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Abstract: For energy conservation, nonlinear-optimal-control-law design for marine surface vessels 
has become a crucial ocean technology for the current ship industry. A well-controlled marine 
surface vessel with optimal properties must possess accurate tracking capability for accomplishing 
sailing missions. To achieve this design target, a closed-form nonlinear optimal control law for the 
trajectory- and waypoint-tracking problem of autonomous marine surface vessels (AUSVs) is 
presented in this investigation. The proposed approach, based on the optimal control concept, can 
be effectively applied to generate control commands on marine surface vessels operating in sailing 
scenarios where ocean environmental disturbances are random and unpredictable. In general, it is 
difficult to directly obtain a closed-form solution from this optimal tracking problem. Fortunately, 
by having the adequate choice of state-variable transformation, the nonlinear optimal tracking 
problem of autonomous marine surface vessels can be converted into a solvable nonlinear time-
varying differential equation. The solved closed-form solution can also be acquired with an easy-to-
implement control structure for energy-saving purposes. 

Keywords: nonlinear control law; tracking design; closed-form solution; optimal performance index 
 

1. Introduction 

The ocean is an unknown, challenging, and mysterious territory. In order to complete given 
missions, researchers explore the ocean using multiple methods and equipment, such as using 
unmanned aerial vehicles and research ships. However, these methods may have several drawbacks, 
such as huge financial pressure and time-consuming operation processes for ocean message 
searching. To resolve these mentioned difficulties, throughout the past few decades, researchers have 
developed new exploration vehicles, autonomous unmanned surface vessels (AUSVs), to navigate 
the ocean. Control-system design is a key function of AUSVs that allows them to successfully achieve 
tracking missions. The main design challenge for the tracking problem of AUSVs during the 
execution of sailing missions or the acquisition of sea resources is how to precisely guide AUSVs to 
designated locations while consuming low power. For collecting long-term data while consuming 
low power in an unpredictable ocean environment, designing an effective nonlinear optimal control 
law is essential for AUSVs. Until now, numerous researchers tried to overcome this challenge by 
developing proper and effective control methods. Many existing studies for the trajectory-tracking 
problem of AUSVs were proposed, such as [1,2], which proposed linear control methods that are only 
capable of treating scenarios with certain operation points. These kinds of linear control designs 
usually work weakly in global ocean environments. Several studies for trajectory-tracking design 
have been proposed. Some of them are nonlinear control investigations based on sliding-control 
perspectives, which may possess global characteristics for the autonomous design of AUSVs [3,4]. 
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However, the conservation features (high control gain) of control forces and the applied torque, as 
well as an inevitable system-chattering character, always appear in AUSVs. In [5,6], two adaptive-
based control approaches with adjustable weights that should be optimized were investigated for 
AUSVs. In [7], a backstepping control method for treating the stabilization and tracking problem of 
AUSVs under the effect of constant-bias ocean-environment disturbances was studied. A 
backstepping Type 2 fuzzy control design with a series of decision-making procedures was proposed 
in [8]. The authors proposed nonlinear control designs for the trajectory-tracking problem of AUSVs 
[9,10]. These control designs are usually too complicated in control structure, resulting in relatively 
huge power consumption for calculations in each mission. To reduce calculation-power consumption 
and develop an easy-to-implement control structure, two concise control laws were proposed based 
on the linear-algebra approach and experiment tests for AUSVs in [11,12]. In these two control 
achievements, trajectory-tracking performance was well-considered, but the energy-saving problem 
of AUSVs was not considered in the control-design process. Closed-form nonlinear optimal control 
design of AUSVs remedies the aforementioned problems. However, an optimal closed-form solution 
of trajectory- and waypoint-tracking problems of AUSVs have not yet been solved because of the 
extremely complex dynamics between controlled AUSVs and random ocean environments. To 
simplify the control structure and precisely guide AUSVs to the desired destinations, an important 
contribution of this research is finding an optimal closed-form solution that has the simplest control 
structure for the trajectory- and waypoint-tracking problems of AUSVs. This paper is organized as 
follows: in Section 2, the mathematical expression of the marine-surface-vessel model and the design 
objective are given; in Section 3, the proposed optimal control law design is derived; in Section 4, the 
simulation results of the trajectory- and waypoint-tracking scenarios with modelling uncertainties 
and ocean-environment disturbances are shown and discussed; in the last section of the paper, the 
major conclusion of this investigation is stated. 

