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Abstract: This study presents a method of controlling robots based on fuzzy logic to eliminate the
effect of uncertainties that are generated by the cutting forces in milling process. The common method
to control industrial robots is based on the robot dynamic model and the differential equations of
motion to compute the control values. The quantities in the differential equations of the motion of
robots are complex and difficult to determine fully and accurately. The interaction forces between
the cutting tool and the workpiece are the cutting forces, which are generated during the machining
process. It is difficult to calculate the cutting force because it depends on many factors such as material
of the machining part, depth of cut, feed rate, etc. This article presents the fuzzy rule system and
the selection of the physical value domain of input and output variables of the fuzzy controller. The
fuzzy rules are applied in this article to allow us to compute the driving forces based on the errors
of input and output signals of the joint positions and velocities, thereby avoiding the calculation
of cutting forces. This article shows the simulation results of the fuzzy controller and comparison
with the results of the conventional controller when the dynamic model is assumed to be correctly
determined. The achieved results are reliable and facilitate the research and application of a fuzzy
controller to mechanical processing robots in general and milling machining in particular.
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1. Introduction

Robots are increasingly being used in mechanical machining due to many technical and economic
advantages [1–5]. Robots have many degrees of freedom and a structure with many links and joints
enabling them to move flexibly in a large workspace. They have machine parts with complex geometric
surfaces, large dimensions, and a minimum number of machining operations and simple jigs [3].
Machining by industrial robots is more economical than machine tools and according to the calculation
of the COMET, the price advantage is up to 30% [6]. However, there are many difficulties and challenges
in exploiting the potential of robot applications [2,7]. The structure with many links and joints will give
the robot the ability to manipulate flexibly as mentioned, but it is difficult when modeling kinematics
and dynamics to control the robots. The expressions of the kinematic and dynamic quantities in the
differential equations of motion of the robots are often cumbersome and complex. The machining
process has many factors, which are difficult to fully and accurately determine, for example, chatter,
vibration, or the fact that the perturbations may appear abnormally [8–10]. In particular, the cutting
force generated during machining is an uncertain factor and has a great effect on the determination of
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control force based on the dynamic model [11–32]. The mechanical machining processes often require
high accuracy, especially when milling to shape complex surfaces, which requires even more rigorous
accuracy of shaping motion. In order to solve these problems, there have been many study directions
to improve and enhance the machining accuracy of robots. One of the solutions is controlling based on
fuzzy logic to overcome the difficulty of determining cutting forces while ensuring control accuracy.
Fuzzy logic is an effective tool for solving many technical problems in general [33–43], in mechanical
processing and in industrial robot applications in particular.

There have been many studies on the effect of cutting forces based on fuzzy logic [44–47]. In
addition, there are also many studies on robot control based on fuzzy logic [48–61]. However, the
application of fuzzy logic to control robots to eliminate the effect of cutting forces is still an open
problem [62–67].

The paper proposes a fuzzy law system for a controller to calculate and determine the control
forces (driving forces/torques of the motors) based on errors between input and output signals on the
joint positions and velocities. The computations based on the control law are simple linear algebra
calculations that are easier and faster to perform than calculating the generalized force expression of
cutting forces in the differential equations of motion of robots.

It is assumed that the dynamic model of robots is precisely determined, including the cutting forces
in the differential equations of motion, which is considered to be accurately determined. This article
presents the application of a common (conventional and popular) method in controlling industrial
robots, meaning the inverse dynamics method combined with the law of derivative proportional
control (PD), hereinafter referred to as the Inverse Dynamics + PD method. With the above assumption,
the Inverse Dynamics + PD controller is considered an accurate one. To distinguish, the controllers
based entirely on the dynamic model are called (hereinafter) explicit (crisp) controllers.

The article shows the results of simulating the fuzzy controller in comparison with the results
of simulating the above explicit and accurate controller. With the different assumption of cutting
force calculation, that is, choosing the different influenced coefficients in calculating cutting forces,
the Inverse Dynamics + PD controller will give different results, meaning that the control errors are
significant. With the fuzzy controller, due to the determination of cutting forces not being required, even
if the components of the cutting force change, or the occurrence of perturbation, then the controller’s
performance will still ensure the accuracy of desired motion laws (desired trajectories).

The remains of this article is organized as follows. Section 2 briefly presents robot kinematic
modeling based on the authors of [68–72] to indicate necessary computations for receiving the motion
trajectory of robots, which is used for the following studies. Section 3 discusses dynamics modeling,
presents the derivation of robot’s dynamic model, and analyzes the calculation of cutting forces with an
empirical formula. Section 4 presents a familiar control method that is used as a basis for comparison.
Section 5 presents the steps to build the fuzzy controller, and proposes a fuzzy control law that is
suitable for a controller of a robot in milling machining. Section 6 presents the results of simulation,
calculation and comparative analysis. Section 7 presents the conclusions, analyzing the possibility of
applying the proposed controller, and discusses the directions of future studies.

2. Robot Kinematic Modeling

The system of the robot has a clamping platform with eight degrees of freedom (DOF), including
a robot and a platform, which allows expanding the machining space (Figure 1). The robot is designed
according to the robot model of Asea Brown Boveri, which is a six DOF serial robot, consisting of
six moveable links connected to a fixed base. The cutting tool is mounted on the end effector of the
robot. The platform has two DOF, including two moveable links; the workpiece is fixed on the upper
link. Names of the robot links and platform links of the system in turn are: L0, L1, . . . , L6, B and
D, respectively. Link L0 is the base, link L6 is the end effector, link B connects the prismatic joint to
the fixed base, and link D carries the workpiece. The robot and the clamping platform coordinate
programmatically to perform the form-shaping motion of the machining surface.
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Figure 1. The model of robot; clamping platform has eight degrees of freedom (DOF) in milling process.

Normally, the machining object is clamped on a fixed platform, and a robot with 6 DOF is sufficient
to obtain positions and orientations of the end effector for the machining performance. However, for
the purpose of expanding the operational space of the robot, or choosing a convenient machining
posture, a machining system with a two DOF clamping platform is utilized. As a result, the robot
can machine large parts with many complex surfaces, reducing the number of clamping operations.
Robots with a combination of two such component robots or more are often referred to Mechanism of
Relative Manipulation robots—MRM [73–81]. For a simple presentation, the robot–platform system is
hereinafter called the robot system or the robot.

The article applies the Denavit–Hartenberg convention to define the link frames and derive
kinematic equations of the robot kinematic chains, using generalized coordinates to represent and
calculate the kinematic chain of the platform. The coordinate systems, kinematic parameters and
corresponding homogeneous coordinate transformation matrices are shown in Table 1.

In Table 1, Oixiyizi (i = 1, . . . , 6) is the frame that is attached to the end of link i, and
represents the position and orientation of frame Oixiyizi with respect to frame Oi−1xi−1yi−1zi−1

by the Denavit–Hartenberg homogeneous coordinate transformation matrix i−1Ai, with respect to
frame O0x0y0z0 by matrix 0Ai. O6x6y6z6 is called the end-effector frame. O0x0y0z0 is called the base
frame for the entire robot–platform system, with matrix E being the 4 × 4 identity matrix that represents
the position and orientation of the base frame with respect to itself. The parameters in the third column
of Table 1 represent the relative positions between two consecutive frames, in which θi (i = 1, . . . , 6),
yb, xd are the joint coordinates, and the other parameters are constants.

The vector of joint coordinate is denoted by q, represented by Equation (1).

q =
[
q1, . . . , q8

]T
=

[
θ1, . . . , θ6, yb, xd

]T
(1)

O0’x0’y0’z0’ is the fixed frame that has the origin at position O0’ and the axes parallel to the
corresponding ones of the base frame, used to location the platform.

Obxbybzb is the frame that attached to link B; it is possible to translate in the direction yb//y0,

corresponding to the joint coordinate yb, the coordinate transformation matrices as shown in Table 1.
Odxdydzd is the frame that attached to link D; it is possible to translate in the direction xd//xb//x0,
corresponding to the joint coordinate xd, the coordinate transformation matrices as shown in Table 1.

Frame Odxdydzd, hereinafter called the platform frame or the jig frame, is used to locate the
workpiece. The parameters of the workpiece’s machined surface and toolpath are shown in the
jig frame.

In the machining process, the tool performs the relative motion with respect to the machined
surface according to the law (trajectory) that is determined by the machining engineering. This
trajectory is represented by parameters dxE, dyE, dzE, dαE, dβE, dηE (Table 1) and their first and second
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time derivatives with respect to time. Thereby, the vector of operational coordinates is called p,
represented by (2).

p = dpE =
[
dp1, dp2, . . . , dp6

]T
=

[
dxE, dyE, dzE, dαE, dβE, dηE

]T
(2)

Table 1. The frames and homogeneous coordinate transformation matrices.

