Note 1. In Equation (9), P cannot be calculated by the Equations (3) and (4), since h(x)LP is
unknown. For the controller of this paper, this parameter is adjusted online by the adaptive control law.

Note 2. In [20], another important issue about function approximation may be the fact that the
ϕi(x) are mutually orthogonal just on the interval [−11]. Out of this interval, the functions ϕi(x) may
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not be mutually orthogonal. However, for the H(η, t), which is a nonlinear function based on the
motion state and time, it is impossible to be limited to [−1,1]. For this problem, the author makes x =

sin(ωt) in the Equation (7), ω is a predefined constant.
Then, combining the Equations (7) and (9b), the ϕ(x) can be expressed as:

ϕ(x) =
[
1, x,

1
2
(3x2

− 1),
1
2
(5x3

− 3x),
1
8
(35x4

− 30x2 + 3), . . . . . .
]

(10)

where x = sin(ωt)∈[−1,1] satisfies the interval requirement.

3.1.2. Online Approximation of H(η, t)

Based on the above analysis, the online approximation of H(η, t) was performed. In the theoretical
approximation of uncertainty, the online approximation of H(η, t) was obtained as shown in Equation (11).

H(η, t) = PTϕ(x) + εm(x) (11)

However, in actual online approximation, the actual approximation value is Ĥ(η, t), as follows

Ĥ = P̂Tϕ(x) (12)

where, P̂ and Ĥ are the estimation of P and H respectively, P̃ = P − P̂. The εm(x) is bounded, and
defines

∣∣∣εm(x)
∣∣∣ ≤ ρ, and ρ is the error-boundary, which is derived from the error-boundary control law.

3.2. Adaptive Sliding Mode PID Controller Design

3.2.1. Sliding Mode Manifold Design

The sliding mode control has been widely used in nonlinear systems, due to its robustness to
modeling uncertainty and external disturbances [16,25,26]. However, for the sliding mode control,
the conventional linear sliding mode manifold can be used to eliminate the steady-state error and
guarantee the asymptotic stability of system errors, but the tracking error cannot converge to zero in
finite time, so it cannot solve the motion lag caused by the joint lag. To ensure the quick convergence
of the joint errors and reduce the motion lag caused by the joint lag, this paper designed a PID sliding
mode manifold with the integral and differential of tracking error, shown in Equation (13).

s = kpe(t) + ki

∫
e(t)dt + kd

.
e(t) (13a)

e(t) = ηd − η (13b)

where, kp, ki, and kd are the positive constant, and kd∈[0,1]. ηd and η are the joint vectors of the desired
position and actual position, respectively.

Based on the PID sliding manifold of Equation (13) and sliding mode control theory, the sliding
mode control law of the manipulator will be designed as Equation (14).

U = kd
−1

[
kp

.
e + kie + kd

..
xd + kdĤ + hs + ρsign(s)

]
+ uc (14)

where, h is the positive constant,
..
xd =

..
ηd, and uc is the robust term of sliding mode control. In Equation

(14), it is difficult to select a reasonable value for the error-boundary ρ, too conservative values would
cause high frequency chattering of the system. To this end, the author obtains the error-boundary
control law through the stability analysis, and adjusts the value of ρ online, as shown in Equation (20).

Next, the first-order derivation of the sliding manifold (13a) with respect to time is used for the
stability analysis. Then, substituting Equations (4) and (14) into (13a), we can get Equation (15).
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.
s = kp

.
e + kie + kd

..
xd − kdU + kdH

= kd(H − Ĥ) − [hs + ρsign(s)] − kduc
(15)

Substituting Equation (14) into Equation (15) and transforming it into an error state space equation,
as shown in Equation (16).

..
e + (kp/kd)

.
e + (ki/kd)e = (H − Ĥ) − kd

−1[hs + ρ̂sign(s)] − uc (16)

Converting Equation (16) to a matrix form:

.
E = AE + Bw (17a)

E = [e
.
e]T A =

[
0 1

−kp/kd −ki/kd

]T

B =

[
0
1

]
(17b)

w = (H − Ĥ) − kd
−1[hs + ρ̂sign(s)] − uc (17c)

3.2.2. Adaptive Sliding Mode PID Control Law and Error-Boundary Control Law

Based on the above nonlinear sliding mode manifold, the main result of this paper is presented
as follows:

Using the output of the Legendre polynomial FAT for control law (14), the adaptive sliding mode
PID control law of this method in Equation (18) can be obtained. At the same time, the adaptive law
of approximation coefficient P and the error-boundary control law are shown in Equations (19) and
(20), respectively.