2. Mathematical Model and Design Objective 

2.1. Rigid-Body AUSV Dynamics  

For the global tracking design purpose, nonlinear AUSV dynamics is formulated as the 
Earthfixed vector representation [13]: 

( ) ( , ) ( ) + ( )dη η η η η+ + =M η η C β η η D η η τ τ η   , (1) 

where [ ]= x y ψη  contains positions (x and y) in the x–y axis and the yaw angle (ψ) of the 
controlled AUSV in the global co-ordinate, and [ ]= u v rβ  contains linear velocities u and v, and 
angular velocity r of the controlled AUSV in the body co-ordinate, respectively, as shown in Figure 
1. 

 



Appl. Sci. 2020, 10, 1686 3 of 20 

Figure 1. Body-frame and Earth frame definitions of controlled autonomous unmanned surface 
vessels (AUSV). 

where 1( ) ( ) ( )T
η

− −=M η J η MJ η  is the inertia mass, 1 1( , ) ( )[ ( ) ( ) ( )] ( )T
η

− − −= −C β η J η C β MJ η J η J η  is the 
Coriolis and centripetal matrix, 1( ) ( ) ( ) ( )T

η
− −=D η J η D β J η  is the damping matrix, ( ) ( )T

inputη
−=τ η J η τ  

is the control input, and ( ) ( )T
d disturbancesη

−=τ η J η τ  is the ocean-environment disturbances in the global 
co-ordinate, respectively. System parameter matrices M, C(β), D(β), and transformation matrix J(η) 
are denoted as the following: 
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where 0T= >M M  is the rigid-body inertia matrix that includes added mass. 
6( ) ( ),T= − ∀ ∈ℜC β C β β  is the matrix of Coriolis and centripetal terms that includes added mass. 

6( ) 0,> ∀ ∈ℜD β β  is the hydrodynamic damping matrix. inputτ  is the control vector with forces and 
torque. disturbancesτ  is the vector of forces and torques induced by wave, wind, and ocean currents. 

The controlled dynamics of the AUSV in Equation (1) were obtained under the following 
assumptions. 

When applying nonlinear optimal control to this tracking problem of controlled AUSVs, ocean-
environment disturbances ( )dητ η  of the dynamic equation in Equation (1) were omitted. This is 
because the optimal control performance (optimal performance) of controlled AUSVs theoretically 
does not take this term into account. Consequentially, the dynamic equation of a controlled AUSV 
can be rewritten as below: 

2( ) ( , ) ( )η η η η+ + =M η η C β η η D η η τ   , (2) 

where 2ητ  is the proposed nonlinear optimal control law, which is derived below. 
To simplify the representation of the dynamic equation of a controlled AUSV, the second and 

third terms in the left-hand side of Equation (1) were merged. This results in Equation (2), which was 
rewritten as the following: 

2( ) ( , )η η η+ =M η η N β η η τ  , (3) 

where ( , ) ( , ) ( )η η η= +N β η C β η D η . 

2.2. Problem Formulation 

In this investigation, the convergence property of tracking errors between the controlled AUSVs 
and continuous trajectories or waypoints was proven. dη  are the desired trajectories or waypoints 
that were assumed to be twice continuously differentiable functions 2

d C∈η . On the basis of this 
definition, the desired velocity and acceleration vectors with respect to dη  are expressed as dη  and 

dη , respectively. 
Define the tracking-error vector between the controlled AUSVs and continuous trajectories or 

waypoints as follows: 
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d

d
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η ηηe
η ηη



 





. (4) 

From Equation (3) and the tracking error described in Equation (4), tracking-error dynamics can 
be expressed systematically as: 

1 1 1
3 3 2

3 3 3 3 3 1 3 1

( ) ( , ) ( ) ( , ) ( )d dη η η η η η
− − −

×

× × × ×

     − − −
= + +     
     

M η N β η 0 η M η N β η η M η τ
e e

I 0 0 0
 

 . (5) 

The tracking-error dynamics in Equation (5) is generally difficult to analyze because of their 
complex structure. Therefore, proportional derivative filtered link 2 ( )tδ  and state-space 
transformation matrix 2V , featured below, were adopted to transform the tracking-error dynamics 
in Equation (5) into a more analyzable form. 