Links Frame Kin. Parameters i−1Ai
0Ai

The robot kinematic chain

L0 O0x0y0z0 0, . . . , 0 E E

L1 O1x1y1z1 θ1, d1, a1, α1
0A1(θ1) 0A1(θ1)

. . . . . . . . . . . . . . .

L6 O6x6y6z6 θ6, d6, a6, α6
5A6(θ6) 0A1(θ1)... 5A6(θ6)

Cutting tool OExEyEzE
6xE, 6yE, 6zE, 6αE, 6βE, 6ηE

6AE
0A1(θ1)... 5A6(θ6)6AE

The platform kinematic chain

L0 O0x0y0z0 0, . . . , 0 E E

L0’ O0’x0’y0’z0’ x0’, y0’, z0’, α0’, β 0’, η 0’
0A0’

0A0’

B Obxbybzb xb, yb, zb, αb, β b, η b
0’Ab(yb) 0A0’

0’Ab(yb)

D Odxdydzd xd, yd, zd, αd, β d, ηd
bAd(xd) 0A0’

0’Ab(yb) bAd(xd)

Cutting tool OExEyEzE
dxE, dyE, dzE, dαE, dβE, dηE

dAE
0A0’

0’Ab(yb) bAd(xd) dAE

Therefore, the frame Odxdydzd is used as the operational frame.
Frame OExEyEzE is attached to the cutting edge of the cutter on the end effector, called the

tool frame.
According to the robot kinematic chain, matrix 0AE represents the position and orientation of the

tool frame OExEyEzE with respect to the base frame O0x0y0z0, determined by (3).

0AE = 0A1(θ1)
1A2(θ2) . . .

5A6(θ6)
6AE (3)

According to the platform kinematic chain, 0AE is determined by (4).

0AE = 0A0′
0′Ab

(
yb

)
bAd(xd)

dAE(p) (4)

From (3) and (4), we obtained (5).

dAE(p) = bA−1
d (xd)

0′A−1
b

(
yb

)
0A−1

0′
0
A1(θ1) . . .

5 A6(θ6)
6AE (5)

The right hand side of (5) is the matrix representing the position and orientation of the cutting tool
with respect to the platform frame Odxdydzd, whose elements are functions of the joint coordinates
(1). Meanwhile, the elements of the matrix on the left hand side of (5) are functions of the operational
coordinates (2). (5) is rewritten by (6). dCp

(
dαE, dβE, dηE

)
drE

(
dxE, dyE, dzE

)
0T 1

 = [ dCE(q) drE(q)
0T 1

]
(6)

Equation (6) is called the kinematic equation of robot in matrix form.
For each specific machining case, the requirements on shaping motion of the tool are given. That

is, to the scope of this study, the operational coordinates (2) and its derivatives are known. Applying
the accompanying trihedron method [68–72] together with the kinematic Equation (6) allows us to
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calculate the motion trajectory of the robot. That is, the joint coordinates (1) and their first and second
time derivatives with respect to time are calculated, which are used as the set trajectories (7) for the
control problem in the following section.

qd =
[
θ1, θ2, . . . , θ6, yb, xd

]T
=

[
qd

1 , . . . , qd
8

]T

.
qd

=
[ .
θ1,

.
θ2, . . . ,

.
θ6,

.
yb,

.
xd

]T
=

[ .
qd

1 , . . . ,
.
qd

8

]T

..
qd

=
[ ..
θ1,

..
θ2, . . . ,

..
θ6,

..
yb,

..
xd

]T
=

[ ..
qd

1 , . . . ,
..
qd

8

]T
(7)

3. Robot Dynamic Modeling

3.1. Differential Equations of Motion of the Robot

The Lagrange equation in matrix form describing the motion of the robot has form (8).

[M(q)](8×8)
..
q(8×1) +

[
C(q,

.
q)

.
q
]
(8×1)

+ [G(q)](8×1) + [Q](8×1) = [U](8×1) (8)

In which [M(q)]8×8 is the mass matrix of the robot system, calculated through mass mi, translation
Jacobian matrix JTi, rotation Jacobian matrix ciJRi and inertia tensor CiΘCi of link i (9).

[M(q)](8×8) =

 8∑
i=1

(
JT
TimiJTi +

ciJT
Ri

ciΘci
ciJRi

)
(8×8)

(9)

[
C
(
q,

.
q
) .
q
]
8×1

is the vector of the generalized forces of Coriolis and centrifugal inertial forces,
calculated through the partial derivative of the elements of matrix [M(q)] with respect to the generalized
coordinates q, and the generalized velocity

.
q (10).

[
C
(
q,

.
q
) .
q
]
(8×1)

= [c1, c2, . . . , c8]
T; cj =

8∑
k,l=1

(k, l; j)
.
qk

.
ql; (k, l; j) =

1
2

∂mkj

∂ql
+
∂mlj

∂qk
−
∂mkl

∂qj

 (10)

(k,l;j) is Christoffel notation with 3 indexes of the first kind; mkl (k,l = 1, . . . , 8) are the elements of
matrix [M(q)].

[G(q)]8×1 is the vector of the generalized forces of the conservative forces (11).

[G(q)](8×1) = [G1, G2, . . . , G8]
T; Gj =

∂Π
∂qj

(11)

Π is the potential energy of the system.
[U]8×1 is the vector of the generalized forces of the driving forces/torques (12).

[U](8×1) = [U1, U2, . . . , U8]
T; Ui = τi (12)

τi is the driving force at joint i. τi is the force or torque depending on the prismatic joint or
revolute joint.

[Q(q)]8×1 is the vector of the generalized forces of the non-conservative forces, including the
friction forces at the contact point between the tool and the workpiece, the forces that separate the chip
from the workpiece; the acting forces between the tool and the workpiece are called the cutting forces,
collectively. In addition, there are also the friction forces at the joints, the abnormal perturbation from
the environment, etc., of which the value of cutting forces and the effect of cutting forces on motion
are great. Therefore, this paper limits the investigation of cutting forces and other types of force are
ignored. The next subsection introduces the investigation of cutting forces in milling process with
the robot.
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3.2. Cutting Forces in Milling

The cutting forces are generated at the cutting point of the tool and the workpiece and this is a
complex process force system. However, in general, the process force system can be represented as the
force system from the workpiece acting on the robot including the force and the torque (force couple)
with notation (Fc,Mc). The notation (Fr,Mr) represents the force and torque vectors from a tool acting
on the workpiece (13).

Fc =
[
Fx, Fy, Fz

]T
; Mc =

[
Mx, My, Mz

]T
; Fr = −Fc; Mr = −Mc (13)

The generalized force components of the force Fc and the torque Mc are determined by the robot
kinematic chain (14).

Qc = JT
TEFC +JT

REMc =
[
JT
TE, JT

RE

]
[Fc, Mc]

T = JT
ERc (14)

rE is the position vector of the acting point of the force Fc with respect to the base frame,ωE is the
angular velocity of the end effector, determined by the robot kinematic chain. The Jacobian matrices
in (14) are calculated according to (15).

JTE =
∂rE

∂q
; JRE =

∂ωE

∂
.
q

(15)

The generalized force components of the force Fr and the torque Mr are determined according to
the platform kinematic chain (16).

Qr = JT
TrFr +JT

RrMr =
[
JT
Tr, JT

Rr

]
[Fr, Mr]

T = JT
r Rr (16)

rk is the position vector of acting point of the force Fr with respect to the base frame andωk is the
angular velocity of the workpiece determined by the platform kinematic chain. The Jacobian matrices
in (16) are calculated according to (17).

JTr =
∂rk

∂q
; JRr =

∂ωk

∂
.
q

(17)

Note that Equation (17) is used for the general case; with the robot system investigated in this
paper, the angular velocity ωk is zero because the platform carrying the workpiece has only two
prismatic joints, and only performs translational motion.

It is known that on the robot kinematic chain, there are only joint coordinates q1,q2, . . . , q6; while
on the platform kinematic chain, there are only joint coordinates q7, q8, therefore we have (18) and (19).

Qc = [Qc1, Qc2, . . . , Qc6, 0, 0]T (18)

Qr = [0, 0, . . . , 0, Qr7, Qr8]
T (19)

So, the sum of the generalized force components of the non-conservative forces is expressed
as (20).

[Q(q)](8×1) = Qc + Qr = [Qc1, Qc2, . . . , Qc6, Qr7, Qr8]
T (20)

Recognizing that in order to calculate the generalized forces of cutting forces, the Jacobian matrices
calculated according to (15) are quite complex, because the expressions for determining the position of
cutting points and the angular velocity of the end effector are often cumbersome and complex.

The cutting forces expressing as (13) appear in milling process depending on the cutting parameters,
the geometric parameters of the chip geometry, cutting conditions, etc. The cutting force components
are not constants because the materials are heterogeneous, and the depth of cut, the feed rate, etc., may
be changed during the machining process. The cutting forces are complex distribution forces on the
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contact area between the surface of the cutting edge and the workpiece, with the resultant force placed
at the center of the contact area (placed at the upper point of the cutting edge between the cutter entry
and exit angles).