U = kd
−1

[
kp

.
e + kie + kd

..
xd + kdĤ + hs + ρ̂(K1s + K2|s|αsig(s))

]
+ uc (18a)

uc = −kd
−1hsTsign(s) (18b)

Ĥ = P̂Tϕ(x) (18c)
.
P̂ = λ1

[
ϕ(x)sTkd + ϕ(x)(P0B)TE

]
(19)

.
ρ̂ = λ2

[
s + kd

−1(ETP0B)
T
]
(K1s + K2|s|ρsig(s)) (20)

where, λ1 and λ2 are the positive constant. P0 and Q are the positive definite matrices, so that
ATP0 + P0A = −Q. In Equations (18a) and (20), the discontinuous switching term sign(s) in Equation
(14) is replaced by K1s + K2|s|αsig(s) [27] to reduce the chattering of control voltage.

Based on the above control law, the control system block diagram of the proposed controller in
this article is shown in Figure 1.
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Figure 1. The control system block diagram of the proposed controller. 
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3.3. Stability Analysis of the Proposed Method

For the adaptive control law and error-boundary control law in Equations (18)–(20), the Lyapunov
theory is used for the stability analysis to prove the boundedness of control parameters and the
uniformly convergence of the joint error.

The following lemma is needed for the stability analysis.

Lemma 1. [26] If the differentiable function ∆(t) has a finite limit as t→ +∞ , and if
.
∆(t) is uniformly

continuous with respect to t (a sufficient condition for a differentiable function to be uniformly continuous is that
its derivative is bounded), then

.
∆(t)→ 0 as t→∞ .

Consider the following Lyapunov function candidate:

V =
1
2

sTs +
1
2

ETP0E +
1

2λ1
P̃TP̃ +

1
2λ2

ρ̃Tρ̃ (21)

Combined Equation (17), the time derivative of Equation (21) is

.
V = sT .

s + 1
2

.
E

T
P0E + 1

2 ETP0
.
E + 1

λ1
P̃T

.

P̃ + 1
λ2
ρ̃T

.
ρ̃

= sT .
s + 1

2 ETATP0E + 1
2 wTBTP0E + 1

2 ETP0AE + 1
2 ETP0Bw− 1

λ1
P̃T

.
P̂− 1

λ2
ρ̃T

.
ρ̂

= sT .
s− 1

2 ETQE + ETP0Bw− 1
λ1

P̃T
.
P̂− 1

λ2
ρ̃T

.
ρ̂

(22)

Substituting Equation (15) into sT .
s in the Equation (22), and then integrating the Equations (11)

and (12), it can yield

sT .
s = sTkd(H − Ĥ) − sT[hs + ρ̂sign(s)] − sTkduc

= sTkdP̃Tϕ(x) − sThs− sTρ̂sign(s) − sTkduc + sTkdεm
(23)

Substituting Equations (17c), (11) and (12) into ETP0Bw in the Equation (22), one has

ETP0Bw = ETP0BP̃Tϕ(x) − ETP0Bkd
−1[hs + ρ̂sign(s)] − ETP0Buc + ETP0Bem (24)

Then, in a similar way, substituting Equations (23) and (24) into Equation (25), we have

.
V = −

1
2

ETQE + V1 + V2 (25a)
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V1 = P̃T
[
sTkdϕ(x) + ETP0Bϕ(x)

]
−

1
λ1

P̃T
.
P̂−

[
sTkd + ETP0B

][
uc + kd

−1hs
]

(25b)

V2 =
[
sTkdεm − sTρ̂sign(s)

]
+

[
ETP0Bεm − ETP0Bkd

−1ρ̂sign(s)
]
−

1
λ2
ρ̃T .
ρ̂ (25c)