2 2 2( )t = +δ ρ η Γ η

 
 (6) 

211 212 2 3 3 221
2

3 3 3 3 3 3 3 322

×

× × × ×

    
= =    

     
=

V V ρ I ΓV
V

0 I 0 IV
, (7) 

where 2ρ  and 3 3
2 R ×∈Γ  are a designable positive scale and a positive definite matrix that can be 

chosen mathematically. By this arrangement, Equation (5) can be formulated as: 

1 2
2 2 2 2 2 2

( ) ( , ) ( , ) ( ( , ) )
( ) V V

t t t t
t η

−  
 = = + − +   

 

δe V R e e S e ρ T e τ
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, (8) 

where 
1

1 3 3
2 2 21 1

2 3 3 2 2

( ) ( , )
( , )V t η η

−
− ×

− −
×

 −
=  − 

M η N β η 0
R e V V

ρ I ρ Γ
, 1 1

2 2( , ) ( )V t η
− −=S e V SM η , 

1 1
2 2 2 2 2( , ) ( )( ) ( , )( )d dt η η

− −= − + −T e M η η ρ Γ η N β η η ρ Γ η

   

 with 3 3

3 3

×

×

 
=  
 

I
S

0
. 

Choosing closed-form nonlinear optimal control law for the tracking problem of AUSVs was as 

follows: 

1
2 2 2 2( , )tη

−= +τ T e ρ u . (9) 

Substituting the nonlinear optimal control law in Equation (9) into Equation (8), modified 
nonlinear tracking-error dynamics is presented as: 

2 2 2( , ) ( , )V Vt t= +e R e e S e u . (10) 

2.3. Nonlinear Optimal Trajectory- and Waypoint-Tracking Problem of AUSVs 

Considering the nonlinear tracking-error dynamics in Equation (8), and given weighting 
matrices 2Q  and 2W , the design objective of this investigation was to find closed-form nonlinear 
optimal control law 2ητ  such that the following optimal performance (optimal performance) could 
be analytically achieved. 

2 2

*
2 2 2 2 2 2 2 20

( ) min ( ) min ( ) ( ) ( ) ( ) ( ) ( ) (0) ( (0),0) (0)ftT T T T
f f fu u

J J t t t t t t dt  = = + + =   ∫u u e Q e e Q e u W u e P e e  (11) 

for all [ ]0,ft ∈ ∞  and 
2 2 0T

f f= >Q Q . 

3. Results 

In this section, nonlinear closed-form optimal control law is delivered theoretically. The control 
objective was to find a nonlinear optimal control law to guide a controlled AUSV that could precisely 
track a designed trajectory or a set of waypoints with minimal power consumption. After 
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mathematical derivations, one main result based on the nonlinear optimal control concept could be 
derived as the following. 

Closed-form nonlinear optimal control law that could optimally and precisely guide a controlled 
AUSV to track desired trajectories and waypoints was obtained as 

1 *
2 2 2 2( , )tη

−= +τ T e ρ u , (12) 

where * 1
2 2 2 2( , ) ( , ) ( , ) ( )T

Vt t t t−= −u e W S e P e e  can analytically solve the nonlinear optimal tracking 
problem in Equation (11) if 2 ( , )tP e  of *

2 ( , )tu e  satisfies the following nonlinear time-varying 
differential equation. 

1
2 2 2 2 2 2 2 2 2 2 2( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , ) 0T T

V V V Vt t t t t t t t t−+ + + − =P e P e R e R e P e Q P e S e W S e P e  (13) 

with 2 2( , ) ( , ) 0Tt t= ≥P e P e  and 2 2 ( ( ), )f f ft t=Q P e . 

Proof. See Appendix A. □ 

Remark 1. Suppose closed-form solution 2 ( , )tP e  can be found from the above nonlinear time-varying 
differential Equation (13). Then, nonlinear optimal control law 2ητ  can be easily built up with a simple form. 
In general, the highly complex nonlinear time-varying differential equation, as shown in Equation (13), is 
difficult to use to mathematically find a closed-form solution. Hence, it would be an important contribution if 
a closed-form 2 ( , )tP e  was analytically derived. 