According to the authors of [25,26], the approximate method of calculating the milling forces in
the x, y, z directions of the Z cutting teeth is represented by (21).

Fx =
z∑

i=1

Fx,i; Fy =
z∑

i=1

Fy,i; Fz =
z∑

i=1

Fz,i (21)

where Fx,i, Fy,i, Fz,i are the cutting forces acting on the ith cutting edge in the x, y, z directions,
respectively, calculated according to (22).

Ff,i(θi(z)) =

zj,2∫
zj,1

dFf,i(θi(z))dz; f = x, y, z (22)

In which zj,1(θi(z)), zj,2(θi(z)) are upper and lower limitations of the cutting area of the ith cutting
edge, in axial direction of the cutter shaft.

dFi
x, dFi

y, dFi
z are the differential cutting forces acting on the infinitesimal cutting edge segment of

the ith cutting edge, in x, y, z directions, respectively (23).
dFxi

dFyi

dFzi

 =

− cos θi − sin θi sinκ − sin θi cos κ
sin θi − cos θi sinκ − cos θi cos κ

0 − cos κ − sin κ




dFti

dFri

dFai

 (23)

θi(z) is the immersion angle for the cutting edge i at axial depth of cut z (24):

θi(z) = θ(t) + θpi −ψ(z); i = 1, . . . , Z;θ(t) =
2πn
60

t; θpi = (1− i)
2π
Z

(24)

κ is the angle between dFri and the cutter axial; Z is number of cutting edge/flute/tooth of the
cutter; Ψ(z) is the radial lag angle; n is spindle speed (rpm).

At instant t, at any point P of the cutting area, a segment of the ith cutting edge performs cutting,
the differential cutting forces dFti, dFri, dFai in tangential, radial and axial directions, respectively,
acting on point P, represented in Figure 2 and determined by (25).Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 32 
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dFti = Ktcai(θi, κ)db + KtedS
dFri = Krcai(θi, κ)db + KredS
dFai = Kacai(θi, κ)dB + KaedS

(25)

Of which:
Ktc, Krc, Kac are tangential, radial and axial cutting force coefficients in milling.
Kte, Kre, Kae are tangential, radial and axial edge force coefficients in milling.
dS is thickness of an element of the ith cutting edge.
db is length of cut in the direction of the cutting velocity vector.
ai(θi,κ) is chip thickness that cut by the segment of the ith cutting edge (26).

a(θi, κ) = Sz sin θi sin κ (26)

The force components according to (21)–(23) can be conveniently represented on the x, y, z axes of
the tool frame OExEyEzE. Summing the cutting force system with respect to the origin of the tool frame,
we obtain the torques of the cutting forces. These torques are determined based on the position of the
acting point of resultant force of the cutting force system with respect to the tool frame OExEyEzE. The
contact area and the state of interaction between the tool and the workpiece are difficult to determine
accurately, therefore, the determination of the resultant force value of the cutting force system and
their positions, as well as their torques, are complex and less accurate. This study does not aim to find
out an accurate calculation of the cutting forces but rather to find out the way to eliminate its effects.

The next section represents the application of a dynamic model that is derived above for the
Inverse Dynamics + PD controller.

4. Inverse Dynamics + PD Controller

The control of the 8 DOF robot–platform system is the coordinating movement control of the 6
DOF robot with the tool and the 2 DOF platform with the workpiece so as to ensure the tool tracking on
the given form-shaping tool path in the task space. Movement of the robot system is carried out thanks
to the joint driving system. The control effects are applied to the joints, so the joints are directly the
control objects; the joint positions always follow to the desired positions so that the position deviations
(error) are less than a specified value consistent with the required accuracy.

The Inverse Dynamics + PD controller is the common controller, popular for industrial robots,
based on the rule of inverse dynamics control combined with the outer loop linear PD control.

Using the differential equations of motion of robot system (8), choosing the control rule as
follows (27).

[U] = [U](8×1) = [M(q)](8×8)u(8×1) +
[
C(q,

.
q)

.
q
]
(8×1)

+ [G(q)](8×1) + [Q(q)](8×1) (27)

u is the chosen control signal that has the PD structure (28).

U =
..
qd(8×1) + Kv(8×8)

.
e(8×1) + Kp(8×8)e(8×1) (28)

In which e,
.
e,

..
e are the vectors that represent deviations of the joint positions, velocities and

accelerations at an instant machining time (29).
e = e(8×1) = qd − q = [e1, e2, . . . , e8]

T

.
e =

.
e(8×1) =

.
qd −

.
q =

[ .
e1,

.
e2, . . . ,

.
e8

]T

..
e =

..
e(8×1) =

..
qd −

..
q =

[..
e1,

..
e2, . . . ,

..
e8

]T
(29)
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qd,
.
q

d
,

..
q

d
are the vectors of the desired joint positions, velocities, and accelerations in accordance

with the requirements of machining engineering, which are the set trajectories (7) calculated by the
kinematic problem.

q,
.
q,

..
q are the vectors of the actual joint positions, velocities, and accelerations.

KP(8×8), KV(8×8) are the diagonal matrix of the proportional gain coefficients, the derivative of each
separate joint corresponding to the controller, respectively, (30) and (31).

Kp = diag
{
kp1, kp2, . . . , kp8

}
; kpi > 0 (30)

KV = diag{kV1, kV2, . . . , kV8}; kVi > 0 (31)

Substituting (27) and (28) into (8) we find out the erroneous differential equation of the control
system (32), [..

e
]
(8×1)

+ [KV](8×8)

[ .
e
]
(8×1)

+
[
Kp

]
(8×8)

[e](8×1) = 0 (32)

or write in a separate form of independent equations for the joints (33).

..
ei + KVi

.
ei + Kpiei = 0; i = 1, . . . , 8 (33)

The Inverse Dynamics + PD controller model is demonstrated in Figure 3. The simulation results
are shown in Section 6.
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5. The Controller Based on Fuzzy Logic

The literature on fuzzy control is very diversified, however for easy understanding this article
briefly introduces fuzzy control. Some knowledge that is relevant and used in the paper is presented
in Appendix A. Based on the contents presented in the Appendix A, it is easy to find out relevant
issues when looking up references. Subsequent contents of the article with references (if any) in the
Appendix A may help to clarify the fuzzy control base that is briefly presented below.

This section presents the fuzzy controller design for a milling machining robot. The article uses
the Mamdani fuzzy controller and selects the rule of Max-Min composition, the method of central
defuzzification and triangular membership functions.

The following shows the steps to design a fuzzy controller and propose fuzzy rules for the robot
controller (See also Appendix B).

5.1. Select the Input, Output Signals and Physical Value Domains

5.1.1. Select Input and Output Signals

Inputs are joint position errors e(t) and joint velocity errors
.
e(t) over time of the robot system.

Outputs are the adjustment amounts of the joint driving forces/torques u(t) at each machining instant
to ensure that the errors e(t),

.
e(t) are as small as the requirement of machining accuracy.
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u is the vector of the adjustment amounts of joint forces/torques of the robot and platform, which
is calculated according to Formula (34),

u = τ− τd = [u1, u2, . . . , u8]
T (34)

where τd is the vector of desired driving forces/torques at the joints in accordance with theoretical
computations and requirements of machining engineering, then the joint position error e(t)→ 0 and
the joint velocity error

.
e(t)→ 0.

τ is the vector of the actual forces/torques at the joints in accordance with the requirements of
machining engineering so that the joint position errors e(t) and the joint velocity errors

.
e(t) approach

the zero asymptotic point.
u1, u2, . . . , u8 are the adjustment amounts of forces/torques at each joint 1, 2, . . . , 6, B and D of the

robot system, respectively.
At each machining instant corresponding to a pair of input signal values, which are the joint

position error e(t) and the joint velocity error
.
e(t), the controller calculates the adjustment amount

of the joint forces/torques u(t), and gives a signal u(t) to adjust the errors e(t),
.
e(t) approaching and

converging at the zero asymptotic point:

5.1.2. Determine the Physical Value Domains for Control Signals

Depending on the parameters of the machining process, kinematics, dynamics and the required
force/torque for the robot to perform machining motion according to the machining requirements, it
will estimate the physical value domain for position errors, velocity errors, and adjustment amount of
the force/torque of the ith joint (i = 1, . . . , 8) of the fuzzy controller which is shown in (35).

ei = [eimin, eimax]
T(rad, m)

.
ei =

[ .
eimin,

.
eimax

]T(
rad.s−1, m.s−1

)
ui = [uimin, uimax]

T(Nm, N)

; i = 1, . . . , 8 (35)

5.2. Fuzzification of Input and Output Signal Datas

5.2.1. Build Linguistic Variables

Language variables are key elements of fuzzy control rule. Each linguistic variable consists of a
linguistic value domain and physical value domain. The linguistic value domain is a set of linguistic
values. The linguistic value is set up by a fuzzy set.