On the basis of Equation (18b) and adaptive law Equation (19), we obtain V1 < 0.
Due to ρ̃ = ρ− ρ̂, the Equation (25c) can be expressed as

V2 =
[
sTkdεm − sTρsign(s)

]
+

[
ETP0Bεm − ETP0Bkd

−1ρsign(s)
]

+ρ̃T
[
s + kd

−1(ETP0B)T]sign(s) − 1
λ2
ρ̃T

.
ρ̂

(26)

Thus, according to the error-boundary control law Equation (20), yields

V2 =
[
sTkdεm − sTρsign(s)

]
+

[
ETP0Bεm − ETP0Bkd

−1ρsign(s)
]

(27)

For (27), to prove the stability of the control system (i.e.,
.

V ≤ 0), the necessary and sufficient
conditions are as follows.

sTkdεm − sTρsign(s) ≤ 0 (28a)

ETP0Bεm − ETP0Bkd
−1ρsign(s) ≤ 0 (28b)

Therefore, to satisfy the above formula, the following analysis proves

(a) Due to kd∈[0,1], we have |εm| ≤ ρ ≤ δ = ρ/kd, then

sTkdεm − sTρsign(s) = kd
[
sTεm − sTδsign(s)

]
≤ kd|s|(|εm| − δ) ≤ 0

(29)

(b) From the sliding mode manifold s, E = [e
.
e]T and positive definite matrices P0, it indicates that

sign(s) = sign(ETP0B) and we can be rewritten as

ETP0Bεm − ETP0Bkd
−1ρsign(s) = ETP0Bεm − ETP0Bkd

−1ρsign(ETP0B)
≤

∣∣∣ETP0B
∣∣∣(|εm| − kd

−1ρ)
≤

∣∣∣ETP0B
∣∣∣(|εm| − δ) ≤ 0

(30)

According to the above proof (i.e., (a) and (b)), it can be obtain that V2 ≤ 0. Meanwhile, from the
Equations (27)–(30), yields

.
V = −

1
2

ETQE + V1 + V2 ≤ −
1
2

ETQE (31)

By integrating inequality Equation (31), it indicates
.

V ≤ 0, and then we can get s, E, P, and ρ are
bounded. Then, it will prove that s and E will be uniformly asymptotically convergence.

Since
.

V ≤ 0 is semi-negative, let ∆(t) = − 1
2 ETQE. Then, integrating inequality Equation (31) on

the interval [0, t], it can obtained that
∫ t

0 ∆(t)dt ≤ V(0) is bounded, this indicates
∫ t

0 ∆(t)dt has a finite

limit, as t→ +∞ . Due to E is bounded, so it has that
.
E is bounded, and further conclude ∆(t) is

bounded. Then, it can be obtained that ∆(t) is continuous with respect to t. Based on Lemma 1, we can
have ∆(t)→ 0 as t→∞ , which implies that s and E are equal to zero. As a result, it can be proved
that the tracking error e and s are uniformly asymptotic converged and stable.

4. Pool-Experiments Verification and Discussion

In this section, the effectiveness of the proposed methods (i.e., adaptive sliding mode PID
control based on FAT) is validated on the underwater manipulator of the UVIC-I AUV, and in the
pool-environment, the experimental results of the proposed methods are compared with the method
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in [17]. The UVIC-I AUV, as shown in Figure 2a, is a prototype vehicle designed for underwater
operations, mainly consisting of AUVs and underwater manipulator.
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Figure 2. UVIC-I autonomous underwater vehicle (AUV) and its underwater operations. (a) The
UVIC-I prototype vehicle; (b) overall structure of underwater manipulator; (c) mechanism diagram of
the underwater manipulator; and (d) UVIC-I AUV during underwater operations.

The AUVs is equipped with eight thrusters, two to actuate surge, two to actuate sway and yaw,
and four vertical thrusters to actuate heave, roll, and pitch, and sensors such as depth, velocity, and
attitude angle [28]. The underwater manipulator, as shown in Figure 2b,c, with five joints (5 DOF), the
detailed structure is shown in [9], and the main parameters are shown in Table 1. Moreover, during the
underwater experiments, the experiments are obtained in a pool measuring 8.0 m × 5.0 m × 5.0 m,
and the AUVs is in a dynamic positioning state, maintaining a stable attitude, as shown in Figure 2d.
The main parameters of the adaptive sliding mode PID controller are given as follows: ω = 0.2, kp =

0.5, ki = 0.1, kd = 1, h = 1, λ1 = 10, λ2 = 1, A = [0 1; 0.5 0.1], Q = [400 0; 0 400], K1 = 1.5.

