
applied
sciences

Article

Automated Vulnerability Detection in Source Code
Using Minimum Intermediate Representation
Learning

Xin Li 1,2,3, Lu Wang 1 , Yang Xin 1,2,3,*, Yixian Yang 1,2,3 and Yuling Chen 2

1 School of Cyberspace Security, Beijing University of Posts and Telecommunications, Beijing 100876, China;
li_xin@bupt.edu.cn (X.L.); wltongxue@bupt.edu.cn (L.W.); yxyang@bupt.edu.cn (Y.Y.)

2 Guizhou Provincial Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China;
ylchen3@gzu.edu.cn

3 National Engineering Laboratory for Disaster Backup Recovery, Beijing 100876, China
* Correspondence: yangxin@bupt.edu.cn

Received: 9 January 2020; Accepted: 26 February 2020; Published: 2 March 2020
����������
�������

Abstract: Vulnerability is one of the root causes of network intrusion. An effective way to mitigate
security threats is to discover and patch vulnerabilities before an attack. Traditional vulnerability
detection methods rely on manual participation and incur a high false positive rate. The intelligent
vulnerability detection methods suffer from the problems of long-term dependence, out of vocabulary,
coarse detection granularity and lack of vulnerable samples. This paper proposes an automated
and intelligent vulnerability detection method in source code based on the minimum intermediate
representation learning. First, the sample in the form of source code is transformed into a minimum
intermediate representation to exclude the irrelevant items and reduce the length of the dependency.
Next, the intermediate representation is transformed into a real value vector through pre-training on
an extended corpus, and the structure and semantic information are retained. Then, the vector is fed
to three concatenated convolutional neural networks to obtain high-level features of vulnerability.
Last, a classifier is trained using the learned features. To validate this vulnerability detection method,
an experiment was performed. The empirical results confirmed that compared with the traditional
methods and the state-of-the-art intelligent methods, our method has a better performance with
fine granularity.

Keywords: cyber security; vulnerability detection; program slice; transfer learning; representation
learning

1. Introduction

The importance of cyberspace security has become more and more significant. However,
cyberspace is facing a serious threat of invasion. The root cause of most cyber-attacks is vulnerabilities.
Vulnerabilities exploited by attackers compromise the confidentiality, integrity, and availability of
information systems. For instance, the ransomware Wannacry which exploited a vulnerability in
Windows server message block protocol has swept the world [1]. Early detection of vulnerability is
an effective way to reduce the loss. Despite the efforts of experts and scholars, vulnerabilities remain
a huge problem and will continue to exist in the long term. This can be justified by the fact that an
increasing number of vulnerabilities are published every year [2].

Vulnerability detection is a method to discover vulnerabilities in software. Traditional vulnerability
detection includes static and dynamic methods [3]. Static methods, such as data flow analysis [4,5],
symbol execution [6], and theorem proving [7], analyze source code or executable code without
running software. Static methods have high coverage and can be deployed in the early stage of

Appl. Sci. 2020, 10, 1692; doi:10.3390/app10051692 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-3388-8053
http://www.mdpi.com/2076-3417/10/5/1692?type=check_update&version=1
http://dx.doi.org/10.3390/app10051692
http://www.mdpi.com/journal/applsci

Appl. Sci. 2020, 10, 1692 2 of 16

software development. However, it suffers from a high false positive rate. Dynamic methods, such as
fuzzy test [8] and dynamic symbol execution [9], verify or discover the nature of software by running
the program. Dynamic methods have a low false positive rate and simple deployment, but their
dependence on the coverage of test cases incurs a low recall. Therefore, realizing automatic and
intelligent vulnerability detection is the trend of research. This can be justified by the organization of
DARPA’s Cyber Grand Challenge [10].

The development of machine learning technology provides new methods to alleviate the
bottlenecks of traditional methods. Intelligent vulnerability detection methods which operate on
source code are one of the main research directions. It can be categorized into 3 types: using software
engineering metrics, anomaly detection, and vulnerable pattern learning [11]. In the early stages,
software engineering metrics, such as software complexity [12], developer activities [13], and code
commits [14] are explored to train a machine learning model. The inspiration for this approach is that
the more complex the software is, the more vulnerable it is. Software engineering metrics methods have
the advantages of speediness and easily acquired datasets, but its effectiveness in accuracy and recall
is still to be improved. Anomaly detection and vulnerable pattern learning both try to improve the
detection effect by utilizing the syntactic and semantic information in the code [15]. Anomaly detection
learns the legal programming pattern from mature software codes. The similarity or association
between the candidates and the learned rules is used to detect vulnerabilities [16]. Anomaly detection
has the advantage of discovering unknown vulnerabilities. However, the false positive and false
negative is high. The vulnerable pattern learning method learns vulnerable patterns from vulnerable
and clean samples [17]. Compared with anomaly detection, this method has a better performance on
the accuracy, but highly dependent on the quality of the dataset.

The intelligent vulnerability detection methods leverage software syntax and semantic information
to improve detection performance, but there are several problems that compromise the effect of existing
intelligent methods: (1) long-term dependency between code elements. In a vulnerable sample,
the dependency between context can be long. For example, variables defined at the beginning
of a program may be used at the end. This may cause the machine learning algorithm to ignore
the correlation between context when detecting the vulnerability; (2) out-of-vocabulary (OoV) issue.
Program language allows users to customize identifiers, such as variable name, function name, and class
name, and every programmer has his own style when naming identifiers. This leads to the lack of
a common vocabulary to cover all possible identifiers. Hence, there is always an out-of-vocabulary
issue during vulnerability detection. This will weaken the effect of vulnerability detection; (3) coarse
detection granularity. A coarse detection granularity, such as a component, function or file, cannot
properly represent vulnerability information. For example, a vulnerability might cross the boundary
of a function or a file. A coarse detection granularity may incur noise when detecting vulnerabilities.
In addition, coarse detection granularity provides imprecise information to assist developers to patch.
Thus a considerable human effort is still required to pinpoint the vulnerable code fragments; (4) lack
of vulnerability dataset. The quantity and quality of training data determine the effectiveness of
intelligent vulnerability detection methods. However, due to the particularity of vulnerability, the lack
of a general and authoritative vulnerability dataset for training and testing still limits the performance
of intelligent methods.

To overcome these challenges, we proposed a framework that detects software vulnerabilities
in four stages: pre-processing, pre-training, representation learning, and classifier training. In the
pre-processing stage, our method transforms the samples in the form of raw source code into the
minimum intermediate representations through dependency analysis, program slicing, tokenization,
and serialization. The length of dependencies between context is reduced by eliminating irrelevant
code. The samples used in the next three stages are pre-processed respectively. In the pre-training
stage, considering the lack of vulnerability samples, we conduct unsupervised learning on an extended
corpus. The purpose of this process is to learn the common syntax features of program language
and alleviate the OoV issue through distributed embedding. The result of the pre-training stage will

Appl. Sci. 2020, 10, 1692 3 of 16

serve as the parameters of the embedding layer in the next two stages. In the representation learning
stage, three concatenated convolutional neural networks are utilized to obtain high-level features
from a vulnerability dataset. In order to train this network, two dense layers are added in this stage.
In the classifier training stage, the vulnerability dataset is transformed into high-level features using
the learned network in the last stage, and a classifier is trained for vulnerability detection by the
learned high-level features. Finally, test samples will be classified by the trained model. The empirical
study shows that compared with the traditional methods and state-of-the-art intelligent methods, our
method has made significant improvements in false positive rate, false negative rate, precision, recall,
and F1 metrics.

The remainder of this paper is organized as follows: We introduce the related work in Section 2.
In Section 3 motivating examples and hypotheses are introduced. Our method for automated
vulnerability detection in source code is presented in Section 4. We introduce the experiments and
discuss the results in Section 5. Finally, we conclude this paper in Section 6.