The number of selected linguistic values must be appropriate, not complicated and fully represent
the characteristics of the control system.

Fuzzification of input and output signal data includes the name of the errors of position and
velocity, and the amount of force/torque adjustment as yi (yi = ei,

.
ei, ui; i = 1, . . . , 8), yinin ≤ yi ≤ yimax.

The physical value domain X of yi ∈ [yimin,yimax] is divided into five subdomains Xj (j = 1, . . . , 5), the
subdomains overlap and the subdomain Xj is set up by fuzzy set Fj. The fuzzy set Fj is represented by
linguistic values as in Table 2.

Table 2. Description of physical domains, fuzzy set and linguistic values of the inputs and outputs.

Serial No. Physical Domain Xj Fuzzy Set Fj Name of Linguistic Value Notation of Linguistic Value

1 X1 F1 Big Negative NB

2 X2 F2 Small Negative NS

3 X3 F3 Zero Z

4 X4 F4 Small Positive PS

5 X5 F5 Big Positive PB
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5.2.2. Set up Membership Function of the Errors of Position, Velocity and the Amount of Joint
Force/Torque Adjustments

It is necessary to build a function of linear form (right trapezoid, triangle, left trapezoid) of the
position error ei, the velocity error

.
ei, and the amount of force/torque adjustment of joint i shown in

Figure 4.
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Figure 4. The membership function of position error, velocity error and adjustment amount of driving
torque of joint i: yi (yi = ei,

.
ei, ui; i = 1, . . . , 8).

The membership function of yi (yi = ei,
.
ei, ui; i = 1, . . . , 8) in the NB fuzzy set (Figure 4) is

calculated according to (36).

µ(yi) =

 1; yi ≤ yimin
yi−0.75yimin−0.25yimax

0.25yimin−0.25yimax
; yimin < yi ≤ 0.75yimin + 0.25yimax

(36)

The membership function of yi (yi = ei,
.
ei, ui; i = 1, . . . , 8) in the NS fuzzy set (Figure 4) is

calculated according to (37).

µ(ei) =


yi−yimin

−0.25yimin+0.25yimax
; yimin ≤ yi ≤ 0.75yimin + 0.25yimax

yi−0.5yimin−0.5yimax
0.25yimin−0.25yimax

; 0.75 yimin + 0.25yimax ≤ yi ≤ 0.5yimin + 0.5yimax
(37)

The membership function of yi (yi = ei,
.
ei, ui; i = 1, . . . , 8) in the Z fuzzy set (Figure 4) is calculated

according to (38).

µ(yi) =


yi−0.75yimin−0.25yimax
−0.25yimin+0.25yimax

; 0.75yimin + 0.25yimax ≤ yi ≤ 0.5yimin + 0.5yimax
yi−0.25yimin−0.75yimax

0.25yimin−0.25yimax
; 0.5yimin + 0.5yimax ≤ yi ≤ 0.25yimin + 0.75yimax

(38)

The membership function of yi (yi = ei,
.
ei, ui; i = 1, . . . , 8) in the PS fuzzy set (Figure 4) is calculated

according to (39).

µ(yi) =


yi−0.5yimin−0.5yimax
−0.25eimin+0.25eimax

; 0.5yimin + 0.5yimax ≤ yi ≤ 0.25yimin + 0.75yimax
yi−yimax

0.25yimin−0.25yimax
; 0.25yimin + 0.75yimax ≤ yi ≤ yimax

(39)

The membership function of yi (yi = ei,
.
ei, ui; i = 1, . . . , 8) in the PB fuzzy set (Figure 4) is calculated

according to (40).

µ(yi) =

 yi−0.25 yimin−0.75yimax
−0.25yimin+0.25yimax

; 0.25 yimin + 0.75yimax ≤ yi < yimax

1; yi ≥ yimax

(40)

From the above, we realize that input and output vector signals are position errors e(t), velocity
errors

.
e(t), and amount of torque adjustment u(t) of joints of the robot system within the real (explicit)

physical value domain identifying them as different, but with the same linguistic value name.
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5.3. Set up the Control Laws

Based on the input variables that are joint position errors e(t) and velocity errors
.
e(t), we develop

a fuzzy rule table to calculate the adjustment amount of joint force/torque u(t). At the machining time,
the input variables are signals of position errors e(t), velocity errors

.
e(t) of joints within the physical

domain {X1, . . . , X5} of a fuzzy set, represented by a linguistic value in the domain {NB, NS, Z, PS, PB}
for each variable. The controller will generate a signal to control the amount of force/torque adjustment
u(t) within the physical domain {X1, . . . , X5}, represented by a linguistic value in the domain {NB, NS,
Z, PS, PB} and this u(t) signal corrects the input values of coordinate errors ei, velocity errors

.
ei of joints

approaching the physical value domain described by the linguistic value Z.
So, from the two input variables e(t),

.
e(t), along with 5 linguistic values of each variable, a rule

system will be set up inclusive of 52 = 25 control rules for the combination of variables e(t),
.
e(t), as

Table 3.

Table 3. Fuzzy rules.

Amount u(t)

Adjustment Velocity Error
.
e(t)

NB NS Z PS PB

Position error e(t)

NB PB PB PB PS Z

NS PB PS PS Z NS

Z PB PS Z NS NB

PS PS Z NS NS NB

PB Z NS NB NB NB

The formula to set the fuzzy compositional rule system for the fuzzy controller (41).

R :
n
U

i=1
Ri

Ri :
[(

e(t)∪
.
e(t)

)
→ u(t)

]
, i = 1, . . . , 25

(41)

From Table 3 and Formula (41), there is the fuzzy compositional rule system (42) including fuzzy
conditional statements: 

If e(t) is NB and
.
e(t) is NB then u(t) is PB or

If e(t) is NB and
.
e(t) is NS then u(t) is PB or

...
If e(t) is PB and

.
e(t) is PB then u(t) is NB

(42)

5.4. Set up the Compositional Rule of Inference for the Fuzzy Controller

At each machining time, the input control signals of position errors e(t), velocity errors
.
e(t) are

always within two physical value domains, set up by two fuzzy sets, represented by two linguistic
values of the domain {NB, NS, Z, PS, PB}. Therefore, it is necessary to determine the Compositional
Rule of Inference. We find in turn the membership function value of output signals which is the amount
of force/torque adjustment u(t) of each Compositional Rule Rk (k = 1, . . . , 25) and the rule system
for the input control signals of coordinate errors e(t), velocity errors

.
e(t) of the controller. Select the

method to execute the Compositional Rule of Inference according to Mamdani composition MAX-MIN
Rule (43) and (44).

F′u =
25
U

i=1
F′ui

; µF′u(y) =
25
V

i=1
µF′ui

; F′i =
(
F′e, F′de

)
◦Ri ;

(
de =

.
e
)

(43)
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µF′ui
(y) = αi ∧ µFui

(y) ; αi = min
{

max
y

(
µF′e(y)∧ µFei

(y)
)
, max

y

(
µF′de

(y)∧ µFdei
(y)

)}
(44)

Use Rule (43) and (44), in turn, to determine the membership function value for each Compositional
Rule and total Compositional Rule system. The output result of each Compositional Rule is the
membership function value corresponding to the fuzzy set F’ (note that each membership function
value corresponds to a fuzzy set F′i and the membership function value of the whole system corresponds
to the general fuzzy set F’), the fuzzy set F’ is in 5 fuzzy sets represented by 5 linguistic values of the
domain {NB, NS, Z, PS, PB}.

5.5. Defuzzification

The defuzzification is to determine the explicit (crisp) value y’ of the output (the amount of
force/torque adjustment u(t) of joint) from the membership function value of the fuzzy set F’. Use
the center of area method (COA) for defuzzification to the fuzzy controller of the robot system when
surface shaping machining. This method is easy to apply, involving all output fuzzy sets of the
Compositional Rule of Inference. The results of this method are highly accurate (45).

y′ =

∫
S′

yµF′(y)dy∫
S′
µF′(y)dy

(45)

where y’ is the actual output value taken in accordance with the abscissa of the domain central point
enclosed by membership function constituting (line) with the horizontal axis and S’ is the domain
defining the fuzzy set F’. Figure 5 shows the principal structure of the fuzzy controller.
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Figure 5. Scheme of fuzzy logic control for the robot–platform system in machining.