Table 1. The main parameters of the underwater manipulator.

Length Weight Rotation Angle Range of Each Joint

Neck joint 0 5.5 kg 0 to −180◦

Shoulder joint 900 mm (a1) 2.0 kg 0 to −180◦

Elbow joint 600 mm (a2) 1.5 kg −30 to 180◦

Wrist joint 400 mm (a3) 1.0 kg 90 to 270◦

Manipulator Claw 480 mm (a4) 1.0 kg 0 to 180◦

4.1. The Joint Control Pool-Experiments of the Underwater Manipulator

The proposed methods in this paper mainly focused on improving the joint control accuracy of
the manipulator, and reducing the influences of joint lag and the trajectory tracking error. Therefore,
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compared with the method in [17], the joint step response experiments and trajectory tracking
experiments were designed to verify the effectiveness of the proposed method.

4.1.1. Experiments of Joint Step Response

For the experiments of the joint step response, the manipulator was fixed on the UVIC-I AUV and
the each joints move from the initial angle to the target angle. The two sets of initial and target angles
of (neck, shoulder, elbow, wrist) joints in this paper are considered as follows

1st. initial angle (45.0◦, 80.0◦, 80.0◦, 60.0◦) and target angle (115.0◦, 110.0◦, 35.0◦, 130.0◦).
2st. initial angle (80.0◦, 120.0◦, 35.0◦, 100.0◦) and target angle (8.0◦, 165.0◦, 150.0◦, 10.0◦).
The experiment results of the proposed method and the method in [17] are shown in Figure 3.

For the convenience of analysis, the relevant indicator data in Figure 3, such as the overshoot, steady
state error, is summarized in Tables 2 and 3.
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Figure 3. Step response curve of each joint of underwater manipulator. (a) Step response curve of 1st
and (b) step response curve of 2st.

Table 2. Statistical Results of Figure 3a.

Overshoot Steady State Error

The proposed method (0.36, 0.62, 0.43, 0.55)◦ (0.025, 0.017, 0.017, 0.025)◦

The method in [17] (0.68, 1.02, 0.98, 1.38)◦ (0.035, 0.024, 0.026, 0.031)◦

Reduced by (47.06%, 39.22%, 56.12%, 60.14%) (28.57%, 29.17%, 34.62%, 19.35%)

Table 3. Statistical Results of Figure 3b.

Overshoot Steady State Error

The proposed method (0.32, 0.51, 0.39, 0.58)◦ (0.022, 0.017, 0.018, 0.026)◦

The method in [17] (0.72, 0.91, 1.04, 1.35)◦ (0.030, 0.022, 0.025, 0.031)◦

Reduced by (55.56%, 43.95%, 62.50%, 57.04%) (26.67%, 22.73%, 28.00%, 16.13%)

Note: 1, 2, 3, and 4 are the step response curves of (neck, shoulder, elbow, wrist) joints of the
proposed method, respectively. The step response curves of (neck, shoulder, elbow, wrist) joints of the
method in [17] are 5, 6, 7, and 8, respectively

From Figure 3, it can be seen that the angles of the joints were uniformly converged. In addition,
compared with the method in [17], the joint angular velocity (i.e., to illustrate the response speed of
system) in this paper had a certain increase. This is due to the fact that the PID sliding manifold in the
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paper could improve the system response speed of each joint of the manipulator. From the Tables 2
and 3, it is shown that the proposed method greatly improved the overshoot and steady state error
of the joint of the underwater manipulator. The above data show that the proposed method could
effectively improve the joint control accuracy, and verified the effectiveness of the proposed method.

4.1.2. Experiments of Joint Continuous Trajectory Tracking

In the experiments of joint continuous trajectory tracking, consistent with the method in [17], the
sinusoid was selected as the target trajectory. The target sinusoidal trajectory of the (neck, shoulder,
elbow, wrist) joints is as shown in the following Equation (32).