2. Related Work

2.1. Intelligent Vulnerability Detection

To detect vulnerability automatically, researchers have proposed several approaches. Fabian [18]
proposed an anomaly detection method for taint-style vulnerabilities. It clusters the initialization of
variables that can be propagated to security-sensitive functions. Then, the violation is reported as
potential vulnerabilities by anomaly detection. This approach is suitable for taint-style vulnerability
but not for universal vulnerability. Kim [19] proposed a vulnerability detection method based on
similarity. However, this method is limited to vulnerabilities caused by code cloning. Wang [20]
proposed a representation learning method with file-level granularity. It extracts three types of nodes
from the abstract syntax tree (AST) of a file: declaration, control-flow and invocation. A deep belief
network (DBN) is used to learn advanced features. The information extracted by this method is too
coarse to detect vulnerabilities caused by improper use of variables. Lin [21,22] and Michael [23]
proposed an AST-based intra-procedural representation learning method to detect vulnerabilities.
However, they both suffer from coarse detection granularity. In addition, their performances are
compromised by the presence of irrelevant codes. Bian [24] proposed an anomaly detection method
based on static analysis. He converts the program slice to an AST and uses a hash algorithm to encode
the AST. Li [25,26] proposed a detection method that learns vulnerable programming patterns with
token granularity. A classifier is trained using the embedded samples directly without representation
learning. Furthermore, its embedding and classification model are learned from the same dataset.
This limits its performance. To solve the problem of information loss in the process of representation
learning, Zhou [27] proposed a method that used the graph neural network for vulnerability detection
with function-level granularity. The samples are converted into the form of code property graph. Then
a graph neural network that is composed of a gated graph recurrent layer and a convolutional layer
is trained to learn the vulnerable programming pattern. This approach improves the detection of
intra-procedural vulnerabilities. However, it fails to cover inter-procedural vulnerabilities.

2.2. Program Understanding Model

The program understanding model is the basis of intelligent vulnerability detection. There are two
main forms of program understanding: sequence and structure. The sequential understanding model
converts the source code into a sequence in a certain order, including character [28], token [29] and
API [30]. It retains native information. However, it is affected by long-term dependency. The structural
program understanding model includes Abstract Syntax Tree (AST) [24,31], Control Flow Graph
(CFG) [32], Program Dependence Graph (PDG) [33], and Code Property Graphs (CPG) [34]. AST
represents the syntactic structure of a programming language in a tree form. Through an AST, the syntax
information can be obtained. CFG takes the codes with a sequential relationship as a basic block

Appl. Sci. 2020, 10, 1692 4 of 16

and concatenates them into an ordered graph based on their control dependency. CFG specifies the
execution sequence of statements and the required conditions for a particular execution sequence.
However, CFG failed to identify data flow information. PDG adds data dependency and control
dependency on the nodes of CFG. The advantage of this structure is that statements that affect some
sensitive operations can be easily and accurately identified. However, PDG loses the syntax information
which is crucial for the detection of some types of vulnerability. Given that AST, CFG, and PDG have
their own priorities, Yamaguchi [34] proposed CPG that combines them into one graph. Although
CPG provides accurate and detailed information, it compromises the efficiency of detection due to
the increased data to be analyzed. Furthermore, structural representation is more complicated than
sequential representation. In order to balance accuracy and efficiency, some intelligent vulnerability
detection methods [25,26] transform natural code sequence into a structured model. Then the structure
model is transformed into a sequence model before embedding.

3. Preliminary

3.1. Motivating Examples

Vulnerability is a defect or fault that can be exploited by a malicious user to make the software
perform operations different from its design logic. From a source code perspective, most vulnerabilities
are rooted in a critical operation that raises security issues. The critical operation can be a function,
an assignment or a control statement. An attacker can directly or indirectly influence this critical
operation by controlling certain variables or conditions.

Buffer overflow vulnerability (CWE-119) is selected to illustrate the feature of vulnerability. This
is because the buffer overflow vulnerability has become the most impacted vulnerability, according to
a report from Common Weakness Enumeration in 2019 [35]. In addition, it is representative because of
complex data dependence and control dependence. Although buffer overflow vulnerability is selected
as an example, our method is universal for other types of vulnerability detection.

Buffer overflow refers to the writing of data in the buffer that exceeds its own length, resulting
in the overwriting of storage units outside the buffer. Figure 1 illustrates an intra-procedural buffer
overflow vulnerability in file “example_1.c.” The variable “buf” is allocated a buffer of 10 bytes and
assigned values through a “for“ loop. When the loop reaches the eleventh times (i = 10), “buf” can still
be assigned. This operation overflows the buffer of “buf.” In this sample, all the relevant codes for the
vulnerability are inside the procedure “main.” The critical operation is an assignment in line 12. It is
data-dependent on line 5 and control dependent on lines {4, 10}. The scope of this vulnerability is lines
{4, 5, 10, 12}. In this example, the variable “buf” is declared on line 6 but assigned on line 13. This
reflects the long-term dependence issue. In addition, lines {1, 2, 3, 6, 7, 8, 9, 11, 13, 14} are irrelevant
statements. These factors will interfere with the learning of vulnerable programming patterns. In the
real-world programs, the percentage of irrelated code may be high.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 17

sensitive operations can be easily and accurately identified. However, PDG loses the syntax
information which is crucial for the detection of some types of vulnerability. Given that AST, CFG,
and PDG have their own priorities, Yamaguchi [34] proposed CPG that combines them into one
graph. Although CPG provides accurate and detailed information, it compromises the efficiency of
detection due to the increased data to be analyzed. Furthermore, structural representation is more
complicated than sequential representation. In order to balance accuracy and efficiency, some
intelligent vulnerability detection methods [25,26] transform natural code sequence into a structured
model. Then the structure model is transformed into a sequence model before embedding.

3. Preliminary

3.1. Motivating Examples

Vulnerability is a defect or fault that can be exploited by a malicious user to make the software
perform operations different from its design logic. From a source code perspective, most
vulnerabilities are rooted in a critical operation that raises security issues. The critical operation can
be a function, an assignment or a control statement. An attacker can directly or indirectly influence
this critical operation by controlling certain variables or conditions.

Buffer overflow vulnerability (CWE-119) is selected to illustrate the feature of vulnerability. This
is because the buffer overflow vulnerability has become the most impacted vulnerability, according
to a report from Common Weakness Enumeration in 2019 [35]. In addition, it is representative
because of complex data dependence and control dependence. Although buffer overflow
vulnerability is selected as an example, our method is universal for other types of vulnerability
detection.

Buffer overflow refers to the writing of data in the buffer that exceeds its own length, resulting
in the overwriting of storage units outside the buffer. Figure 1 illustrates an intra-procedural buffer
overflow vulnerability in file “example_1.c.” The variable “buf” is allocated a buffer of 10 bytes and
assigned values through a “for“ loop. When the loop reaches the eleventh times (i = 10), “buf” can
still be assigned. This operation overflows the buffer of “buf.” In this sample, all the relevant codes
for the vulnerability are inside the procedure “main.” The critical operation is an assignment in line
12. It is data-dependent on line 5 and control dependent on lines {4, 10}. The scope of this vulnerability
is lines {4, 5, 10, 12}. In this example, the variable “buf” is declared on line 6 but assigned on line 13.
This reflects the long-term dependence issue. In addition, lines {1, 2, 3, 6, 7, 8, 9, 11, 13, 14} are
irrelevant statements. These factors will interfere with the learning of vulnerable programming
patterns. In the real-world programs, the percentage of irrelated code may be high.

Figure 1. File “example_1.c” with an intra-procedural buffer overflow vulnerability.

Figure 2 illustrates an inter-procedural buffer overflow vulnerability in file “example_2.c. ” In
the function “test,” the variable “buf“ is allocated a buffer of 64 bytes. However, it can be copied to
1024 bytes data at most in line 6. When the size of the variable “str” exceeds 64 bytes, it will overflow
the buffer of “buf”. The value of the variable “str” comes from the main function. This is an inter-
procedural vulnerability whose critical operation is a data copy in line 6. The scope of this
vulnerability is lines {12, 13, 15, 16, 17, 1, 3, 4, 6}.

Figure 1. File “example_1.c” with an intra-procedural buffer overflow vulnerability.

Figure 2 illustrates an inter-procedural buffer overflow vulnerability in file “example_2.c. ”
In the function “test,” the variable “buf“ is allocated a buffer of 64 bytes. However, it can be copied

Appl. Sci. 2020, 10, 1692 5 of 16

to 1024 bytes data at most in line 6. When the size of the variable “str” exceeds 64 bytes, it will
overflow the buffer of “buf”. The value of the variable “str” comes from the main function. This is
an inter-procedural vulnerability whose critical operation is a data copy in line 6. The scope of this
vulnerability is lines {12, 13, 15, 16, 17, 1, 3, 4, 6}.Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 17

Figure 2. File “example_2.c” with an inter-procedural buffer overflow vulnerability.

As can be seen from the above two examples, many instructions are irrelevant to a vulnerability.
Therefore, detection with function-level or file-level granularity will be interfered with by the
irrelevant instructions. The second example illustrates that vulnerability may span multiple functions.
Therefore, a method with improper detection granularity fails to discover the inter-procedural
vulnerabilities. In addition, function-level and file-level granularity is too coarse to assist the
developer with an audit. A lot of human intervention is needed to pinpoint the vulnerabilities and
make fixes.