Applying the fuzzy logic as presented, this paper proposes to set up a fuzzy controller for a robot
in a milling process based on the incomplete dynamic model, which means ignorance of the cutting
force determination. The control block of the robot controller has a double structure consisting of an
outer loop that is a fuzzy control block to determine the adjustment value based on the erroneous
information of joint positions and velocities; and the inner loop is the inverse dynamics calculation
block from the robot dynamic model, in which there is no cutting force component. Figure 6 shows a
SIMULINK model representing the fuzzy controller for the robot system. Figure 7 shows a double-loop
structure of the control block in the fuzzy controller, enabling the calculation of driving force.
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6. Simulation Results

In order to verify the quality of the designed controller, this section presents the application of
a robot carrying out the down milling process of a mold prototype of a hydraulic pump’s central
housing, which is made of Ti6Al4V titanium alloy material. The machining trajectory is the path Li,
which represents the milling path of the cutter head moving from outside to inside to complete the
machining surface (Figure 8). The cutter is an end mill cutter that has four cutting edges/flutes, with a
20 mm diameter (Figure 9).
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The parameters of geometric, kinematic and dynamic of the robot, platform and workpiece are
determined and created as the input parameter file.

The cutter parameters and the milling process parameters are shown in Table 4, where Z is the
number of cutting edges (flutes) of the cutter, vc is cutting speed, vr is the relative velocity between the
tool and the workpiece, Sz is the feed rate on a cutting edge, B is milling width (B = 2.2 mm) and h is
milling depth (h = 15 mm).

Table 4. The cutter parameters and the milling process parameters.

Cutter’s
Material

D1
(mm)

D2
(mm)

L1
(mm)

L2
(mm)

Z
(tooth)

vc
(m/min)

vr
(mm/s)

Sz
(mm/tooth)

h0
(mm)

Cooling
Liquor

Carbide 20 20 125 50 4 31.3 3.3 0.1 2.2 Emunxi

Assume that with the two methods of calculation and selections, the cutting force coefficients
in (25) are shown in Table 5 and the results of cutting force calculation according to the empirical
formula are shown in Figure 10. In particular, Figure 10 (a)÷(d), respectively, represent cutting forces
in the x, y, z directions and the torque in z direction of the tool frame. The small torque components in
x and y directions should be ignored.

Table 5. Cutting force coefficients in milling.

Case Ktc (N/mm2) Krc (N/mm2) Kac (N/mm2) Kte (N/mm) Kre (N/mm) Kae (N/mm)

1 1825 770 735 29.7 55.7 1.8

2 1963 646 778 29.7 55.7 1.8
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6.1. Simulation of Inverse Dynamics + PD Controller

The Inverse Dynamics + PD controller is designed as shown in Section 4. Here, the coefficient
matrices of proportional gain KP and derivative KV are selected in accordance with (46) and (47).

KP = diag{22500, 22500, 22500, 22500, 16900, 16900, 16900, 16900} (46)

KV = diag{300, 300, 300, 300, 260, 260, 260, 260} (47)

In order to illustrate this, suppose that in the output block (robot block) of the Inverse
Dynamics + PD controller in Figure 3, the cutting forces are precisely determined in accordance
with the cutting force coefficients in case 1 of Table 5. The simulations are carried out for two
cases where the cutting force in the input control block is calculated according to the corresponding
coefficients in the two cases of Table 5, respectively. For more convenience, the simulation results that
correspond to the above two cases are called PD1 and PD2.

The simulation results are shown in Figure 11. In particular, Figure 11a represents the position
error of first joint in comparison with the desired trajectory. Similarly, Figure 11b–h represent the
position errors of the second, third,..., eighth joints respectively. The graphs that represent the errors of
joint positions show the different errors corresponding to each joint. The errors of the joints that are
near the end effector are greater than that of the far ones. Summarizing the joint position errors, we get
the errors of the operational point of the cutting point of the tool with respect to the toolpath. Figure 12
shows the error of trajectory of the cutting point of the tool in comparison with the set trajectory as
the toolpath. We realize that the trajectory error of PD1 is smaller than that of PD2 because PD1 is
corresponding to the assumption of calculating cutting forces precisely.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 32 
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Thus, with the analysis and the choice of different cutting force coefficients, the control results
will be different and affect the machining precision of the robot significantly.

6.2. Simulation of the Fuzzy Controller

Depending on the given data of the kinematic, dynamic, etc., parameters, the physical value
domain of input and output terms of the fuzzy controller are estimated as shown in Table 6.
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Table 6. The physical value domain of input and output quantities of the fuzzy controller.

Link ei
.
ei ui

1 [−0.001,0.001] (rad) [−0.5,0.5] (rad/s) [−18,000,18,000] (Nm)

2 [−0.001,0.001] (rad) [−2.4,2.4] (rad/s) [−44,000,44,000] (Nm)

3 [−0.006,0.006] (rad) [−2.5,2.5] (rad/s) [−42,000,42,000] (Nm)

4 [−0.009,0.009] (rad) [−12.0,12.0] (rad/s) [−18,000,18,000] (Nm)

5 [−0.008,0.008] (rad) [−7.0,7.0] (rad/s) [−9800,9800] (Nm)

6 [−0.008,0.008] (rad) [−10.0,10.0] (rad/s) [−5200,5200] (Nm)

7 [−0.001,0.001] (m) [−0.2,0.2] (m/s) [−4700,4700] (N)

8 [−0.001,0.001] (m) [−0.5,0.5] (m/s) [−3100,3100] (N)

Figure 13 is the graph representing the comparison of joint position errors of the robot between
the fuzzy controller and the two cases of the Inverse Dynamics + PD controller.
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Figure 14 shows the trajectory error of the cutting point of the tool in the operational frame
Odxdydzd, with the lines representing the error of the fuzzy controller, and the two cases of Inverse
Dynamics + PD controller.
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One can see that the joint position errors of the fuzzy controller are smaller than that of the PD1
and PD2 controllers.

Figure 15a shows the trajectory of the cutting point of the tool in the operational frame. Due to
small errors, the desired and actual trajectories of the fuzzy controller and Inverse Dynamics + PD
controller are approximately coinciding.Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 32 
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Figure 15. The trajectory of the cutting point with respect to the operational frame. (a)- when there is
no initial deviation; (b)- there is initial deviation.

To verify the adjustment capability of the fuzzy controller, the simulation of the fuzzy controller is
performed by the initial value of the trajectory as a deviation of the desired values.

Figure 15b shows the asymptotical and convergent process of the trajectory of the cutting point
from the initial deviation to coincide with the toolpath (desired trajectory) in the milling process.

Figure 16 shows the simulation result of the fuzzy controller with initial trajectory error, time
history of the joint positions, with the splines that represent the desired, actual trajectories and errors.

From the results, it can be seen that the fuzzy controller is able to control the system to the required
state when there are perturbations.

In general, the simulated results show that with the assumption of ideal computed cutting forces,
the Inverse Dynamics + PD explicit controller and fuzzy controller give accurate control results.
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6.3. Stability Analysis

As mentioned, the designed fuzzy controller is a Mamdani type fuzzy controller, in which the
development of fuzzy rule is based on the rules of the PD controller. In general, such a controller has
good stability except perturbations.

The input signals of the controller include the joint position errors e(t) and the joint velocity errors
.
e(t), and the output signal of the controller is the adjustment amounts of the joint driving forces/torques
u(t) at each machining instant. A good fuzzy control rule system including the above-mentioned rules
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will ensure that the calculation of the output value is consistent with the change of input signal and
there is less possibility of overshoot. The numerical simulation results show this fact.

On the other hand, the input signal that can greatly change the output quantity is the physical
value domain of driving force. Numerical experiments show that when the physical value domain
of the driving force is selected at a smaller level than the value to be reached, the control simulation
results are not good, with large errors, which are understandable. When the domain of physical values
is expanded, the errors decrease, and when the physical value domain is large enough to cover all the
necessary values of the driving force, the control accuracy will be good, as shown by the simulation
results. The next question will be whether increasing the input signal by expanding the domain of
physical values without control, i.e., when the value domain is selected as too large, the value of the
output driving force may greatly increase? The fuzzy Inference and Defuzzification show that the
output physical value of a variable depends on the input physical value domain and the membership
function value of such variable. As the physical value domain increases, the output value increases
but non-linearly. Numerical experiments in the direction of gradually expanding the domain of input
physical values so that the physical value of the output u(t) increases gradually to the appropriate value,
we realize: The error of e(t),

.
e(t) reduction; the membership value of linguistic variables corresponding

to the large value of the output u(t) decreases; membership values of linguistic variables with small
values increase. In the fuzzy set [NB, NS, Z, PS, PB], the membership value of u(t) corresponding to Z
is fast progressing to 1, other values decrease and even the NB, PB values almost go to 0 in the first
steps. Based on this and based on the fuzzy inference formula, it is easy to see that the growth rate of
the physical value of the output u(t) decreases and the slope of the graph decreases. The slope of the
graph gradually reaches 0, the graph is horizontal, then u(t) does not increase. Above that limit, if the
physical value domain of the input u(t) continues to rise too high, the physical output value u(t) does
not continue to increase, but the controller error will increase again.

