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Abstract: Quantitative extraction of imaging features from medical scans (‘radiomics’) has attracted a
lot of research attention in the last few years. The literature has consistently emphasized the potential
use of radiomics for computer-assisted diagnosis, as well as for predicting survival and response to
treatment. Radiomics is appealing in that it enables full-field analysis of the lesion, provides nearly
real-time results, and is non-invasive. Still, a lot of studies suffer from a series of drawbacks such as
lack of standardization and repeatability. Such limitations, along with the unmet demand for large
enough image datasets for training the algorithms, are major hurdles that still limit the application of
radiomics on a large scale. In this paper, we review the current developments, potential applications,
limitations, and perspectives of PET/CT radiomics with specific focus on the management of patients
with lung cancer.
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1. Introduction

Lung cancer is the second most common type of cancer in men and women worldwide, with an
estimated lifetime prevalence of about 1/15 and 1/17, respectively, for the two genders [1]. In Italy,
there were ≈42,500 new cases in 2019, accounting for ≈11% of all the newly diagnosed cancers in the
same year [2]. Five-year survival rates of patients with lung cancer vary considerably depending on
the type and stage of the disease, ranging from a dismal 3% for distant small-cell lung cancer (SCLC) to
60% for localized non-small-cell lung cancer (NSCLC) [3]. Timely detection and correct management
are therefore essential to improve the clinical outcome of patients affected by lung cancer.

In recent years, computerized analysis of 3D scans from Computed Tomography (CT),
Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) has received a great
deal of attention as a means to improve the clinical management of a number of disorders. It is believed
that radiomics has the potential to improve on traditional, manual interpretation by detecting features
and patterns that otherwise would go unnoticed to the human eye [4,5]. By leveraging on large datasets
(hence the suffix ‘-omics’) and artificial intelligence techniques, radiomics could help predict the type
of disease, survival, and response to therapy [6,7]. There are also a number of logistic advantages in
this approach, such as providing nearly real-time results and not requiring any invasive procedure for
the patient [8]. Furthermore, compared with standard biopsy, radiomics can offer not only a full-field
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analysis of one lesion but also of more lesions within the examined area, and, depending on the
protocol used, of the whole body too [9].

Fluorine 18 (18F) fluorodeoxyglucose Positron Emission Tomography–Computed Tomography
(PET/CT henceforth) is nowadays the mainstay in the management of lung cancer, having greatly
improved patient diagnosis, staging, and follow-up [10]. The role of radiomics in this context has
therefore attracted widespread interest during the last few years [11–16]. In this work, we discuss
methods, potential applications, and perspectives of radiomics analysis at PET/CT in the management
of patients with lung cancer. In the remainder of this paper, we describe the overall work-flow in
radiomics (Section 2), present four specific applications in lung cancer (Section 3), discuss issues and
limitations (Section 4), and conclude with final considerations and a look at the perspectives (Section 5).

2. Methodology

The overall objective of radiomics is to build classification and/or regression models based on
some quantitative features extracted from the imaging data. The typical workflow in radiomics
(Figure 1) is rather independent of the underlying disease and consists of six sequential steps [17] that
are described in the following subsections.

Figure 1. The standard workflow in radiomics.

2.1. Acquisition

This is the procedure whereby the scans are obtained, and includes both the examination itself
and the patient preparation protocol. The output will be a three-dimensional matrix of intensity values
(voxel model), which in the remainder we shall refer to as the raw data. A wide range of parameters
intervene in the acquisition process, among them tube current and voltage (for CT); spatial resolution
(voxel size), reconstruction algorithm and related settings both for CT and PET. All these variables
may have a significant impact on the radiomics features computed [6,18], with certain features being
affected more than others [19].

2.2. Pre-Processing

Pre-processing may involve spatial filtering, windowing, and/or resampling. The objective of spatial
filtering can be either to reduce noise or emphasize features at different scales. Common tools for
this task are Butterworth smoothing [20], Gaussian filters [21], and Laplacian of Gaussian filters [22].
Windowing consists of applying a lower and upper threshold to the intensity values of the raw data,
this way defining a range of acceptable values. Resampling amounts to changing the number of bits
used for encoding the raw data, which is commonly 12 or 16. This is usually reduced to eight, six,
or four before feature extraction [20,23,24].

Pre-processing is a crucial step in the workflow and may significantly affect the overall outcome,
as numerous experiments have demonstrated [19,20].