η = A sin(
2π
100

t) + B (32)

where, η = (η1, η2, η3, η4)T, A = (50◦, 30◦, 50◦, 30◦)T, B = (90◦, 90◦, 120◦, 150◦)T.
The pool-experiments results of the proposed method and the method in [17] are shown in Figure 4.

Moreover, and the relevant indicator data in Figure 4 are summarized into Table 4 for a quantitative
analysis. For the experimental analysis, the “Maximum absolute tracking error (MATE), Standard
deviation of error (SDE)” was used as the evaluation index. At the same time, to illustrate the effect of
the proposed method on reducing the joint lag, increase the “motion lag time” as the evaluation index.
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Table 4. Pool-experiment results of sinusoidal trajectory tracking.

MATE SDE Motion Lag Time

The proposed method (1.971, 2.716, 2.660, 2.247) deg (0.999, 1.149, 1.159, 0.896) deg (3.0, 2.9, 4.4, 3.2) s
The method in [17] (3.086, 3.826, 3.942, 3.678) deg (1.152, 1.340, 1.462, 1.333) deg (3.9, 4.1, 5.5, 4.7) s

Reduced by (36.13%, 29.01%,
32.52%, 38.91%)

(13.28%, 14.25%,
20.73%, 32.78%)

(23.08%, 29.27%,
20.00%, 31.91%)

From Table 4, in comparison with the method in [17], the results confirm that the proposed method
can reduce the trajectory tracking error, and reduce the influence of joint lag on the joint control of
underwater manipulator. The results verified the effectiveness of the proposed method.

4.2. The Control Voltage of Underwater Manipulator

In this section, the comparative experimental analysis of the joint control voltage of the proposed
method and the method in [17] is carried out, to verify that the proposed method can reduce the
chattering of control voltage.

Under this circumstance of continuous trajectory tracking experiments, the target trajectory is
Equation (32). The contrast experimental results of the two methods are shown in Figure 5.
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Figure 5. The comparison data of joint control voltages of underwater manipulators. (a) The control
voltages of the proposed method and (b) the control voltages of the method in [17].

To give a quantitative analysis, the results of Figure 5 are summarized in Table 5. In addition,
consistent with the reference [25], the standard deviation (SD) was used as the evaluation index for the
chattering amplitude of the control voltage, and the standard deviation of the derivatives of control
variables (SDDCV) was used to evaluate the chattering frequency of control voltage.

Table 5. Statistical result of Figure 5.

SD SDDCV

The proposed method (10.196, 7.849, 5.880, 5.368) V (0.671, 0.446, 0.309, 0.250) V
The method in [17] (9.908, 7.415, 6.358, 5.440) V (1.072, 0.756, 0.486, 0.648) V

Reduced by (−2.91%, −5.85%, 7.52%, 1.33%) (37.42%, 41.03%, 36.36%, 61.49%)

From Table 5, compared with the method in [17], the above results validated that the chattering
amplitude of the control voltage was roughly the same as the method in [17], but the proposed method
could greatly reduce the chattering frequency, which is beneficial to the protection of the motor of the
underwater manipulator.

5. Conclusions

In this paper, a novel adaptive sliding mode PID control method based on Legendre polynomial
FAT was addressed for the joint control of underwater manipulator, and the system error relying
on this approach was proven to be uniformly asymptotic convergence. The adaptive sliding mode
PID controller of the approach was designed to reduce the impact of joint lag, and adopted FAT to
approximate uncertainty factors online for the control system. Moreover, it did not need to know the
upper bound of any uncertainties and external disturbances.
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The experimental results provided very strong evidence that the proposed method could effectively
improve the control accuracy of the manipulator joint, and reduced the influence of the joint lag on the
trajectory tracking control. Meanwhile, it could reduce the frequency of the chattering of the control
voltages, compared with the comparison method, the SDDCV of the proposed method was decreased
(37.42%, 41.03%, 36.36%, 61.49%). The effectiveness of the proposed method was verified by theoretical
research and experiments. The research of this paper lays a foundation for the underwater operation
of the UVIC-I AUV of the support project.
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