Figure 17 shows the membership function values corresponding to [NB, NS, Z, PS, PB] of the
fuzzy set u(t), with the physical value domain of u(t) selected as in Table 6. The membership function
value corresponding to NB, PB is almost zero, with Z close to 1. The membership function values
corresponding to NS and PS of the physical value u(t) are opposite the sign and adjust the physical
output value u(t).
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Figure 17. Membership function value of the fuzzy set u(t) corresponding to the physical value domain
of u(t) is selected as in Table 6.

An increase of the physical value domain of u(t) by 3 times obtains the results shown in Figure 18.
Membership function values corresponding to NS, PS are about 3 times smaller than the values shown
in Figure 17.
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Figure 18. Membership function value of the fuzzy set u(t) corresponding to the physical value domain
of u(t) is chosen to be 3 times larger than the value in Table 6.

Therefore, thanks to the integration of expert knowledge, the fuzzy rules are chosen, then there will
be a reasonable upper bound value for the physical value domain of control output signal. At that time,
it is possible to arbitrarily select the input physical value domain to get good control results without
fear of instability because there is no excessive increase of driving force. Numerical experiments are
carried out when control accuracy is almost the best. In this case, when expanding the physical value
domain of the driving force by 5 times, the result shows that there are some early points of the control
process, when the system is in the start-up phase, that the driving force increases by about (35%÷45%).
However, with the entire control process on the operating trajectory, the driving force has no significant
change and control accuracy is guaranteed. Thus, with the experiment mentioned above, it is feasible
to select a value domain smaller than the upper bound limit.

In addition, through the mentioned numerical simulation results, the controller can return the
system to trajectory when there are errors by disturbance.

Compare the fuzzy controller (FZ) with a fuzzy controller integrated with PID (FZ + PID) shown
in Figures 19 and 20.Appl. Sci. 2020, 10, x FOR PEER REVIEW 23 of 32 
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Figure 19. Tool path position errors between desired value and simulation result in normal cutting
force mode.

The result shows that the accuracies of Fuzzy and Fuzzy + PID controllers are almost the same.
On the other hand, with noise increasing the external load (cutting force) within 50%, the accuracy is
still guaranteed and the errors are negligible. Figures 19 and 20 also show the simulation results of the
Inverse Dynamics + PD controller (no perturbation, Figure 19), and Inverse Dynamics + PID (with
perturbation, Figure 20). The adjustment capability of the Inverse Dynamics + PID controller is found
to be slower.
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Thus, among many methods of ensuring the stability and accuracy of the fuzzy controller, it is
possible to say:

- the fuzzy controller has an integrated PID control unit,
- the fuzzy controller without integrated PID unit can still be stable and ensure the accuracy, by

choosing a good fuzzy rule and physical value domain of appropriate input and output variables.
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7. Conclusions

The results show that the controller based on fuzzy logic can meet the requirements of accuracy
and reliability. Furthermore, by neglecting the calculations of the cutting forces, it is more convenient
to deal with only linear algebraic calculations in fuzzy control rules, which in turn help to greatly
reduce the time and computation load and increase the efficiency of the robot control system.

From the simulation results, the fuzzy controller may be even more accurate than the explicit
controller, although this is only relative because the presented controllers have not been optimized.
The parameters of the above controllers have been selected “quite randomly” in simulation cases.

Theoretically, the explicit controller is accurate when the dynamic model is accurate and contains
no perturbations. However, in practice, it is difficult to determine precisely all the system parameters.
This leads to errors in the calculation of the control signals.

Meanwhile, the fuzzy controller computes the control law based on the input and output signal
errors and the fuzzy rule. Thus, the calculation results can be flexibly adjusted based on the input and
output signal errors. This explains the possibility that the fuzzy controller may be more accurate than
the explicit controller. In addition, the last simulation result with initial deviation of the trajectory shows
that the fuzzy controller is able to control the system to the required state when there are perturbations.

The method of developing fuzzy rules and determining the physical value domain implemented
in the article gives good simulation results of the fuzzy controller, which can be applied for designing
the fuzzy controller for milling robots.

Difficulties in cutting force calculation and accurately determining the dynamic quantities for
complex structural robot systems are always a challenge. Besides, one cannot compensate for all the
perturbations such as noise and vibrations occurring due to interactions when the robot is machining
or from the environment. Therefore, it is not possible to design an ideal explicit controller. Finding
methods to eliminate the aforementioned factors when applying robots in machining is indispensable
and compulsory. The controller based on fuzzy logic has been validated to be feasible and reliable via
simulation results. It can be developed in practise to overcome the aforementioned uncertainty.
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Appendix A. Summary Fuzzy Logic

Unlike the crisp control that works based on a crisp logic, i.e., binary logic, the fuzzy controller
works based on fuzzy logic, implementing many-valued or infinite-valued logic. The basis of crisp
logic is that the crisp set has rigid boundaries while the fuzzy logic depends on fuzzy set with soft
boundaries. The fuzzy set enables us to represent the real world easily and closely to human thinking.
Crisp logic and fuzzy logic are mathematical languages, crisp sets and fuzzy sets include objects,
elements, etc., and they are the basis for the mathematical operations. In the theories of fuzzy set,
fuzzy logic develops a pretty large mathematical basis for performing mathematical operations on
fuzzy sets. Accordingly, firstly, the fuzzy set elements are assigned a linguistic variable in which the
linguistic values represented by the element’s membership function on the fuzzy set. Based on the
universe of discourse, by quantitative or qualitative inferences, the linguistic value of a linguistic
variable is determined. In fuzzy control, this process is called fuzzification process. In order for fuzzy
inference to be performed with linguistic variables on fuzzy sets, the tools are developed. Firstly,
characteristic parameters of fuzzy set; membership function to determine membership grade of a
variable of an element in a fuzzy set. The Inferences: fuzzy relations; fuzzy rule base; Compositional
Rule of Inferences . . . In fuzzy control, these tools are used to perform two main functions: implication
and composition of fuzzy rules to come to desired results. This process plays an important role in
the fuzzy controller (Appendix B and Figure A1). The physical system only receives and performs
commands by physical values, therefore, defuzzification is the process of converting linguistic values
into physical (crisp) values based on fuzzy inferences. Accordingly, the fuzzy controller operates in a
process with three above-mentioned modules (Appendix B).

Fuzzy logic is a language, a mathematical language, like any other language we know. The
elements on which fuzzy logic depend is called fuzzy set and it is also alternatively called the fuzzy
algebra. Fuzzy logic is essentially a mixture of various mathematical languages to define another new
language as fuzzy logic. Let X be a non-empty set (called the universal set or the universe of discourse
or simply domain), which is a set that has all possible members of a particular domain.

A Fuzzy Set F is determined in universal set X in which each element is an ordered pair (x, µF(x)),
where: µF: X→ [0, 1]. Logical mapping µF is considered as membership function of fuzzy set F.

Characteristic parameters of fuzzy set:
The support (defined domain) of fuzzy set F (defined on the set X) is the crisp subset and defined as

Supp(F) =
{
x ∈ X : µF(x) > 0

}
(A1)

The core (trusted domain) of a fuzzy set F (defined on the set X) is the crisp subset and defined as

Core(F) =
{
x ∈ X : µF(x) = 1

}
(A2)

The height (h) of fuzzy set F (defined on the set X) is the maximum membership function value
attained by any point:

h(F) = sup
x∈X
µF(F) (A3)

An α-cut of a fuzzy set F (defined on the set X) is a crisp set which its each membership function
value in F are greater than or equal to α.

αF =
{
x ∈ X : µF(x) ≥ α

}
(A4)
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A strong α-cut of a fuzzy set F (defined on the set X) is a crisp set which its each membership
function value in F are strictly greater than α.

α+F =
{
x ∈ X : µF(x) > α

}
(A5)

It is easy to see that:
Core(F) = 1F; Supp(F) = 0+F (A6)

The crossover point of a fuzzy set F (defined on the set X) is a point x in X such that

Crossover(F) =
{
x ∈ X : µF(x) = 0.5

}
(A7)

Typical Membership Function: There are many methods of establishing membership functions to
determine the membership grade of an x element on a fuzzy set F, such as: triangular membership
function, trapezoidal form, Gaussian form, Sign form, Sigmoidial form, Campanulate form. In fuzzy
logic control, the triangular and trapezoidal membership functions are often used.