2.3. Segmentation

Segmentation (delineation) is the process whereby the part of the scan that is relevant for the
analysis (Region of Interest—ROI) is separated from the background. Note that sometimes the literature
makes a distinction between a two-dimensional ROI and a three-dimensional one, the latter being
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in some cases indicated as Volume of Interest (VOI). For the sake of simplicity, we use the acronym
ROI to indicate both a two- and a three-dimensional region. The output of this step is a binary
(boolean) matrix the same size of the raw data, where ‘true’ (1) indicates that the voxel belongs to the
ROI, ‘false’ (0), otherwise. Segmentation is a time-consuming and anything but easy step, for many
lesions will show unclear and ill-defined borders. The process is also complicated by the presence
of areas such as necrosis, atelectasis, and/or inflammation, whose role in the radiomics work-flow
is not fully understood yet. Although a number of automated (e.g., adaptive thresholding [25],
convolutional networks) and semi-automated (e.g., level-set [26], region growing [27]) methods have
been proposed, manual delineation is still regarded by many as the ground truth [6].

2.4. Feature Extraction

Feature extraction is a pivotal step in the whole procedure and involves computing a set of
quantitative parameters (image features or, simply, features) from the region of interest. The features
should obviously correlate with the outcome of the clinical investigation involved (more on this in
Section 3). At present, there are two main classes of features: the ‘hand-designed’ (or ‘hand-crafted’)
ones and those based on Deep Learning (see Figure 2 for a possible taxonomy). Hand-crafted features
are obtained via some suitable mathematical functions that are essentially designed by hand (hence
the name). Most common among them are shape and texture features. By contrast, Deep Learning
features are obtained implicitly by training on large datasets of images.

2.4.1. Shape Features

Shape features aim at characterizing the geometry of the region of interest. They can be computed
either from each slice separately (2D) or from the whole ROI (3D). In most cases, their objective is to
differentiate between round, smooth, and regular lesions from spiculated, elongated, and irregular
ones. Apart from volume, common shape features are compactness, elongation, rectangular fit,
spherical disproportion, sphericity, surface area, and surface-to-volume ratio [24,28,29]. Clearly,
shape features are more easily assessed at CT than PET due to the higher image resolution of the former.

2.4.2. Texture Features

The objective of texture features is to quantify the variability of the grey-scale levels in the region
of interest. They are therefore able to assess intra-lesion heterogeneity, which is considered a strong
indicator of malignancy and poor prognosis [30,31].

Texture features commonly used in radiomics are first- and second-order statistics. First-order
statistics describe the overall variation of the signal in the region of interest regardless of the relative
position of the voxels. As a consequence, these features are fairly invariant to geometric transforms,
therefore robust to image reconstruction and filtering. They include basic statistics such as mean,
median, range, standard deviation, skewness, and kurtosis [32]. Second-order statistics model the
joint signal variation between pairs of voxels lying at a predefined relative displacement between each
other—among them are: Grey Level Co-occurrence Matrices (GLCM [33]), Grey Level Run-Length
Matrices (GLRLM [34]), and Neighborhood Grey-Tone Difference Matrices (NGTDM [35]).

Other texture features different from the above have also been investigated for characterizing
PET/CT images in lung cancer—as, for instance, Gabor filters [36], Laws’ masks [37], Local Binary
Patterns [38], and wavelets [32].

2.4.3. Deep Learning

Deep Learning is a relatively new data-driven paradigm for image analysis [39]. In this model, the
feature computation is no longer defined a priori and hard-coded as in the hand-crafted methods but
is learned from the data. This scheme is typically implemented by combining suitable computational
blocks (layers) to form more complex structures (convolutional neural networks—CNN). Certain types of
such blocks contain a number of free parameters, the values of which are determined via some training
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procedures. These consist of presenting the network with large sets of pre-classified (labelled) ROIs,
through which the network adjusts (‘learns’) the values of the free parameters.

Deep Learning has recently shown great potential for computer-assisted diagnosis [38,40] and
for prediction of response to therapy [41] in patients with lung cancer. A potential drawback of Deep
Learning, however, is that the resulting features are not as easy to interpret as the hand-designed
ones, nor readily linkable to clinically relevant image findings [42]. The paradox, then, is that, even
if the results are good, we don’t know why; as a consequence, it is hard to investigate the methods
for possible sources of bias and/or mistakes (for a discussion on the perils of excessively complex
algorithms, see also ([43], Ch. 6)).