3.1. Closed-form Solution 2 ( , )tP e  of Nonlinear Time-Varying Differential Equation (13) 

Without loss of generality, solution 2 ( , )tP e  is represented as the following structure: 

3 3
2 2 2

3 3 2

( , )
( , ) T t

t η ×

×

 
=  

 

M e 0
P e V V

0 K
, (14) 

where 2K  is some positive definite symmetric constant matrix. In the following section, conditions 
for the existences of matrices 2V  and 2K  for the closed-form solution are detailed. 

Closed-Form Solution 2 ( , )tP e  of the Optimal Tracking Problem of AUSVs 

Consider the second and third terms on the left-hand side of nonlinear differential Equation (13). 
Using the system property in Equations (8) and (14), the following result can be derived: 

3 3 2 3 3
2 2 2 2 2 2

2 3 3 3 3 3 3

( , )
( , ) ( , ) ( , ) ( , )T T

V V
t

t t t t η× ×

× × ×

 − 
+ = +   

   

0 K M e 0
P e R e R e P e V V

K 0 0 0



. (15) 

The following result can be derived: 

2 2 2( , ) ( , )T T
V t t =S e P e S V . (16) 

Equation (13) can be simplified by using the results of Equations (15) and (16) in the following 
equation: 

3 3 2 1
2 2 2 2 6 6

2 3 3

T T× −
×

×

 
+ − = 

 

0 K
Q V SW S V 0

K 0
. (17) 

From Equation (16), optimal value *
2 ( , )tu e  of the second term of the nonlinear optimal control 

law 2ητ  in Equation (9) can be further formulated as: 

* 1
2 2 2( , ) Tt −= −u e W S V e . (18) 

3.2. Derivations of Optimal Parameters 2W  and 2V  for *
2 ( , )tu e  
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By choosing 
2

2 2 3 3a ×=W I , (19) 

2 0a > . 

Positive definite symmetric matrix 2Q  can also be factorized by Cholesky factorization as 

211 211 212
2

212 222 222

T

T T

 
=  
 

Q Q Q
Q

Q Q Q
 (20) 

By substituting matrices 2W , S  and 2Q  to Equation (17), the following equalities can be 
obtained: 

211 211 211 211 3 32
2

1T T

a ×− =Q Q V V 0  (21) 

2 212 211 212 3 32
2

1 T

a ×+ − =K Q V V 0  (22) 

2 212 212 211 3 32
2

1 T

a ×+ − =K Q V V 0  (23) 

222 222 212 212 3 32
2

1T T

a ×− =Q Q V V 0  (24) 

By solving Equations (21) and (24), we get submatrices 211 2 211a=V Q  and 212 2 222a=V Q . The 

matrix 2V  can then be expressed as: 

2 211 2 222
2

3 3 3 3

a a

× ×

 
=  
 

Q Q
V

0 I
. (25) 

For satisfying the condition of Equation (7), matrix 211Q  is expressed as a diagonal form as: 

211 211 3 3q ×=Q I . (26) 

For some positive scale 211q , scale 2ρ  for the optimal tracking problem of AUSVs can then be 
represented as 

2 2 211a qρ = . (27) 

On the basis of the above derivations, weighting matrix 2W  was chosen as Equation (19) for 

any finite 2 0a > , allowing weighting matrix 2 0>Q  to be analyzed with 211Q , 212Q , and 222Q , 
which satisfies the requirements in Equations (25) and (26). The nonlinear optimal tracking problem 
of AUSVs is then solved by the following nonlinear optimal control law: 

1 *
2 2 2 2( , ) ( , )t tη

−= +τ T e ρ u e , (28) 

where 

[ ]*
2 211 222

2

1( , )t
a

= −u e Q Q e . (29) 

4. Discussion 

As stated in the introduction, AUSV parameters, ocean-environment disturbances, and control 
parameters for installing simulation scenarios and for verifying the control performance of this 
proposed method are listed below. 
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4.1. Parameterizations of Controlled AUSV and Ocean-Environment Disturbances 

Parameters of the dynamics of the controlled AUSV were given by Fossen [13]. Parameters of 
AUSV in Figure 2 and hydrodynamic parameters are exhibited in Table 1 and Table 2. 