Operations on fuzzy sets: There are many operations on fuzzy sets, but in this paper we introduce
three basic operations: unions, intersection of two fuzzy sets and fuzzy complementation. Consider
two fuzzy sets A, B on the universe of discourse X. For a given element x of the X, these operations are
introduced. Based on the definition of fuzzy union and intersection, there are many formulas that can
be applied to calculate the membership function of the union or intersection of two fuzzy sets, such as
the formula based on maximum rule, Lukasiewicz rule, direct sum formula, etc. Here, the formulas
based on maximum and minimum rules are introduced:

Unions (max rule):

µA∪B(x) = max
{
µA(x),µB(x)

}
= µA(x)∨ µB(x);∀x ∈ X (A8)

Intersection (min rule):

µA∩B(x) = min
{
µA(x),µB(x)

}
= µA(x)∧ µB(x);∀x ∈ X (A9)

Complement:
µA(x) = 1− µA(x);∀x ∈ X (A10)

Linguistic variable: A linguistic variable is a variable that represents a physical quantity by words
or sentences in natural or artificial language. A linguistic value is a natural language term which is
derived using quantitative or qualitative reasoning. A fuzzy linguistic variable x will take values that
are linguistic values. Thus, a variable can both be represented by physical values and linguistic values.
For example, velocity variables can be represented by two value domains. The physical value domain:

V = {x ∈ R : x ≥ 0} (A11)

The linguistic value domain:

LV =
{
veryslow(VL), slow(L), normal(M), fast(F), veryfast(VF)

}
(A12)

Here, the universal set is the velocity set V, the fuzzy set LV is defined on set V. With a physical value
x ∈ V, the membership function can be determined, corresponding to subsets of LV, and represented by
vector µ as follow:

x→ µ = [µVL(x), µL(x), µM(x), µF(x), µVF(x)]
T (A13)

The above mapping is called the fuzzification process, in which the physical value of a variable is
transformed into linguistic value.
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Fuzzy relations: A fuzzy relation R on Cartesian product of universal sets U1 × U2 × . . . × Un is
any fuzzy subset of U1 × U2 × . . . × Un. Thus, a fuzzy relation R is defined by a membership function

µR(x1, x2, . . . , xn) : U1 ×U1 . . .×Un → [0, 1] or µR(x1, x2, . . . , xn) ∈ [0, 1] (A14)

If the Cartesian product is formed by just two sets U1 × U2, the relation is called a binary fuzzy
relation on U1 × U2.

A relation R between fuzzy sets A and B denotes composition of A and B

R =
{
(x, y),µR(x, y) : µR(x, y) = min(µA(x),µB(y)) or µR(x, y) = µA(x)•µB(y)

}
(A15)

Composition of fuzzy relations R and S: Let R, S, T be fuzzy relations on the Cartesian spaces X ×
Y, Y × Z, and X × Z, respectively, x ∈ X, y ∈ Y, z ∈ Z.

Union:
µR∪S(x, y) = max

{
µR(x, y),µS(x, y)

}
= µR(x, y)∨ µS(x, y) (A16)

Intersection:
µR∩S(x, y) = mix

{
µR(x, y),µS(x, y)

}
= µR(x, y)∧ µS(x, y) (A17)

Complement:
µR(x, y) = 1− µR(x, y) (A18)

Max–Min composition:

T = R ◦ S =

{
(x, y), max

y

{
min(µR(x, y),µS(y, z))

}
: x ∈ x, y ∈ y, z ∈ z

}
(A19)

Max–Product composition:

T = R ◦ S =

{
(x, y), max

y
(µR(x, y)•µS(y, z)) : x ∈ x, y ∈ y, z ∈ z

}
(A20)

Max–Average composition:

T = R ◦ S =

{
(x, y), max

y
(µR(x, y) + µS(y, z)) : x ∈ x, y ∈ y, z ∈ z

}
(A21)

Fuzzy rules and implications: The fuzzy implication (also known as fuzzy rule, fuzzy If-Then
rule, or fuzzy conditional statement) is defined in form: “If x is A then y is B”, where A and B are two
linguistic variables defined by fuzzy sets A and B on the universal sets X and Y, respectively. There are
two well-known fuzzy implication rules, widely used in fuzzy system and fuzzy control:

Min operation rule (Mamdani implication rule): The fuzzy membership function of
fuzzy implication

µA→B(x, y) = min
{
µA(x),µB(y)

}
= µA(x)∧ µB(y) (A22)

Product operation rule (Larsen):

µA→B(x, y) = µA(x)•µB(y) (A23)

Fuzzy compositional rules: In this paper, the method Mamdani is introduced. The method
Mamdani uses a minimum operator as a fuzzy implication operator, and max-min operator for the
composition. Suppose fuzzy rule is Single-Input/Single-Output (SISO) Rule Base as R: if x is A then z is
C, infer result C′ for another rule if x is A′ then z is C′, where A, C, A′ are known. When input data is a
singleton such as A′ = x0,
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C′ = A′ ◦R;µC′(x) = min
{
µA(x0),µC(z)

}
= α∧ µC(z); where α = µA(x0) (A24)

When input data is fuzzy set A′,

C′ = A′ ◦R; µC′(x) = max
{
min(α,µC(z))

}
= max(α∧ µC(z)); where α = min(µA′(x),µA(x))

(A25)
The α is called the “matching degree”, “satisfaction degree”, or “firing strength”.
Multi-Input/Single-Output (MISO) Rule Base:
Ri: if x is Ai and y is Bi then z is Ci, i = 1, 2, . . . , n. Where Ai, Bi, Ci, i = 1, 2, . . . , n and A′, B′ are

known, the output C′ is obtained as follow:

C′ =
n
∪

i=1
C′i ; µC′(z) =

n
V

i=1
µC′i

; µC′i(z) = αi ∧ µCi
(z) (A26)

When input data are singletons such as x = x0 and y = y0,

C′i= A′ ◦Ri ; αi = µAi
(x0)∧ µBi

(
y0

)
(A27)

When input data are fuzzy sets, A′ and B′,

C′i = (A′, B′) ◦Ri ; αi = min
{

max
x

(
µA′(x)∧ µAi

(x)
)
, max

y

(
µB′(y)∧ µBi

(y)
)}

(A28)

Defuzzification: In practical applications, the control commands work by crisp value. Therefore
it is necessary to defuzzify the result of the fuzzy inference. Defuzzification is the process where
the mapping is done to convert the fuzzy results into crisp values. There are many methods for
defuzzification technique. This paper introduces two well-known and widely used methods in fuzzy
system and fuzzy control.

Center of area method (COA):

y′ =

∫
S

yµC′(y)dy∫
S
µC′(y)dy

; or y′ =

n∑
J=1

yjµC′(yj)

n∑
j=1
µC′(yj)

(A29)

where, the first formula for the case y is continuous; S is the Support (defined domain) of fuzzy set C′; n
is the number of quantization levels of the output; C is a fuzzy set defined on the output dimension (y).

Mean of maximum method (MOM):

y′ =
k∑

j=1

yj

k
(A30)

where, yj is the control action whose membership functions reach the maximum; k is the number of
such control actions.

Appendix B. Fuzzy Logic Controller

In general, a fuzzy controller has three main components (Figure A1):

1. The interface consists of a fuzzification module and some additional ones for solving problems
such as generating trajectories of motion, differentiation, integration . . . Fuzzification is the
method of translating a crisp quantity into a fuzzy quantity.
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2. The compositional device consists of two main modules that are fuzzy rules and the inference
mechanism. Two approaches for construction of fuzzy logic control are Mamdani and
Takagi—Sugeno’s approaches. This paper uses the Mamdani approach in developing fuzzy
rules as well as fuzzy inference. In order to develop fuzzy rule systems, the essential nature and
key characteristics of the object being controlled are analyzed based on expert knowledge and
experience. The effectiveness of these based on the fuzzy approach are the most important factors,
i.e., deciding whether fuzzy rules are good or not, to ensure good quality control.

3. Defuzzification is the operation process that inverses the process of fuzzification, where the fuzzy
results are converted into crisp values for the controller to perform physical operations.
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robot for milling. Mechatronics 2016, 37, 100–111. [CrossRef]

8. Gołda, G.; Kampa, A. Modelling of cutting force and robot load during machining. In Advanced Materials
Research. Trans Tech Publ. 2014, 1036, 715–720.