Figure 2. Radiomics features: a taxonomy.

2.5. Post Processing

The imaging features computed by any of the methods discussed in Section 2.4 can undergo
further processing with the aim of reducing redundancy and/or increasing their discrimination
capability. Most common approaches to this end are feature selection and feature generation [17].

Feature selection consists of retaining a subset of the original features by selecting the most
discriminative ones. This is crucial in radiomics, for some image features tend to be strongly
correlated with one another [44]. Approaches to feature selection come in different varieties, such as
correlation-based selection, reduction based on mutual information gain, recursive elimination,
and Lasso regularization (see [45] for a recent review on this subject).

Feature generation involves obtaining new features by combining of the original ones through
some suitable transformations, such as Linear Discriminant Analysis (LDA), Principal Component
Analysis (PCA), and Multi-Dimensional Scaling (MDS) [46,47].

2.6. Data Analysis

Data analysis comprises two separate steps: the first (model building), in which a classification
and/or regression model is generated; the second, where the model is used to make predictions about
the case or cohort of patients under evaluation. Model building involves (a) establishing the type of
classifier or regressor to be used, and (b) feeding the model with a set of pre-classified cases—i.e., arrays
of features/label pairs where the label indicates the clinical condition of the corresponding subject.
This process of presenting the model with pre-classified cases is usually referred to as training.
Crucial to this step, of course, is the availability of large enough datasets of pre-classified cases
(ground truth).
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As for the type classifier, there are several options available ‘off-the-shelf’, which range from
conceptually easy solutions, for instance Linear Discriminant Analysis [48], K-nearest neighbors [49],
and Naïve Bayes [37,49]), to more involved ones, such as Random Forests [37,49,50] and Support Vector
Machines [37,51,52]. For the regressor, Cox’s [53–55] and logistic regression [56] are common choices.

3. Applications

Applications of PET/CT radiomics in lung cancer can be either cross sectional, where the interest
is determining specific characteristics of a lesion at some point in time (we may want, for instance, to
discriminate benign vs. malignant lesions or identify the histological subtype), or longitudinal, in which
case the concern is predicting the likely evolution of the disease over time—i.e., overall survival,
disease-free survival, and/or response to treatment. In the remainder of this section, we discuss four
potential applications that can have important implications in clinical practice.

3.1. Discrimination between Benign and Malignant Pulmonary Nodules

Solitary pulmonary nodules (SPN) are relatively common findings, although the available data
about the estimated prevalence at CT examination vary significantly [57,58]. Clinical management
of SPN poses significant challenges to the clinician, for a non-negligible fraction of them (estimated
between 3.7% and 5.5% [59]) may actually be malignant. Traditionally, the evaluation involved manual
assessment of some key image characteristics at CT that are considered strong indicators of benignity
or malignancy [60]. In this scenario, recent studies have shown that prediction models based on
quantitative imaging features can help differentiate between benign, malignant, and inflammatory
pulmonary nodules [37,50,61–64].

Positron emission tomography has also proved effective in the assessment of suspicious SPN.
The standard strategy in this case consists of comparing the uptake value against some absolute or
relative threshold: uptake in the nodule higher than background mediastinal activity [65] and/or
SUVmax > 2.5 are typically considered indicative of malignancy [66]. This approach has demonstrated
good sensitivity but rather low specificity (pooled values in a recent meta-analysis [67], respectively,
of 89% and 78%). Quantitative assessment of radiotracer uptake by texture analysis has shown to
improve the diagnostic accuracy—in particular specificity—compared with SUVmax alone [68,69].

3.2. Classification between Primary and Metastatic Lesions; Histological Subtyping

Detailed lesion characterisation has important implications for the management of patients
with lung cancer. Differential diagnosis between primary and metastatic lesions, for instance,
is crucial for stratification as well as for establishing the optimal treatment strategy [70]. Likewise,
correct identification of histological subtype has a strong influence on the outcome and determination
of the most appropriate therapy [71,72].

In a retrospective study on a fairly large cohort of patients (n = 545), PET texture features
were able to differentiate between primary and metastatic lung lesions, whereas CT features were
not [48]. PET radiomic features were also found to correlate with histological subtype (specifically
adenocarcinoma vs. squamous cell carcinoma) in [21,44], whereas, in [49,52], radiomics signatures
based on CT texture features were significantly associated with tumor histology.