3.2. Hypothesis

Programming language can be regarded as a language of communication between human
beings and computers. It has many similarities with natural language. For example, they are both
composed of tokens and can be resolved into a syntax tree. Success in the field of natural language
processing enlightens us to borrow concepts from natural language processing (NLP) for
vulnerability detection.

In natural language processing, a sentence is represented as a sequence of the token. The context
of a word is its preceding and succeeding words. Therefore, distributed representations are based on
an assumption: Words that occur in the same context tend to have similar meanings [36].

In vulnerability detection, code can be converted into a sequence by some rules, such as
dependency or sequence of program execution. After the transformation, it has the same form as a
natural language. Therefore, we make assumptions for vulnerability detection:

Hypothesis 1. In a programming language, the context of a token is its preceding and succeeding tokens, and
tokens that occur in the same context tend to have similar semantics.

Hypothesis 2. The same types of vulnerabilities have common semantic characteristics. These characteristics
can be learned from the context of vulnerabilities.

4. Proposed Approach

4.1. Overview

Our study aims to automatically detect vulnerabilities in the software while providing precise
information to assist developers to audit. Our method selects an inter-procedural slice as the
detection granularity. Figure 3 shows an overview of our proposed method. The black arrow
represents the data flow during the pre-training stage. The red arrow represents the data flow during
the representation learning stage. The blue arrow represents the data flow during the classifier
training stage. Although the arrows in the pre-processing phase are black, the data in the other three
stages will flow through this stage. As shown in Figure 3, the inputs are in the form of source code.
In the pre-processing stage, through dependency analysis, security slicing, tokenization, and
serialization, we obtain a sequential minimum intermediate representation of the sample. In the pre-
training stage, we learn a distributed embedding from an extended corpus. The output of this stage
is used as the parameters of the embedding layer in the next two stages. In the representation learning
stage, three concatenated convolutional neural networks are used to learn high-level features. The
trained model is reused in the next stage. In the classifier training stage, a machine learning classifier

Figure 2. File “example_2.c” with an inter-procedural buffer overflow vulnerability.

As can be seen from the above two examples, many instructions are irrelevant to a vulnerability.
Therefore, detection with function-level or file-level granularity will be interfered with by the irrelevant
instructions. The second example illustrates that vulnerability may span multiple functions. Therefore,
a method with improper detection granularity fails to discover the inter-procedural vulnerabilities.
In addition, function-level and file-level granularity is too coarse to assist the developer with an audit.
A lot of human intervention is needed to pinpoint the vulnerabilities and make fixes.

3.2. Hypothesis

Programming language can be regarded as a language of communication between human beings
and computers. It has many similarities with natural language. For example, they are both composed
of tokens and can be resolved into a syntax tree. Success in the field of natural language processing
enlightens us to borrow concepts from natural language processing (NLP) for vulnerability detection.

In natural language processing, a sentence is represented as a sequence of the token. The context
of a word is its preceding and succeeding words. Therefore, distributed representations are based on
an assumption: Words that occur in the same context tend to have similar meanings [36].

In vulnerability detection, code can be converted into a sequence by some rules, such as dependency
or sequence of program execution. After the transformation, it has the same form as a natural language.
Therefore, we make assumptions for vulnerability detection:

Hypothesis 1. In a programming language, the context of a token is its preceding and succeeding tokens, and
tokens that occur in the same context tend to have similar semantics.

Hypothesis 2. The same types of vulnerabilities have common semantic characteristics. These characteristics
can be learned from the context of vulnerabilities.

4. Proposed Approach

4.1. Overview

Our study aims to automatically detect vulnerabilities in the software while providing precise
information to assist developers to audit. Our method selects an inter-procedural slice as the detection
granularity. Figure 3 shows an overview of our proposed method. The black arrow represents the data
flow during the pre-training stage. The red arrow represents the data flow during the representation
learning stage. The blue arrow represents the data flow during the classifier training stage. Although
the arrows in the pre-processing phase are black, the data in the other three stages will flow through
this stage. As shown in Figure 3, the inputs are in the form of source code. In the pre-processing
stage, through dependency analysis, security slicing, tokenization, and serialization, we obtain a
sequential minimum intermediate representation of the sample. In the pre-training stage, we learn a

Appl. Sci. 2020, 10, 1692 6 of 16

distributed embedding from an extended corpus. The output of this stage is used as the parameters of
the embedding layer in the next two stages. In the representation learning stage, three concatenated
convolutional neural networks are used to learn high-level features. The trained model is reused in the
next stage. In the classifier training stage, a machine learning classifier is trained using the outputs of
the convolutional layer. Finally, test samples will be detected by the trained model in the last stage to
predict whether they are vulnerable or not.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17

is trained using the outputs of the convolutional layer. Finally, test samples will be detected by the
trained model in the last stage to predict whether they are vulnerable or not.

Figure 3. Overview of the proposed intelligent vulnerability detection method.

4.2. Pre-Processing

A fine-granularity detection method can not only eliminate extraneous features in the analysis
process but also provide detailed information to audit. Different from file-level and function-level
granularity in many papers, our method chooses the subset of code related to vulnerabilities as
detection granularity. We define minimum intermediate representation (MIR) as a sequence of tokens
which are serialized from an inter-procedural program slice that takes a security-critical operation as
a criterion. The order between tokens represents dependencies.

As shown in Figure 4, the samples in the form of the source code are converted to minimum
intermediate representations by static analysis in the pre-processing stage. First samples in the form
of source code are converted into program dependency graphs by control dependency and data
dependency analysis.

int main()

char buf[10];

char src[10];

memset(src, 'A', 10);

src[10 - 1] = '\0';

bar(buf, src);

for (int i = 0; i <= 10; i++)

buf[i] = 'B';

void bar(char *buf, char *src)

strcpy(buf, src);

return 0;

void bar(char *buf, char *src) {
strcpy(buf, src);

}
int main() {

char buf[10];
char src[10];
memset(src, 'A', 10);
src[10 - 1] = '\0';
bar(buf, src);
for (int i = 0; i <= 10; i++)
//writes buf [10] and overruns memory

buf[i] = 'B';
return 0;

}

int main() {
char buf[10];
for (int i = 0; i <= 10; i++)

buf[i] = 'B';
}

int main () char int

[buf]i B' '

...

Data dependency

Control dependencySource Code

System Dependency Graph

Security Slice

Minimum Intermediate Representation

Figure 4. Overview of the pre-training stage. The solid arrows denote data dependencies and dashed
arrows denote control dependencies in the system dependency graph.

Control dependency between statement i and statement j satisfies that : [,]path i j∃ , (1)
 post-dominate , (,)j k k i j∈ ; (2) i is not post-dominate by j.

Data dependency between statement i and statement j satisfies that x V∃ ∈ , (1) []x DEF i∈ and
[]x USE j∈ ; (2) (,)k i j∀ ∈ , []x DEF k∉ . V denotes the set of variables in a program. []DEF i

denotes the set of variables defined at statement i, and []USE j denote the set of variables referenced
at statement j.

In this paper, a program dependence graph (PDG) is a directed graph ,G S E=< > . S is the set
of the vertex in the program dependency graph that denotes the statements. The E is the set of edges
that represents the control dependency and data dependency. Given many vulnerabilities are inter-

Figure 3. Overview of the proposed intelligent vulnerability detection method.

4.2. Pre-Processing

A fine-granularity detection method can not only eliminate extraneous features in the analysis
process but also provide detailed information to audit. Different from file-level and function-level
granularity in many papers, our method chooses the subset of code related to vulnerabilities as
detection granularity. We define minimum intermediate representation (MIR) as a sequence of tokens
which are serialized from an inter-procedural program slice that takes a security-critical operation as a
criterion. The order between tokens represents dependencies.

As shown in Figure 4, the samples in the form of the source code are converted to minimum
intermediate representations by static analysis in the pre-processing stage. First samples in the form
of source code are converted into program dependency graphs by control dependency and data
dependency analysis.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 17

is trained using the outputs of the convolutional layer. Finally, test samples will be detected by the
trained model in the last stage to predict whether they are vulnerable or not.

Figure 3. Overview of the proposed intelligent vulnerability detection method.

4.2. Pre-Processing

A fine-granularity detection method can not only eliminate extraneous features in the analysis
process but also provide detailed information to audit. Different from file-level and function-level
granularity in many papers, our method chooses the subset of code related to vulnerabilities as
detection granularity. We define minimum intermediate representation (MIR) as a sequence of tokens
which are serialized from an inter-procedural program slice that takes a security-critical operation as
a criterion. The order between tokens represents dependencies.