9. Cen, L.; Melkote, S.N. Effect of robot dynamics on the machining forces in robotic milling. Procedia Manuf.
2017, 10, 486–496. [CrossRef]

10. Perrusquía, A.; Yu, W.; Soria, A. Position/force control of robot manipulators using reinforcement learning.
Ind. Robot Int. J. Robot. Res. Appl. 2019, 46, 267–280. [CrossRef]

11. Lacerda, H.B.; Lima, V.T. Evaluation of cutting forces and prediction of chatter vibrations in milling. J. Braz.
Soc. Mech. Sci. Eng. 2004, 26, 74–81. [CrossRef]

12. Leonesio, M.; Villagrossi, E.; Beschi, M.; Marini, A.; Bianchi, G.; Pedrocchi, N.; Isaev, A. Vibration analysis of
robotic milling tasks. Procedia Cirp 2018, 67, 262–267. [CrossRef]

13. Wang, G.; Dong, H.; Guo, Y.; Ke, Y. Dynamic cutting force modeling and experimental study of industrial
robotic boring. Int. J. Adv. Manuf. Technol. 2016, 86, 179–190. [CrossRef]

14. Lazoglu, I. A new identification method of specific cutting coefficients for ball end milling. Procedia Cirp
2014, 14, 182–187.

http://dx.doi.org/10.1007/s00170-019-03403-z
http://dx.doi.org/10.1016/j.mechatronics.2016.03.001
http://dx.doi.org/10.1016/j.jmapro.2017.06.010
http://www.cometproject.eu
http://dx.doi.org/10.1016/j.mechatronics.2016.03.012
http://dx.doi.org/10.1016/j.promfg.2017.07.034
http://dx.doi.org/10.1108/IR-10-2018-0209
http://dx.doi.org/10.1590/S1678-58782004000100013
http://dx.doi.org/10.1016/j.procir.2017.12.210
http://dx.doi.org/10.1007/s00170-015-8166-z


Appl. Sci. 2020, 10, 1685 29 of 31

15. Ghorbani, H.; Moetakef-Imani, B. Specific cutting force and cutting condition interaction modeling for round
insert face milling operation. Int. J. Adv. Manuf. Technol. 2016, 84, 1705–1715. [CrossRef]

16. Nan, C.; Liu, D. Analytical Calculation of Cutting Forces in Ball-End Milling with Inclination Angle. J. Manuf.
Mater. Process. 2018, 2, 35. [CrossRef]

17. Kaymakci, M.; Kilic, Z.M.; Altintas, Y. Unified cutting force model for turning, boring, drilling and milling
operations. Int. J. Mach. Tools Manuf. 2012, 54, 34–45. [CrossRef]

18. Davoudinejad, A.; Tosello, G.; Parenti, P.; Annoni, M. 3D finite element simulation of micro end-milling by
considering the effect of tool run-out. Micromachines 2017, 8, 187. [CrossRef]

19. Huo, D.; Chen, W.; Teng, X.; Lin, C.; Yang, K. Modeling the influence of tool deflection on cutting force and
surface generation in micro-milling. Micromachine 2017, 8, 188. [CrossRef]

20. Luo, M.; Chong, Z.; Liu, D. Cutting forces measurement for milling process by using working tables with
integrated PVDF thin-film sensors. Sensors 2018, 18, 4031. [CrossRef]

21. Tuysuz, O.; Altintas, Y.; Feng, H.Y. Prediction of cutting forces in three and five-axis ball-end milling with
tool indentation effect. Int. J. Mach. Tools Manuf. 2013, 66, 66–81. [CrossRef]

22. Wang, M.; Gao, L.; Zheng, Y. An examination of the fundamental mechanics of cutting force coefficients.
Int. J. Mach. Tools Manuf. 2014, 78, 1–7. [CrossRef]

23. Díaz-Tena, E.; Ugalde, U.; De Lacalle, L.L.; De la Iglesia, A.; Calleja, A.; Campa, F.J. Propagation of assembly
errors in multitasking machines by the homogenous matrix method. Int. J. Adv. Manuf. Technol. 2013, 68,
149–164.

24. Aydın, M.; Köklü, U. Identification and modeling of cutting forces in ball-end milling based on two different
finite element models with Arbitrary Lagrangian Eulerian technique. Int. J. Adv. Manuf. Technol. 2017, 92,
1465–1480. [CrossRef]

25. Artetxe, E.; Urbikain, G.; Lamikiz, A.; López-de-Lacalle, L.N.; González, R.; Rodal, P. A mechanistic cutting
force model for new barrel end mills. Procedia Eng. 2015, 132, 553–560. [CrossRef]

26. Lamikiz, A.; De Lacalle, L.L.; Sánchez, J.A.; Salgado, M.A. Cutting force integration at the CAM stage in the
high-speed milling of complex surfaces. Int. J. Comput. Integr. Manuf. 2005, 18, 586–600. [CrossRef]

27. Gonzalo, O.; Jauregi, H.; Uriarte, L.G.; de Lacalle, L.L. Prediction of specific force coefficients from a FEM
cutting model. Int. J. Adv. Manuf. Technol. 2009, 43, 348. [CrossRef]

28. Lamikiz, A.D.; De Lacalle, L.L.; Sanchez, J.A.; Salgado, M.A. Cutting force estimation in sculptured surface
milling. Int. J. Mach. Tools Manuf. 2004, 44, 1511–1526. [CrossRef]

29. Lin, X.; Wu, G.; Zhang, Y.; Cui, T.; Zhang, B.; Sun, P. The identification of the cutting force coefficients for
ball-end finish milling. Int. J. Adv. Manuf. Technol. 2019, 102, 4121–4135. [CrossRef]

30. Moges, T.M.; Desai, K.A.; Rao, P.V.M. Modeling of cutting force, tool deflection, and surface error in
micro-milling operation. Int. J. Adv. Manuf. Technol. 2018, 98, 2865–2881. [CrossRef]

31. Peng, B.; Bergs, T.; Schraknepper, D.; Klocke, F.; Döbbeler, B. A hybrid approach using machine learning to
predict the cutting forces under consideration of the tool wear. Procedia Cirp 2019, 82, 302–307. [CrossRef]

32. Zhang, X.; Yu, T.; Wang, W. Cutting forces modeling for micro flat end milling by considering tool run-out
and bottom edge cutting effect. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2019, 233, 470–485. [CrossRef]

33. Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–353. [CrossRef]
34. Mamdani, E.H. Twenty years of fuzzy control: Experiences gained and lessons learnt. In Proceedings of the

1993 Second IEEE International Conference on Fuzzy Systems, San Francisco, CA, USA, 28 March–1 April
1993; pp. 339–344.

35. Kumar, V.; Nakra, B.C.; Mittal, A.P. A review on classical and fuzzy PID controllers. Int. J. Intell. Control Syst.
2011, 16, 170–181.

36. Hampel, R.; Wagenknecht, M.; Chaker, N. (Eds.) Fuzzy Control: Theory and Practice; Springer Science &
Business Media: Berlin, Germany, 2013.

37. Boutalis, Y.; Christodoulou, M.A.; Theodoridis, D.; Kottas, T. System identification and adaptive control. Theory
and Applications of the Neurofuzzy and Fuzzy Cognitive Network Models; Springer International Publishing:
Cham, Switzerland, 2014; 313p.

38. Matía, F.; Marichal, G.N.; Jiménez, E. (Eds.) Fuzzy Modeling and Control: Theory and Applications; Atlantis
Press: Paris, France, 2014; 288p.

39. Hooda, D.S.; Raich, V. Fuzzy Logic Models and Fuzzy Control: An Introduction; Alpha Science International:
Oxford, UK, 2017.

http://dx.doi.org/10.1007/s00170-015-7985-2
http://dx.doi.org/10.3390/jmmp2020035
http://dx.doi.org/10.1016/j.ijmachtools.2011.12.008
http://dx.doi.org/10.3390/mi8060187
http://dx.doi.org/10.3390/mi8060188
http://dx.doi.org/10.3390/s18114031
http://dx.doi.org/10.1016/j.ijmachtools.2012.12.002
http://dx.doi.org/10.1016/j.ijmachtools.2013.10.008
http://dx.doi.org/10.1007/s00170-017-0229-x
http://dx.doi.org/10.1016/j.proeng.2015.12.532
http://dx.doi.org/10.1080/09511920500069309
http://dx.doi.org/10.1007/s00170-008-1717-9
http://dx.doi.org/10.1016/j.ijmachtools.2004.05.004
http://dx.doi.org/10.1007/s00170-019-03481-z
http://dx.doi.org/10.1007/s00170-018-2415-x
http://dx.doi.org/10.1016/j.procir.2019.04.031
http://dx.doi.org/10.1177/0954405417726811
http://dx.doi.org/10.1016/S0019-9958(65)90241-X


Appl. Sci. 2020, 10, 1685 30 of 31

40. Sharma, K.D.; Chatterjee, A.; Rakshit, A. Intelligent Adaptive Fuzzy Control. In Intelligent Control; Springer:
Singapore, 2018; pp. 3–21.

41. De Silva, C.W. Intelligent Control: Fuzzy Logic Applications; CRC press: Boca Raton, FL, USA, 2018.
42. Lee, K.H. First Course on Fuzzy Theory and Applications; Springer Science & Business Media: Berlin,

Germany, 2004.
43. Barros, L.C.D.; Bassanezi, R.C.; Lodwick, W.A. A First Course in Fuzzy Logic, Fuzzy Dynamical Systems, and

Biomathematics: Theory and Applications; Springer-Verlag: Berlin/Heidelberg, Germany, 2017; 299p.
44. Liu, H.; Wang, T.; Wang, D. Constant cutting force control for CNC machining using dynamic

characteristic-based fuzzy controller. Shock Vib. 2015, 2015. [CrossRef]
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