Table 1. Dimensions of the autonomous unmanned surface vessels (AUSV) illustrated in Figure 2. 

Parameter Value SI Unit 
Length (L) 76.2 m 
Breadth (B) 30 m 
Height (T) 20 m 
Mass (m) 64 10×  kg 

gx
 0 m 

 

Table 2. Hydrodynamic parameters. 

Parameter Value SI Unit 

zI  2.0903 ×  109 kgm2 

uX


 −0.5096 ×  106 kg 

vY  −0.1698 ×  106 kg/s 

vY


 −3.5608 ×  106 kg 

rY  1.5081 ×  106 kgm/s 

rY


 −0.02268 ×  109 kgm 

vN  1.5081 ×  106 kgm/s 

vN


 −0.02268 ×  109 kgm 

rN  −0.2530 ×  109 kgm2/s 

rN


 −0.8780 ×  109 kgm2 

 

 
Figure 2. Principal dimensions of controlled AUSV. 

By applying the values of Table 1 and Table 2, the dynamics-parameter matrices of the controlled 
AUSV are given below: 
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6

4.5096 0 0
0 7.5608 22.68 10
0 22.68 2968.3

 
 = − × 
 − 

M  

6

0.05138 0 0
( ) 0 0.1698 1.5081 10

0 1.5081 253

 
 = − × 
 − 

D β  

6

0 0 7.5608 22.68
( ) 0 0 4.5096 10

7.5608 22.68 4.5096 0

v r

v r

− − 
 = × 
 + − 

C β . 

The perturbed uncertainties of the parameters of the AUSV were a random 5%–10% of inertial 
matrix ηM  and Corilolis matrix ηC . The parameters of external disturbances—wind, wave and 
ocean current-induced forces and torques—are shown in Table 3, which are valid when the wind 
velocity is in the range of 2–3.96 m/s, and when encounter angles range from −180° to 180°. Detailed 
values for simulating the environmental disturbances, including wind, wave and current, are listed 
as Table 3 [13]. 

Table 3. Modeling parameters of environmental disturbances (wind, wave, and current). 

Parameter Value Parameter Value 
Vω(m/s) 3.96 CXω(γR) [−0.8 1] 
CYω(γR) [−0.7 1] CNω(γR) [−1.05 1.05] 
ρair(kg/m3) 1.1644 ρω(kg/m3) 1025 

g(m/s2) 9.8 N 1000 
β [−π π] Ai 3 
ϕi [0 2π) λi 1 

 
In Table 3,  ( )V m sω  is the average wind speed above the ocean surface; ( )Xw RC γ , ( )Yw RC γ , and 

( )Nw RC γ  are nondimensional forces and moments induced by wind; 3 ( )air kg mρ  is air density; 
3 ( )w kg mρ  is water density; 2 ( )g m s  is gravity acceleration; N is the order of the adopted wave 

form; β  is the angle between the heading and the direction of the incoming wave; iA  is the wave 

amplitude of the ith wave component; iφ  is the random phase of the ith wave component angle; and 

iλ  is the ith wave length. 

4.2. Control-Parameter Setup 

Control parameters that satisfied the existence conditions in Equation (7) for the proposed 
nonlinear optimal control design are indicated in Table 4. 

Table 4. Control parameters for optimal control design. 

Parameter Value 

2a  
0.002  
0.005 
0.008 

2Γ  
1 0 0
0 1 0
0 0 1

 
 
 
  

 

211q  50000  
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211Q  211 3 3q ×I  

222Q  3 3×I  

4.3. Simulation Results of Tracking Continuous Trajectory and Waypoints 

To verify the control performance of the proposed optimal method to the AUSV, a scenario with 
a continuous circular trajectory and a scenario with eight waypoints were arranged. 

Scenario 1: The predefined circular reference trajectory was generated by Equation (30) as 
below: 

( )
( )

0

0

cos
sin

d d

d d

x x R
y y R

ψ
ψ

 = +
 = +

, (30) 

where R is the radius of the desired circular trajectory, and dψ  is a rotation angle that was integrated 

with constant angle velocity dw  as the following: 

0

t

d dw dtψ = ∫ . (31) 

On the basis of Equations (30) and (31), the desired trajectory can be expressed as 
[ ]d d d dx y ψ=η . 
The parameters for building up a circular trajectory are listed as Table 5, and the initial 

conditions of the controlled AUSV are given in Table 6. 