As shown in Figure 4, the samples in the form of the source code are converted to minimum
intermediate representations by static analysis in the pre-processing stage. First samples in the form
of source code are converted into program dependency graphs by control dependency and data
dependency analysis.

int main()

char buf[10];

char src[10];

memset(src, 'A', 10);

src[10 - 1] = '\0';

bar(buf, src);

for (int i = 0; i <= 10; i++)

buf[i] = 'B';

void bar(char *buf, char *src)

strcpy(buf, src);

return 0;

void bar(char *buf, char *src) {
strcpy(buf, src);

}
int main() {

char buf[10];
char src[10];
memset(src, 'A', 10);
src[10 - 1] = '\0';
bar(buf, src);
for (int i = 0; i <= 10; i++)
//writes buf [10] and overruns memory

buf[i] = 'B';
return 0;

}

int main() {
char buf[10];
for (int i = 0; i <= 10; i++)

buf[i] = 'B';
}

int main () char int

[buf]i B' '

...

Data dependency

Control dependencySource Code

System Dependency Graph

Security Slice

Minimum Intermediate Representation

Figure 4. Overview of the pre-training stage. The solid arrows denote data dependencies and dashed
arrows denote control dependencies in the system dependency graph.

Control dependency between statement i and statement j satisfies that : [,]path i j∃ , (1)
 post-dominate , (,)j k k i j∈ ; (2) i is not post-dominate by j.

Data dependency between statement i and statement j satisfies that x V∃ ∈ , (1) []x DEF i∈ and
[]x USE j∈ ; (2) (,)k i j∀ ∈ , []x DEF k∉ . V denotes the set of variables in a program. []DEF i

denotes the set of variables defined at statement i, and []USE j denote the set of variables referenced
at statement j.

In this paper, a program dependence graph (PDG) is a directed graph ,G S E=< > . S is the set
of the vertex in the program dependency graph that denotes the statements. The E is the set of edges
that represents the control dependency and data dependency. Given many vulnerabilities are inter-

Figure 4. Overview of the pre-training stage. The solid arrows denote data dependencies and dashed
arrows denote control dependencies in the system dependency graph.

Control dependency between statement i and statement j satisfies that ∃path : [i, j], (1)
j post-dominate k, k ∈ (i, j); (2) i is not post-dominate by j.

Data dependency between statement i and statement j satisfies that ∃x ∈ V, (1) x ∈ DEF[i] and
x ∈ USE[j]; (2) ∀k ∈ (i, j), x < DEF[k]. V denotes the set of variables in a program. DEF[i] denotes the
set of variables defined at statement i, and USE[j] denote the set of variables referenced at statement j.

Appl. Sci. 2020, 10, 1692 7 of 16

In this paper, a program dependence graph (PDG) is a directed graph G =< S, E >. S is the
set of the vertex in the program dependency graph that denotes the statements. The E is the set of
edges that represents the control dependency and data dependency. Given many vulnerabilities are
inter-procedural, we generated the system dependence graph (SDG) by adding the invocation between
procedures to the program dependency graph.

Next, all the critical operations in the system dependency graph are located according to the
characteristics of the vulnerability to be detected. A backward program slice is conducted on every
critical operation. Then, we replace the call and declaration statements of the custom functions with
a data dependency between the arguments to the parameters and a data dependency between the
return values to the call points. We serialize the results of slicing in the order the code executes. So far,
the basic unit is still a statement. Therefore, lexical analysis is performed to turn the slice into tokens.
In the example shown in Figure 4, ”buf[i] = ’B’” is a critical operation for buffer overflow vulnerability.
This is because its misuse can cause data to be written out of the buffer. The relevant statements are
pinpointed by dependency analysis in the SDG. They are statements {” for (int i = 0; i <= 10; i++)”,
“char buf[10];”, ”int main()”}. We serialize the critical operation and its associated statements in the
executed order. Finally, by a custom lexical analysis, we obtain the MIR: {“int”, “main”, “(“, “)”, “{“,
“char”, “buf”, “[“, “10”, ”]”, “;”, “for”, “(“, “int”, “i”, ”=”, “0”, ”;”, “i”, “<=”, “10”, “;”, “i”, “++”, “)”,
“buf”, “[“, “i”, “]”, “=”, “’”, “B”, ”’”}. As a result, the source code is transformed into a form similar to
natural language.

4.3. Pre-Training

Machine learning models take real value vectors as inputs. Therefore the minimum intermediate
representations should be mapped to real value vectors. Based on Hypothesis 1, we distributedly
represent each token with its context. Compared with traditional encoding methods, such as
one-hot, term frequency–inverse document frequency (TF-IDF), n-gram, distributed representation is
denser. Semantically similar identifiers will be mapped to similar vector representations due to their
similar context.

In the pre-training stage, the Continuous Bag-of-Words (CBOW) model is leveraged to obtain
distributed vector representations. As illustrated in Figure 5, the CBOW model is a simplified neural
network with three layers. The input of the CBOW model is the vector representation of context.
Therefore, the size of the input layer is C×N, where C is the size of the context and N is the dimension
of vector representation. The projection layer summates the vector representations, and the output is:

xi =
1
C
(v1 + v2 + · · ·+ vC), (1)

where vi is the initial vector representation of token ti. The output layer is a Huffman tree, whose
leaf nodes represent the tokens in the vocabulary. Therefore, the number of leaf nodes is V and the
number of the inner nodes is V − 1. In a Huffman tree, there is a unique path Pi from the root node to
the target leaf node ti. In the path, the j-th node is represented as ni, j. θi, j represents the vector of ni, j,
and di, j ∈ {0, 1} denotes the encoding value of the node ni, j+1. The probability of going left or right at
the inner node ni, j is:

p
(
di, j

∣∣∣xi,θi, j−1
)
=

[
σ
(
xT

i θi, j−1
)]1−di, j

·

[
1− σ

(
xT

i θi, j−1
)]di, j , (2)

Therefore, in the CBOW model, the probability of target token ti appearing in a context is:

p(ti
∣∣∣context(ti)) =

∏li

j=2
p
(
di, j

∣∣∣xt,θi, j−1
)
, (3)

Appl. Sci. 2020, 10, 1692 8 of 16

where context(ti) denotes the context of the target token ti. Then, the objective function is:

L =
∑

ti∈C
log(p(ti

∣∣∣context(ti))) =
∑

ti∈C

li∑
j=2

{
(1− di, j−1) · log

(
σ(xT

i · θi, j−1)
)
− di, j · log

(
1− σ(xT

i · θi, j−1)
)}

, (4)

This is an unsupervised learning method that enables us to learn programing patterns from an
unlabeled dataset. Therefore, we utilize a transfer learning method to learn distributed embedding from
an extended dataset. Tool word2vec [37] is used to implement the CBOW language model. The learned
vector representations are used as the parameters of the embedding layer in the representation learning
stage and classifier training stage.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 17

() () (){ }, 1 , 1 , , 1
2

log (| ()) (1) log () log 1 ()
i

i i

l
T T

i i i j i i j i j i i j
t C t C j

L p t context t d x d xσ θ σ θ− − −
∈ ∈ =

= = − ⋅ ⋅ − ⋅ − ⋅
,

(4)

This is an unsupervised learning method that enables us to learn programing patterns from an
unlabeled dataset. Therefore, we utilize a transfer learning method to learn distributed embedding
from an extended dataset. Tool word2vec [37] is used to implement the CBOW language model. The
learned vector representations are used as the parameters of the embedding layer in the
representation learning stage and classifier training stage.

Figure 5. An example of a continuous bag-of-word model. The output layer is a Huffman tree with V
leaf nodes and V-1 inner nodes. The path 2P from the root node to 2t is highlighted as an example,

where 2, {0,1}jd ∈ denotes the encoding value of the j-th node in the path 2P . 2 , jθ denotes the vector

of the j-th node in the path 2P .

4.4. High-Level Feature Learning

According to Hypothesis 2, the vulnerable programming pattern of a sample is hidden in the
context. We leverage a representation learning method to obtain high-level features from the
serialized tokens. Convolutional neural networks have been successfully used in many tasks such as
computer vision and natural language processing. It proves the ability of the convolutional neural
network to learn the spatial structure in input data.

Inspired by the n-gram model in natural language processing, we use three parallel 1-
dimensional convolutional neural networks to extract different features. As shown in Figure 6, the
representation learning stage consists of five layers. The embedding layer map for the MIR is
obtained through static analysis to a form of vector. Let k

iv R∈ be the vector representation
corresponding to the i-th token in a MIR. A MIR n k

jx R ×∈ of length n represented as

1 2j nx v v v= ⊕ ⊕ ⊕ , (5)

where j is the order of the sample in the dataset and ⊕ denotes the concatenate operator. In the
convolution layer, let mh kw R ×∈ be the filter, and the window of the filter is mh , [1,3]m ∈ . A new

feature ic is generated by

(): 1i i i hc f w x b+ −= ⋅ + , (6)

where b R∈ is the bias, and f is an activation function. : 1i i hx + − denotes the value involved in the
convolution. There are d filters for each type. Therefore, the output of each convolution operation
with a window mh is , m

n d
j hu R ×∈ . After performing a concatenation operation on , mj hu , all features

Figure 5. An example of a continuous bag-of-word model. The output layer is a Huffman tree with V
leaf nodes and V-1 inner nodes. The path P2 from the root node to t2 is highlighted as an example,
where d2, j ∈ {0, 1} denotes the encoding value of the j-th node in the path P2. θ2, j denotes the vector of
the j-th node in the path P2.