3.3. Prediction of Survival

Prediction of survival plays an important role for triaging and, consequently, for determining
the suitability of subjects for different treatment options. Survival studies, however, are notoriously
difficult due to the long follow-up required and the presence of many confounding factors. It is not
surprising then that results in this topic are less clear-cut than in the other potential applications.

In [53], tumor heterogeneity evaluated by texture features at CT was a significant predictor of
overall survival (OS) in NSCLC, but radiotracer uptake was not. CT- and PET-derived heterogeneity
were both significant predictors of OS in [73], while Hatt et al. [28] found an association between
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OS and PET sphericity, although their results also showed dependency on lesion volume and
method used for segmentation. Positive association with different survival metrics and PET/CT
texture features [37,54,73,74] or CT features alone [32,36,53] were also reported in other studies.
Krarup et al. [55], however, determined that PET/CT texture features were insignificant in predicting
progression-free survival beyond tumor volume and clinical stage in lung cancer patients. Similarly,
Sacconi et al. [56] did not observe any significant correlation between CT texture features and OS in
lung adenocarcinoma.

3.4. Prediction of Response to Treatment

Predicting response to treatment—and in particular to chemotherapy, radiotherapy,
and immunotherapy—is crucial to maximize the outcome, and, at the same time, minimize the
side effects by avoiding the administration of inefficient treatments.

Several studies have investigated the potential of radiomics to predict response to treatment
in lung cancer. In [10,23], textural features from PET/CT scans at the baseline were found to
correlate with local recurrence and disease-specific survival in patients treated with radiotherapy.
Radiomic signatures from baseline PET/CT were also predictive of disease-free survival in NSCLC
patients undergoing surgery [8], whereas, in [75], CT baseline feature predicted response to
chemotherapy in lung adenocarcinoma. Image biomarkers from PET/CT also showed the ability to
predict immunotherapy response in advanced NSCLC [76].

4. Discussion

Many recent studies have consistently emphasized the potential advantages of PET/CT radiomics
in lung cancer and other oncological disorders. Chief among such advantages are the ability to capture
information beyond the capabilities of the human eye, non-invasiveness, virtually real-time response,
and full-field analysis of the lesion.

The results available in the literature are undoubtedly promising, but they also need to be
considered with care. Lack of reproducibility, for instance, is a well-known problem in radiomics,
and is mostly a consequence of the absence of standardized methods and settings in all the steps of
the workflow [14,17]. A number of studies also suffer from serious limitations at the validation level:
among them improper statistical analysis (e.g., lack of adjustment of the p-value for multiple tests)
and/or absence of an independent validation dataset to confirm the results. This may easily lead to
biased discovery rates and inflation of type-I errors, as correctly pointed out in [77]. Last but not least,
publication bias naturally tends to overstate positive results against negative ones (for a discussion on
this, see also [78,79]).

5. Conclusions and Perspectives

Quantitative image analysis of PET/CT scans has attracted increasing research interest in the last
few years. Clearly, the field is still at an early stage and further work needs to be done to confirm the
benefits and the potential advantages in the clinical practice. As of now, the evidence of a superiority
of radiomics beyond standard imaging analysis tools including SUV, kinetic data, etc. is yet to be
confirmed for the tasks discussed in this work.

In [17], the authors identified three major obstacles to overcome before radiomics can effectively
translate into clinical practice: standardization, automatization, and data availability. The first involves the
definition of guidelines and/or standards for all the steps described in Section 2. The Image Biomarker
Standardization Initiative (IBSI) is an interesting attempt toward this end [80]. The second requires the
automatization of those steps of the procedure that still rely too heavily on human intervention—for
instance, segmentation. Finally, the availability of large, possibly multi-center image datasets is crucial
for the development and validation of radiomics methods.
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The following abbreviations are used in this manuscript:

CNN Convolutional Neural Network(s)
CT Computed Tomography
GLCM Grey-Level Co-occurrence Matrices
IBSI The Image Biomarker Standardization Initiative
LDA Linear Discriminant Analysis
MDS Multi-Dimensional Scaling
MRI Magnetic Resonance Imaging
NGTDM Neighborhood Grey-Tone Difference Matrices
NSCLC Non-Small-Cell Lung Cancer
OS Overall Survival
PCA Principal Components Analysis
PET Positron Emission Tomography
ROI Region(s) of Interest
VOI Volume(s) of Interest
SPN Solitary Pulmonary Nodule(s)
SCLC Small-Cell Lung Cancer
SUV Standardized Uptake Value
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