Table 5. Circular-trajectory parameters. 

(m)ox  (m)oy  (rad/s)dw  (m)r  
0 0 / 900π  1000 

Table 6. Initial AUSV conditions (continuous trajectory). 

(m)x  (m)y  (degree)ψ  
800 0 90  

 
Simulation results for tracking the desired circular trajectory are shown in Figures 3–6, based on 

parameters listed in Table 5 and Table 6. Figure 3a shows that the controlled AUSV tracked the 
desired circular trajectory from initial point [ ]800,0,90=η  using the proposed nonlinear optimal 

control law. Figure 4 shows that tracking errors xe , ye , and eψ  of the controlled AUSV in the X 
and Y axes, and yaw direction exponentially converged to zero, respectively, and these results 
indicated the promising tracking abilities of this proposed control law. The moving velocities and 
angle velocity of the controlled AUSV in the global co-ordinate are plotted in Figure 5. 
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(b) Tracking histories of ψ  with respect 
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Figure 3. Tracking histories of controlled AUSV: proposed method (blue solid line) and desired 
trajectory (black dashed line). 
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Figure 4. Tracking errors in x, y, and ψ of controlled AUSV: proposed method, blue solid line; desired 
trajectory, black dashed line. 

 
(a) History of velocity in x axis. 

 
(b) History of velocity in y axis. 

 
(c) History of rotation velocity in z axis. 

Figure 5. Histories of rotation velocities of controlled AUSV. 
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These control commands are within a reasonable range in a marine environment. 
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(c) Applied yaw torque ψτ . 

Figure 6. Control commands of controlled AUSV. 

Scenario 2: In this scenario, the desired path is generated with eight waypoints: WP1: (0,200), 
WP2: (300,500), WP3: (700,500), WP4: (1000,200), WP5: (1000,−200), WP6: (700,−500), WP7: (300,−500), 
WP8: (0,−200), and WP9: (0,0). 
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using the following equation: 
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how it turns automatically at each waypoint, i.e., WPi, for i = 1, …, 9. 

 
Figure 7. Waypoint-tracking result. 

Histories of tracking errors in tracking each waypoint are illustrated in Figure 8, where the 
exponential convergent properties of tracking errors are revealed by applying this proposed optimal 
method. 

0 0.5 1 1.5 2

Time(s) 10
3

-1

-0.5

0

0.5

1

1.5

A
pp

lie
d 

to
rq

ue
 

 (N
m

)

10
7

-2 0 2 4 6 8 10 12

X axis(m) 10
2

-6

-4

-2

0

2

4

6

Y
 a

xi
s(

m
)

10
2



Appl. Sci. 2020, 10, 1686 13 of 20 

 
(a) Tracking error in x axis. 

 
(b) Tracking error in y axis. 

 
(c) Yaw angle tracking error. 

Figure 8. Tracking errors between controlled AUSV and waypoints. 

Figure 9 shows how control efforts Fx and Fy, and applied yaw torque τψ were bounded within 
±1.3 × 106 N, ±1.5 × 106 N, and ±7 × 106 nm. These control commands are within a reasonable range in 
a marine environment. 
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(c) Applied yaw torque ψτ . 

Figure 9. Control commands of controlled AUSV. 

Histories of velocities of the controlled AUSV, including velocities (u, v) in axis x and y and 
rotation angle velocity r are shown in Figure 10. 

 
(a) History of velocity in x axis. 

 
(b) History of velocity in y axis. 

 
(c) History of rotation-angle velocity in z axis. 