4.4. High-Level Feature Learning

According to Hypothesis 2, the vulnerable programming pattern of a sample is hidden in the
context. We leverage a representation learning method to obtain high-level features from the serialized
tokens. Convolutional neural networks have been successfully used in many tasks such as computer
vision and natural language processing. It proves the ability of the convolutional neural network to
learn the spatial structure in input data.

Inspired by the n-gram model in natural language processing, we use three parallel 1-dimensional
convolutional neural networks to extract different features. As shown in Figure 6, the representation
learning stage consists of five layers. The embedding layer map for the MIR is obtained through static
analysis to a form of vector. Let vi ∈ Rk be the vector representation corresponding to the i-th token in
a MIR. A MIR x j ∈ Rn×k of length n represented as

x j = v1 ⊕ v2 ⊕ · · · ⊕ vn, (5)

where j is the order of the sample in the dataset and ⊕ denotes the concatenate operator. In the
convolution layer, let w ∈ Rhm×k be the filter, and the window of the filter is hm, m ∈ [1, 3]. A new
feature ci is generated by

ci = f (w · xi:i+h−1 + b), (6)

where b ∈ R is the bias, and f is an activation function. xi:i+h−1 denotes the value involved in the
convolution. There are d filters for each type. Therefore, the output of each convolution operation
with a window hm is u j,hm ∈ Rn×d. After performing a concatenation operation on u j,hm , all features are
mapped to a 2-dimensional tensor s j ∈ R3n×d. The global-max-pooling operation is conducted on the
second dimension of s j. This will pick out the most important feature while retaining the structure

Appl. Sci. 2020, 10, 1692 9 of 16

information. As a result, we obtain a high-level feature z j ∈ Rk. In order to complete the network, two
dense layers are added after the global max pooling layer, and the dense layers have k and two nodes,
respectively. The convolutional layer is reused in the classifier training phase.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 17

are mapped to a 2-dimensional tensor 3n d
js R ×∈ . The global-max-pooling operation is conducted on

the second dimension of js . This will pick out the most important feature while retaining the

structure information. As a result, we obtain a high-level feature k
jz R∈ . In order to complete the

network, two dense layers are added after the global max pooling layer, and the dense layers have
k and two nodes, respectively. The convolutional layer is reused in the classifier training phase.

Figure 6. The overview of the representation learning stage. In the Embedding layer, the weights
come from the pre-training stage. Three convolutional neural networks constitute the Convolutional
layer. In this paper, the filter size of each network is 1h , 2h , 3h respectively. The outputs of the

Convolutional layer are concatenated through the Concatenate layer. A global-max-pooling operation
is conducted to find the max value in every column. Lastly, two dense layers are added, and the
activation function is softmax.

4.5. Building Models and Performing Vulnerability Detection

We obtain the high-level features of the vulnerability dataset by reusing the trained
convolutional neural networks. The high-level features are utilized to train a classifier for predicting
whether a sample is vulnerable or not.

Finally, we get the vulnerability detection model. It leverages the pre-processing method in
Section 4.3 to obtain the minimum intermediate representations of the test samples. The word vectors
obtained in Section 4.4 are used as parameters of the embedding layer. The convolutional neural
networks trained in the representation learning stage of Section 4.5 are used to obtain high-level
features. The classifier trained in the last stage is used to predict whether the test samples are
vulnerable or not.

5. Experiments and Results

5.1. Evaluation Metrics

Let True Positive (TP) denote the number of correctly classified vulnerable samples, False
Positive (FP) denotes the number of falsely classified clean samples, False Negative (FN) denotes the
number of falsely classified vulnerable samples, and Ture Negative (TN) denotes the number of
correctly classified clean samples. To measure vulnerability detection results, five metrics were used.
False Positive Rate (FPR) = FP/(FP+TN) denotes the proportion of falsely classified clean samples in
all clean samples. False Negative Rate (FNR) = FN/(FN+TP) , denotes the proportion of falsely
classified vulnerable samples in all vulnerable samples. Precision (P) = TP/(TP + FP), denotes the
proportion of correctly classified vulnerable samples in all samples that are classified as vulnerable.

()Recall (R)=TP / TP FN+ , represents the ability of a classifier to discover vulnerabilities from all

vulnerable samples. F1-Measure (F1) = 2 P R/(P+R)⋅ ⋅ measure the ability of both Precision and
Recall. In the experimental results, the classifiers with low FPR, FNR and high P, R and F1 metrics
have excellent performance.

Figure 6. The overview of the representation learning stage. In the Embedding layer, the weights come
from the pre-training stage. Three convolutional neural networks constitute the Convolutional layer.
In this paper, the filter size of each network is h1, h2, h3 respectively. The outputs of the Convolutional
layer are concatenated through the Concatenate layer. A global-max-pooling operation is conducted to
find the max value in every column. Lastly, two dense layers are added, and the activation function
is softmax.

4.5. Building Models and Performing Vulnerability Detection

We obtain the high-level features of the vulnerability dataset by reusing the trained convolutional
neural networks. The high-level features are utilized to train a classifier for predicting whether a
sample is vulnerable or not.

Finally, we get the vulnerability detection model. It leverages the pre-processing method in
Section 4.3 to obtain the minimum intermediate representations of the test samples. The word vectors
obtained in Section 4.4 are used as parameters of the embedding layer. The convolutional neural
networks trained in the representation learning stage of Section 4.5 are used to obtain high-level
features. The classifier trained in the last stage is used to predict whether the test samples are vulnerable
or not.

5. Experiments and Results

5.1. Evaluation Metrics

Let True Positive (TP) denote the number of correctly classified vulnerable samples, False
Positive (FP) denotes the number of falsely classified clean samples, False Negative (FN) denotes
the number of falsely classified vulnerable samples, and Ture Negative (TN) denotes the number of
correctly classified clean samples. To measure vulnerability detection results, five metrics were used.
False Positive Rate (FPR) = FP/(FP + TN) denotes the proportion of falsely classified clean samples
in all clean samples. False Negative Rate (FNR) = FN/(FN + TP), denotes the proportion of falsely
classified vulnerable samples in all vulnerable samples. Precision (P) = TP/(TP + FP), denotes the
proportion of correctly classified vulnerable samples in all samples that are classified as vulnerable.
Recall (R) = TP/(TP + FN), represents the ability of a classifier to discover vulnerabilities from all
vulnerable samples. F1-Measure (F1) = 2 · P ·R/(P + R) measure the ability of both Precision and
Recall. In the experimental results, the classifiers with low FPR, FNR and high P, R and F1 metrics
have excellent performance.

5.2. Experimental Setup

The dataset used in this paper comes from the Software Assurance Reference Dataset (SARD) [38]
and the National Vulnerability Database (NVD) [39]. SARD comes from the Software Assurance
Metrics And Tool Evaluation (SAMATE) project of the National Institute of Standards and Technology

Appl. Sci. 2020, 10, 1692 10 of 16

(NIST). SARD aims to serve as a standard dataset to evaluate the effectiveness of vulnerability detection
tools with known software security errors and fixes for them. The samples in the dataset come
in two forms: artificially designed vulnerabilities, and vulnerabilities found in software products.
The NVD is the U.S. government repository that collects vulnerabilities and their patches in software
products. We choose the buffer overflow vulnerabilities (CWE-119) and resource management error
vulnerabilities (CWE-399) on SARD and NVD as the samples for learning vulnerable programming
patterns. Other samples in C language on SARD were selected to extend the dataset for pre-training.
Statistics on training data and pre-training data are summarized in Table 1. These datasets have been
preliminarily processed by [25]. We set train data:test data = 7:3, and used 10-fold cross validation
to choose super parameters. In our experiment, buffer overflow vulnerability was selected as the
main detection object (except Section 5.5). This is because the buffer overflow vulnerability is the
most significant vulnerability [35]. Therefore, the detection of this type of vulnerability has practical
significance. In addition, abundant samples of the buffer overflow vulnerability are available. It should
be noted that our approach also applies to other vulnerabilities caused by the misuse of data processing
and control logic.