Figure 10. Histories of velocities of controlled AUSV. 
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5. Comparisons of Tracking Performance with Respect to Different Control gains: 2a  

Optimal control gain 2a  in Equation (29) is an adjustable parameter. Hence, in this section, 

trajectory- and waypoint-tracking performances with respect to different control gain 2a  are 
analyzed. From the simulation result in Figure 11, tracking performance for the continuous circular 
trajectory is demonstrated. This scenario was successfully achieved for different control gains 2a . In 
the continuous case, tracking errors exponentially converged to zero. The observations of tracking 
errors and control commands, as shown in Figures 12, and 13 indicate that a small 2a  resulted in 
quicker convergence rates in tracking the desired trajectory. Meanwhile, larger control commands 
could be found. In the discrete case, tracking performance for the discrete waypoints is demonstrated 
in Figure 14. This scenario was also successfully achieved for different control gains 2a . The tracking 
errors exponentially converged to zero as shown in Figure 15. In Figures 15 and 16, the tracking errors 
and control commands indicate that a small 2a  resulted in quicker convergence rates in tracking 
the desired waypoints. Meanwhile, larger control commands could be found. These simulation 
results consisted of the inversely proportional property of the proposed nonlinear optimal control 
law, as seen in Equations (28) and (29), with respect to control gain 2a . 

 

Figure 11. Tracking histories of controlled AUSV with respect to different control gains 2a . 

 
(a) Tracking error in x axis. 

 
(b) Tracking error in y axis. 
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(c) Yaw angle error. 

Figure 12. Tracking errors of controlled AUSV with respect to different control gains 2a . 
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(c) Applied torque ψτ  

Figure 13. Control commands of controlled AUSV with respect to different control gains 2a . 
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Figure 14. Tracking courses: waypoint-tracking scenario with respect to different control gains 2a . 

 
(a) Tracking error in x axis. 

 
(b) Tracking error in y axis. 

 
(c) Yaw angle error. 

Figure 15. Tracking errors of controlled AUSV with respect to different control gains 2a . 
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(a) History of control force xF . 

 

(b) History of control force yF . 

 

(c) Applied yaw torque ψτ . 

Figure 16. Control commands of controlled AUSV with respect to different control gains 2a . 

The run time of the proposed control method with respect to the two testing scenarios is revealed 
in Table 7. In this study, the central processing unit (CPU) of the calculator used for calculating the 
proposed nonlinear optimal control law was Intel Core i7-8750H, 2.20 GHz. From Table 7, it is easy 
to find that the proposed nonlinear optimal control law can be executed in real time. This is because 
an average run time of 3 and 2 microseconds is spent for each single calculation of the proposed 
nonlinear optimal control law with respect to the trajectory and waypoint scenarios, respectively. 

Table 7. Run time of proposed control method with respect to two testing scenarios. 

Scenario 1: circular trajectory Average run time: 2.6547 × 10−6 s. 
Scenario 2: waypoints Average run time: 2.0099 × 10−6 s. 
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solution is easy to implement and a low computational burden for the proposed nonlinear optimal 
control law. From the simulation results of the two scenarios, promising trajectory- and waypoint-
tracking abilities were revealed by this proposed nonlinear optimal control law, even under marine-
environment disturbances and modelling uncertainties. 
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Appendix A 

Consider cost function 2 2( )J u , and it is obvious that Equation (11) can be rewritten as: 

2 2 2 2 2 2 2 2 20

2 2 2 2 2 2 2 2 2

( ) (0) ( (0),0) (0) [ ( )( ( , ) ( , ) ( , ) ( , ) ( , ) ) ( )

( ) ( ) ( ) ( , ) ( , ) ( ) ( ) ( , ) ( , ) ( )]

ftT T T
V V

T T T
V V

J t t t t t t t

t t t t t t t t t t

= + + + +

+ + +

∫u e P e e e P e P e R e R e P e Q e

u W u u S e P e e e P e S e u



 (A1) 

Using the nonlinear differential equation in Equation (13), it yields 

( ) ( )
2 2 2

1 1
2 2 2 2 2 2 2 2 20

( ,0) (0) ( (0),0) (0)

( ) ( , ) ( , ) ( ) ( ) ( , ) ( , ) ( )f

T

t TT T
V V

J

t t t t t t t t dt− −

=

 + + + ∫

u e P e e

u W S e P e e W u W S e P e e
 (A2) 

Choosing 2u  as that in Equation (12), the following result can be obtained: 

2 2

*
2 2 2 2( ) [0, ]
( ( , )) min ( ) (0) ( (0),0) (0)

f

T

t L t
J t J

∈
= =

u
u e u e P e e  (A3) 

This is the optimal control performance in Equation (11). 
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