Table 1. Statistics on training data and pre-training data.

Dataset Samples Vulnerable Not Vulnerable Vocabulary

CWE-119 39,753 10,440 29,313 16,983
CWE-399 21,885 7285 14,600 7811

Extended dataset 482,265 - - 61,638

The neural networks are implemented by Keras (version 2.2.5). The Random Forest, Gradient
Boosting Decision Tree, SVM, Logistic Regression and Naive Bayesian algorithm were provided by the
Scikit-learn (version 0.21.3). The distributed embedding is implemented by Word2vec provided by
genism (version 3.0.1). Our algorithm was run on Google Colaboratory with Tesla T4 GPU.

In the representation learning stage, the parameters we used are shown in Table 2.

Table 2. Tuned Parameters for representation learning.

Parameter Description

Input_dim The size of vocabulary (16983).

Output_dim The dimensionality of vectors that the tokens are converted to (200).

Sequence_length The length of each sample (400).

CNN units There are 3 concatenated convolutional neural networks (CNN). The number of filters
all is 128. The size of filers is 3, 5, 7 respectively.

Batch_size The number of samples that are propagated through the network (128).

Loss function A function to calculate the loss between the predicted value and real value
(binary_crossentropy)

Optimizer The algorithm to optimize the neural network (Adam)

Monitor The matric to be monitored for early stop (F1) and patience (10)

5.3. Comparison of Different Neural Networks

In order to select the best model for representation learning, we adopted a 10-fold cross validation
on train data. We compared six neural networks. Sequential CNN has three sequentially connected
convolutional neural networks (CNN). Each convolutional neural network has 128 filters, and the size
of filters is 3, 5, 7, respectively. Sequential LSTM has two long short-term memory neural networks
(LSTM). Each LSTM has a 128-dimensional output. BiLSTM is composed of a forward LSTM and a
backward LSTM, and it has a 128-dimensional output. In CNN + BiLSTM, the output of CNN with 128

Appl. Sci. 2020, 10, 1692 11 of 16

5-dimensional filters is the input of LSTM with 128 output. CNN + BiLSTM + Attention has an extra
self-attention layer in addition to CNN + BiLSTM. Concatenated CNN has an output that concatenates
the output of three convolutional neural networks. Each neural network is connected to a dense layer
for training. The comparison results are showed in Table 3.

Table 3. Comparison of different representation learning models.

Model FPR (%) FNR (%) P (%) R (%) F1 (%)

Sequential CNN 6.3 22.0 85.9 68.0 75.9
Sequential LSTM 17.6 30.8 69.0 69.2 69.1

BiLSTM 29.4 7.3 64.1 92.3 75.7
CNN+BiLSTM 13.1 10.4 80.6 89.6 84.9

CNN +BiLSTM+Attention 5.5 33.9 87.1 66.1 75.1
Concatenated CNN 1.8 15.0 94.4 85.0 89.5

We observe that although BiLSTM achieves the best results on FNR and Recall, it has the worst
results on P. Compared with other models, Concatenated CNN has balanced performance and achieves
the best results in FPR, P, and F1. Therefore, in the representation learning stage, we chose Concatenated
CNN as the final model to learn high-level features.

In order to compare the effects of different classifiers at the stage of vulnerability detection,
we used the learned high-level features to train six classifiers: Logistic Regression (LR), Naive Bayesian
(NB), Support Vector Machine (SVM), Multi-Layer Perceptron (MLP), Gradient Boosting Decision Tree
(GBDT), Random Forest (RF). Table 4 shows the comparison results. Among the six classifiers, SVM
had the best performance on FPR and P metrics, while RF achieved the best performance on FNR, R,
and F1 metrics. Therefore, RF has a more balanced performance.

Table 4. Comparison of different classification algorithms.

Algorithm FPR (%) FNR (%) P (%) R (%) F1 (%)

LR 2.4 12.0 93.0 88.0 90.5
NB 18.4 13.1 62.6 86.9 72.8

SVM 1.2 10.9 96.4 89.1 92.6
MLP 2.8 12.6 91.8 87.4 89.5

GBDT 1.3 11.3 96.0 88.7 92.2
RF 1.5 9.6 95.7 90.4 93.0

5.4. Effectiveness of Pre-Training

In order to validate the effectiveness of pre-training, we projected the 200-dimensional embeddings
to 2-dimensional vectors. Three types of tokens with different semantics were picked out. They
are memory manipulation functions, logical comparisons and custom identifiers. The projected
embeddings are shown in Figure 7.

As can be seen from Figure 7, different types of tokens were grouped into separable clusters.
This proves that through the pre-training on the extended corpus, our method can learn the common
semantic information. In addition, custom identifiers with similar semantics have similar positions.
This proves the ability of our method to alleviate the OoV problem.

In addition, we compared the effectiveness of our method with four different embedding methods.
A random forest is used as a classifier in all five methods. The first three methods that use Vocabulary,
N-Gram, IT-IDF language models respectively were performed on the same dataset (CWE-119). Their
classifiers are trained using the real value vectors encoded respectively. The last two methods both use
the CBOW language model as the embedding method, and a representation learning is performed to
obtained high-level features. The difference is that the former uses the same dataset (CWE-119) for
pre-training, representation learning, and classifier training. The latter is our approach that utilizes an

Appl. Sci. 2020, 10, 1692 12 of 16

extended corpus for pre-training and vulnerability dataset (CWE-119) for representation learning and
classifier training.Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 17

Figure 7. The embedding result of three types of tokens. The blue dots denote custom identifiers. The
green triangles denote logical comparisons. The red quadrates denote memory manipulation
functions.

In addition, we compared the effectiveness of our method with four different embedding
methods. A random forest is used as a classifier in all five methods. The first three methods that use
Vocabulary, N-Gram, IT-IDF language models respectively were performed on the same dataset
(CWE-119). Their classifiers are trained using the real value vectors encoded respectively. The last
two methods both use the CBOW language model as the embedding method, and a representation
learning is performed to obtained high-level features. The difference is that the former uses the same
dataset (CWE-119) for pre-training, representation learning, and classifier training. The latter is our
approach that utilizes an extended corpus for pre-training and vulnerability dataset (CWE-119) for
representation learning and classifier training.

Table 5 summarizes the experimental results. The first three methods have approximate
performances. A significant improvement over the first three methods is achieved by the fourth
method. This shows that the application of pre-training can improve the effectiveness of vulnerability
detection. The last result is achieved by our method that has the best performance. This is because,
through pre-training from a large database, the common syntax of a programming language is
learned, and every token is represented by its context. Even if tokens are unique in a different
program, it will eventually be represented as a similar vector as long as the identifier has a similar
context. By using this transfer learning approach, we mitigate the impact of the OoV issue. The results
validate Hypothesis 1.

Table 5. Comparison of five different embedding methods.

Method Corpus FPR (%) FNR (%) P (%) R (%) F1 (%)
Vocabulary CWE-119 4.9 31.6 82.8 68.4 75.0

N-Gram CWE-119 6.7 27.2 79.1 72.8 75.8
TF-IDF CWE-119 6.2 27.2 80.4 72.8 76.4
CBOW CWE-119 3.1 20.4 89.9 79.6 84.4
CBOW Extended corpus 1.5 9.6 95.7 90.4 93.0

Figure 7. The embedding result of three types of tokens. The blue dots denote custom
identifiers. The green triangles denote logical comparisons. The red quadrates denote memory
manipulation functions.

Table 5 summarizes the experimental results. The first three methods have approximate
performances. A significant improvement over the first three methods is achieved by the fourth
method. This shows that the application of pre-training can improve the effectiveness of vulnerability
detection. The last result is achieved by our method that has the best performance. This is because,
through pre-training from a large database, the common syntax of a programming language is learned,
and every token is represented by its context. Even if tokens are unique in a different program, it will
eventually be represented as a similar vector as long as the identifier has a similar context. By using this
transfer learning approach, we mitigate the impact of the OoV issue. The results validate Hypothesis 1.

Table 5. Comparison of five different embedding methods.

Method Corpus FPR (%) FNR (%) P (%) R (%) F1 (%)

Vocabulary CWE-119 4.9 31.6 82.8 68.4 75.0
N-Gram CWE-119 6.7 27.2 79.1 72.8 75.8
TF-IDF CWE-119 6.2 27.2 80.4 72.8 76.4
CBOW CWE-119 3.1 20.4 89.9 79.6 84.4
CBOW Extended corpus 1.5 9.6 95.7 90.4 93.0

5.5. Ability to Detect Different Vulnerabilities

In order to verify the detection ability of our method for different types of vulnerability, we conduct
experiments on two datasets: CWE-119 and CWE-399. CWE-119 was the dataset of buffer overflow
vulnerability. CWE-399 was the dataset of resource management error vulnerability. The two
experiments were performed with the same super parameters and experimental procedures. The results
are summarized in Table 6.

As shown in Table 6, our proposed method carried out effective detection on both two datasets.
This validates that our detection method can be applied to different types of vulnerability. In comparison,
the detection effect of CWE-399 was better than that of CWE-119. This is because buffer overflow
vulnerability has more complex forms than resource management error vulnerability, such as complex

Appl. Sci. 2020, 10, 1692 13 of 16

data and control dependencies and various sanitization methods. As a result, this makes it difficult for
machine learning algorithms to learn vulnerability patterns from samples.

Table 6. Performance of our method on different types of vulnerability.

Vulnerability FPR (%) FNR (%) P (%) R (%) F1 (%)

CWE-119 1.5 9.6 95.7 90.4 93.0
CWE-399 0.1 3.0 98.7 97.0 97.8

The execution time and memory space of our proposed method are summarized in Table 7. In the
pre-training stage, our method took 216.5 s and used 278.0 MB of memory space. In the representation
learning stage, the execution time of CWE-119 was 301.1 s and the execution time of CWE-399 was
137.4 s. The memory space was 2356.6 MB and 2341.9 MB, respectively. In the classifier training stage,
execution time was 7.0 s and 4.2 s, respectively, and the memory space was 39.0 MB and 20.6 MB
respectively. In general, the execution time and memory space of our proposed method were within
the acceptable range.

Table 7. The complexity of our method on different types of vulnerability.

Vulnerability Pre-Training Representation Learning Classifier Training

Time (s) Memory (MB) Time (s) Memory (MB) Time (s) Memory (MB)

CWE-119
216.5 278.0

301.1 2356.6 7.0 39.0
CWE-399 137.4 2341.9 4.2 20.6

5.6. Comparative Analysis

In order to examine the effectiveness of the proposed method in vulnerability detection,
we performed a comparative experiment with state-of-the-art methods. We chose open-source
static analysis tool Flawfinder [4] and commercial static analysis tool Checkmarx [5]. They represent
traditional vulnerability detection methods based on static analysis. VUDDY [19] was chosen to
represent the similarity-based method. VulDeePecker and our methods detect vulnerabilities based
on learning vulnerable programming patterns. The difference is that VulDeePecker [25] has no
representation learning stage, and it uses one dataset through the entire method. All the results in
Table 8 are based on the same dataset. The results of Checkmarx and VulDeePecker are from the
paper [25]. This because we are not able to access the commercial tool Checkmarx and VulDeePecker is
not an open-source tool.

Table 8. Comparative experimental results.

System FPR (%) FNR (%) P (%) R (%) F1 (%)

Flawfinder [4] 46.3 69.0 23.7 40.5 29.9
Checkmarx [5] 43.1 41.1 39.6 58.9 47.3
VUDDY [19] 3.5 91.3 47.0 8.7 14.7

VulDeePecker [25] 2.9 18.0 91.7 82.0 86.6
Our method 1.5 9.6 95.7 90.4 93.0

It can be seen from Table 6 that our method outperforms the state-of-the-art methods. Specifically,
traditional static analysis methods incur high FNR and FPR. The result of Checkmarx was relatively
superior to Flawfinder. This is because the former applies efficient data flow analysis algorithms.
VUDDY has a low FPR (3.5%), but has a poor performance on FNR (91.3%), P (47.0%), R (8.7%), and F1
(14.7%). This means that most vulnerabilities are not detected. This is because the similarity-based
method is suitable for detecting vulnerabilities caused by code cloning, and is not adept at detecting
general vulnerabilities. VulDeePecker and our method outperform other methods in most indicators.

Appl. Sci. 2020, 10, 1692 14 of 16

This indicates that the vulnerable pattern-based method excels at detecting general vulnerabilities.
Compared with VulDeePecker, our method improved by 1.4% in FPR, 8.4% in FNR, 4.0% in P, 7.6% in R,
and 6.4% in F1. This indicates that compared with training classifier directly, the application of transfer
learning and representation learning can effectively improve the effect of vulnerability detection.

The above experimental results show that our method has a fine granularity and representation
ability by transforming the sample into the minimum intermediate representation. This facilitates
audits and alleviates long-term dependency issues. By applying transfer learning, unlabeled data can
be utilized to improve the effectiveness of vulnerability detection. By using the representation learning
approach, our approach is able to learn the features of vulnerabilities from context. The comparative
experiment results show that our method outperforms state-of-the-art methods. Compared with the
traditional static analysis method, our method has a better performance. This is because traditional
static analysis methods rely on expert-defined vulnerable patterns, which are laborious and error-prone
due to the diversity of programming patterns. Compared with the similarity-based method, our method
learns common vulnerability patterns from training samples and can be applied to a wide range of
detection scenarios. Moreover, our method excels with other pattern-based methods because of the
application of transfer learning and presentation learning. This proves our hypotheses.

6. Conclusions

This paper presents a novel solution to detect vulnerability in source code by learning vulnerable
programming patterns automatically, which aimed to improve the effectiveness of vulnerability
detection. The granularity of our proposed method is a minimum intermediate representation
that extracts vulnerability relevant information based on dependency analysis. It covers not only
intra-procedural but also inter-procedural vulnerabilities, and it alleviates the long-term dependency
issue and provides precise vulnerability information. We transfer the common language features
in an unlabelled dataset to the task of specific vulnerability detection. Representation learning is
leveraged to abstract high-level features. It mitigates the impact of the OoV and the lack of vulnerability
dataset issues. We implemented a prototype and performed systematic experiments to validate
the effectiveness of our method. The experimental results show that our method has an obvious
improvement over the state-of-the-art methods.

The proposed approach has several limitations which can be further investigated. First, the problem
of long-term dependency is merely alleviated by eliminating the irrelevant code in the pre-processing
stage. This is an inherent deficiency of the sequential structure. To improve this limitation, the graph
embedding method can be applied. By transforming the source code into a graph structure, the element
is connected directly to its context. Second, the method in this paper does not clean out the mislabeled
samples in the dataset. Mislabeled samples will interfere with the learning of vulnerable programming
patterns. Therefore, sample selection could be conducted in further research. Finally, our method falls
into the category of static analysis. It means that our method cannot be applied to detect vulnerability
in compiled software. This can be solved by transforming the compiled software into a common
intermediate representation, such as the intermediate representation of Low Level Virtual Machine
(LLVM).

Author Contributions: Conceptualization, X.L.; methodology, X.L.; software, X.L., L.W.; validation, X.L., L.W.
and Y.X.; formal analysis, X.L., L.W.; investigation, X.L.; resources, Y.X., L.W. and Y.Y.; data curation, Y.X., Y.Y.;
writing—original draft preparation, X.L.; writing—review and editing, X.L.; visualization, X.L., L.W.; supervision,
Y.X., Y.Y.; project administration, Y.X.; funding acquisition, Y.X., Y.Y. and Y.C. All authors have read and agreed to
the published version of the manuscript.

Funding: This work is supported by “National Key R&D Program of China under Grant 2017YFB0802300”,
“Major Scientific and Technological Special Project of Guizhou Province (20183001)”, “Foundation of Guizhou
Provincial Key Laboratory of Public Big Data (No. 2018BDKFJJ021)”,and, “Foundation of Guizhou Provincial Key
Laboratory of Public Big Data (No. 2017BDKFJJ015).”

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 1692 15 of 16

References

1. WannaCry Ransomware Attack. Available online: https://en.wikipedia.org/wiki/WannaCry_ransomware_
attack (accessed on 29 December 2019).

2. National Vulnerability Database. Available online: https://nvd.nist.gov (accessed on 29 December 2019).
3. Brooks, T.N. Survey of automated vulnerability detection and exploit generation techniques in cyber

reasoning systems. In Proceedings of the Science and Information Conference, London, UK, 10–12 July 2018.
4. Flawfinder Software Official Website. Available online: https://www.dwheeler.com/flawfinder/ (accessed on

29 December 2019).
5. CheckMarx Software Official Website. Available online: https://www.checkmarx.com (accessed on 29

December 2019).
6. Cadar, C.; Dunbar, D.; Engler, D.R. KLEE: Unassisted and Automatic Generation of High-Coverage Tests for

Complex Systems Programs. In Proceedings of the OSDI, San Diego, CA, USA, 8–12 December 2008.
7. Henzinger, T.A.; Jhala, R.; Majumdar, R.; Sutre, G. Software verification with BLAST. In Proceedings of the

International SPIN Workshop on Model Checking of Software, Portland, OR, USA, 9–10 May 2003.
8. Böhme, M.; Pham, V.T.; Roychoudhury, A. Coverage-based greybox fuzzing as markov chain. IEEE Trans.

Softw. Eng. 2017, 45, 489–506. [CrossRef]
9. Stephens, N.; Grosen, J.; Salls, C.; Dutcher, A.; Wang, R.; Corbetta, J.; Shoshitaishvili, Y.; Kruegel, C.; Vigna, G.

Driller: Augmenting Fuzzing Through Selective Symbolic Execution. In Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA, USA, 21–24 February 2016.

10. Cyber Grand Challenge. Available online: https://www.darpa.mil/program/cyber-grand-challenge
(accessed on 29 December 2019).

11. Ghaffarian, S.M.; Shahriari, H.R. Software vulnerability analysis and discovery using machine-learning and
data-mining techniques: A survey. ACM Comput. Surv. 2017, 50, 56. [CrossRef]

12. Awad, Y.; Yashwant, M.; Charles, A.; Indrajit, R. To fear or not to fear that is the question: Code characteristics
of a vulnerable function with an existing exploit. In Proceedings of the 6th ACM Conference on Data and
Application Security and Privacy (CODASPY’16), New Orleans, LA, USA, 9–11 March 2016.

13. Shin, Y.; Meneely, A.; Williams, L.; Osborne, J.A. Evaluating complexity, code churn, and developer activity
metrics as indicators of software vulnerabilities. IEEE Trans. Softw. Eng. 2010, 37, 772–787. [CrossRef]

14. Perl, H.; Dechand, S.; Smith, M.; Arp, D.; Yamaguchi, F.; Rieck, K.; Acar, Y. Vccfinder: Finding potential
vulnerabilities in open-source projects to assist code audits. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, Denver, CO, USA, 12–16 October 2015.

15. Allamanis, M.; Barr, E.T.; Devanbu, P.; Sutton, C. A survey of machine learning for big code and naturalness.
ACM Comput. Surv. 2018, 51, 1–37. [CrossRef]

16. Wang, S.; Chollak, D.; Movshovitz-Attias, D.; Tan, L. Bugram: bug detection with n-gram language models.
In Proceedings of the 31st IEEE/ACM International Conference on Automated Software Engineering,
Singapore, Singapore, 3–7 September 2016.

17. Grieco, G.; Grinblat, G.L.; Uzal, L.; Rawat, S.; Feist, J.; Mounier, L. Toward large-scale vulnerability discovery
using machine learning. In Proceedings of the Sixth ACM Conference on Data and Application Security and
Privacy, New Orleans, LA, USA, 9–11 March 2016.

18. Yamaguchi, F.; Maier, A.; Gascon, H.; Rieck, K. Automatic inference of search patterns for taint-style
vulnerabilities. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, San Jose, CA, USA,
17–21 May 2015.

19. Kim, S.; Woo, S.; Lee, H.; Oh, H. Vuddy: A scalable approach for vulnerable code clone discovery.
In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP), San Jose, CA, USA, 22–24 May
2017.

20. Wang, S.; Liu, T.; Tan, L. Automatically learning semantic features for defect prediction. In Proceedings of
the 2016 IEEE/ACM 38th International Conference on Software Engineering (ICSE), Austin, TX, USA, 14–22
May 2016.

21. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y. POSTER: Vulnerability discovery with function representation
learning from unlabeled projects. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, Dallas, TX, USA, 30 October–3 November 2017.

https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://en.wikipedia.org/wiki/WannaCry_ransomware_attack
https://nvd.nist.gov
https://www.dwheeler.com/flawfinder/
https://www.checkmarx.com
http://dx.doi.org/10.1109/TSE.2017.2785841
https://www.darpa.mil/program/cyber-grand-challenge
http://dx.doi.org/10.1145/3092566
http://dx.doi.org/10.1109/TSE.2010.81
http://dx.doi.org/10.1145/3212695

Appl. Sci. 2020, 10, 1692 16 of 16

22. Lin, G.; Zhang, J.; Luo, W.; Pan, L.; Xiang, Y.; De Vel, O.; Montague, P. Cross-project transfer representation
learning for vulnerable function discovery. IEEE Trans. Ind. Inform. 2018, 14, 3289–3297. [CrossRef]

23. Pradel, M.; Sen, K. DeepBugs: A learning approach to name-based bug detection. In Proceedings of the
ACM on Programming Languages(OOPSLA), Boston, MA, USA, 7–9 November 2018.

24. Bian, P.; Liang, B.; Zhang, Y.; Yang, C.; Shi, W.; Cai, Y. Detecting bugs by discovering expectations and their
violations. IEEE Trans. Softw. Eng. 2018, 45, 984–1001. [CrossRef]

25. Li, Z.; Zou, D.; Xu, S.; Ou, X.; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. Vuldeepecker: A deep learning-based
system for vulnerability detection. In Proceedings of the 25th Annual Network and Distributed System
Security Symposium (NDSS), San Diego, CA, USA, 18–21 February 2018.

26. Li, Z.; Zou, D.; Xu, S.; Jin, H.; Zhu, Y.; Chen, Z.; Wang, J. SySeVR: A framework for using deep learning to
detect software vulnerabilities. arXiv 2018, arXiv:1807.06756.

27. Zhou, Y.; Liu, S.; Siow, J.; Du, X.; Liu, Y. Devign: Effective vulnerability identification by learning
comprehensive program semantics via graph neural networks. In Proceedings of the Advances in Neural
Information Processing Systems, Vancouver, BC, Canada, 8–14 December 2019.

28. Cummins, C.; Petoumenos, P.; Wang, Z.; Leather, H. Synthesizing benchmarks for predictive modeling. In
Proceedings of the 2017 International Symposium on Code Generation and Optimization, Austin, TX, USA,
4–8 February 2017.

29. Allamanis, M.; Peng, H.; Sutton, C. A convolutional attention network for extreme summarization of source
code. In Proceedings of the International Conference on Machine Learning, New York, NY, USA, 19–24 June
2016.

30. Gu, X.; Zhang, H.; Kim, S. Deep code search. In Proceedings of the 2018 IEEE/ACM 40th International
Conference on Software Engineering (ICSE), Gothenburg, Sweden, 27 May–3 June 2018.

31. Mou, L.; Li, G.; Zhang, L.; Wang, T.; Jin, Z. Convolutional neural networks over tree structures for
programming language processing. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
Phoenix, AZ, USA, 12–17 February 2016.

32. Brockschmidt, M.; Allamanis, M.; Gaunt, A.L.; Polozov, O. Generative code modeling with graphs. arXiv
2018, arXiv:1805.08490.

33. Ben-Nun, T.; Jakobovits, A.S.; Hoefler, T. Neural code comprehension: A learnable representation of code
semantics. In Proceedings of the Advances in Neural Information Processing Systems, Montréal, QC, Canada,
3–8 December 2018.

34. Yamaguchi, F.; Golde, N.; Arp, D.; Rieck, K. Modeling and discovering vulnerabilities with code property
graphs. In Proceedings of the 2014 IEEE Symposium on Security and Privacy, San Jose, CA, USA, 18–21
May 2014.

35. 2019 CWE Top 25 Most Dangerous Software Errors. Available online: https://cwe.mitre.org/top25/archive/

2019/2019_cwe_top25.html (accessed on 29 December 2019).
36. Pantel, P. Inducing ontological co-occurrence vectors. In Proceedings of the 43rd Annual Meeting on

Association for Computational Linguistics. Association for Computational Linguistics, Ann Arbor, MI, USA,
25–30 June 2005.

37. Gensim: Word2Vec Model. Available online: https://radimrehurek.com/gensim/auto_examples/tutorials/
run_word2vec.html (accessed on 29 December 2019).

38. SARD Manual. Available online: https://samate.nist.gov/index.php/SARD.html (accessed on 29
December 2019).

39. Common Vulnerabilities and Exposures. Available online: https://cve.mitre.org (accessed on 29
December 2019).

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TII.2018.2821768
http://dx.doi.org/10.1109/TSE.2018.2816639
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html
https://radimrehurek.com/gensim/auto_examples/tutorials/run_word2vec.html
https://samate.nist.gov/index.php/SARD.html
https://cve.mitre.org
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Intelligent Vulnerability Detection
	Program Understanding Model

	Preliminary
	Motivating Examples
	Hypothesis

	Proposed Approach
	Overview
	Pre-Processing
	Pre-Training
	High-Level Feature Learning
	Building Models and Performing Vulnerability Detection

	Experiments and Results
	Evaluation Metrics
	Experimental Setup
	Comparison of Different Neural Networks
	Effectiveness of Pre-Training
	Ability to Detect Different Vulnerabilities
	Comparative Analysis

	Conclusions
	References

