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Abstract: Imbalanced classification is one of the most important problems of machine learning and
data mining, existing in many real datasets. In the past, many basic classifiers such as SVM, KNN,
and so on have been used for imbalanced datasets in which the number of one sample is larger
than that of another, but the classification effect is not ideal. Some data preprocessing methods
have been proposed to reduce the imbalance ratio of data sets and combine with the basic classifiers
to get better performance. In order to improve the whole classification accuracy, we propose a
novel classifier ensemble framework based on K-means and resampling technique (EKR). First, we
divide the data samples in the majority class into several sub-clusters using K-means, k-value is
determined by Average Silhouette Coefficient, and then adjust the number of data samples of each
sub-cluster to be the same as that of the minority classes through resampling technology, after that
each adjusted sub-cluster and the minority class are combined into several balanced subsets, the base
classifier is trained on each balanced subset separately, and finally integrated into a strong ensemble
classifier. In this paper, the extensive experimental results on 16 imbalanced datasets demonstrate the
effectiveness and feasibility of the proposed algorithm in terms of multiple evaluation criteria, and
EKR can achieve better performance when compared with several classical imbalanced classification
algorithms using different data preprocessing methods.

Keywords: imbalanced classification; K-means; resampling

1. Introduction

Imbalanced classification is a research hotspot in the field of pattern recognition, machine learning
and data mining in recent years [1], which has attracted widespread attention of many researchers.
For binary classification, imbalanced datasets contain two classes of data samples, one of which has a
large number of data samples, called majority class or negative class, while another class has a small
number of data samples, called minority class or positive class. Class imbalance is closely related to
the production and life of people, which exists in practical applications, such as disease diagnosis
detection [2,3], Internet intrusion detection [4], fraud detection [5], and so on. In order to improve the
overall classification accuracy, when dealing with imbalanced data, traditional base classifiers such as
support vector machine, Naïve Bayes, and K-nearest neighbor will ignore the impact of the minority
class so that they cannot be separated correctly, but the minority class is more important than the
majority class because it contains more useful information. Hence, this problem is mainly solved from
two aspects: data-level and algorithm-level.

Data-level ways basically use resampling strategy [6] for data preprocessing. The most common
methods of resampling are oversampling and undersampling. Oversampling refers to increasing the
number of data samples in the minority class to balance data, while undersampling means decreasing
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the number of data samples in the majority class. Sometimes the resampling methods will be combined
with clustering strategy. Algorithm-level methods mainly include proposing a novel algorithm or
improving proposed algorithms without changing datasets. Two of the most popular schemes are
cost-sensitive model [7] and ensemble learning [8]. Traditional classification models assume that all
misclassifications have the same cost, while cost-sensitive model assumes that different costs should be
distributed to different classification models and data samples. The idea of ensemble learning is to
combine several weak classifiers to get a better and more comprehensive ensemble classifier. Research
suggests that the effect of ensemble learning is better than that of single classifier.

In many real imbalanced datasets, there are three characteristics including class overlap, small
disjuncts and data skew distribution [9]. Class overlap means that data samples of two classes have
similar attributes and overlap in a feature space, which can easily lead to misclassification. Small
disjuncts is defined that the minority class is divided into several sub-concepts, each of which contains
only a few data samples and they are distributed in different sub-regions of feature space. Data skew
distribution means that the number of data samples varies greatly between the majority and minority
classes. The imbalance ratio (IR) between the two classes can reach 1:100 or even larger, it will bring
more difficulties and challenges to the research of classification problems undoubtedly, therefore, the
imbalance ratio is a very important factor affecting the classification effect.

To decrease the imbalance ratio, this paper proposes a novel ensemble framework based on
K-means and resampling technique (EKR). Because of the number of data samples in minority class is
less, EKR only clusters the majority class into k sub-clusters. We use K-means [10–14] as the clustering
algorithm and combine k sub-clusters with the minority class into k subsets separately. Then, if the
number of data samples in sub-cluster is larger than that in the minority class, undersampling the
sub-clusters so that the number is same as that in minority class. On the contrary, if the number of data
samples in sub-cluster is smaller than that in the minority class, over-sampling the sub-cluster. Finally,
each sub-cluster after resampling and the minority class are changed into several balanced subsets,
base classifiers are trained on each balanced subset separately and integrated into a strong ensemble
classifier. We have done a lot of experiments to prove the effectiveness of the proposed algorithm.

The contribution of this paper is mainly reflected in two aspects. First, we use K-means clustering
algorithm and calculate the best k-value based on the Average Silhouette Coefficient before clustering.
Because of the same k-value is not suitable for all datasets, we analyze each dataset to determine the
best k-value for each dataset. Second, we propose a novel ensemble framework which uses clustering
and resampling only for the majority class and retains all information of the minority class for the
following training.

The remainder of this paper is organized as follows: Section 2 introduces related work and
previous imbalanced classification methods have been done. In Section 3, we detailly describe the
proposed EKR approach. The datasets used and the experimental results are analyzed and discussed
in Section 4. Finally, Section 5 draws a conclusion.

2. Related Works

Over the years, the research on imbalanced classification mainly focuses on data resampling and
ensemble learning. Data resampling belongs to data-level method, which consists of balancing the
original datasets and using oversampling or undersampling strategy to reduce the imbalance ratio.
Oversampling refers to generate minority class samples artificially to maintain data balance. The most
well-known oversampling method is synthetic minority oversampling technique (SMOTE) proposed
by Chawla et al. [15]. The main idea of SMOTE [15–19] is to identify k minority class neighbors close
to each minority class sample, then randomly select a point between the sample and its neighbors
as the synthetic sample. But SMOTE produces new samples with certain blindness and may make
class overlapping more serious. After that, researchers combined many methods with SMOTE to
improve the performance of the algorithm, such as Borderline-SMOTE [17] and so on. ADASYN
(adaptive synthetic sampling) [18] is also an effective oversampling method, which is characterized
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by using a mechanism to automatically determine the number of synthetic samples needed for each
minority sample, rather than synthesizing the same number of samples for each minority sample like
SMOTE. Therefore, ADASYN is used as the oversampling method in this paper. Undersampling [12,13]
maintains data balance by deleting the majority samples, such as RUS (Random Undersampling).
The main idea of RUS is to randomly remove some samples from the majority samples, and then
constitute a new training set with minority samples, but it is easy to lose important information in
the data.

Clustering is a kind of unsupervised learning, which is used to process data by many
researchers [10–14]. Ahmad et al. [10] proposed a clustering algorithm based on K-means paradigm,
which is suitable for data with mixed numeric and categorical features. The combination of clustering
and resampling [12–15] tends to produce better results. CBU (Clustering-based Undersampling)
proposed by Lin et al. [12] combines K-means and undersampling strategy, K-means only clusters the
majority class and the number of clusters is same as that of the minority samples, and then CBU uses
the nearest neighbor of each cluster center to represent the whole cluster and combines them with
the minority samples to form a balanced training set. Although it improves the classification results
effectively, it may still ignore some information of the majority class because it only selects one sample
of each cluster. In this paper, EKR is an improvement based on CBU and gets better performance
than CBU.

Ensemble learning is one of the most popular methods at present. It has near-optimal classification
methods for any problem, and it can achieve better generalization performance than a single classifier
by training multiple individual classifiers and combining them together [8,20–32]. There are two main
approaches of ensemble learning: Bagging and Boosting. Hamid et al. [22] proposed a novel classifier
ensemble framework, named CSBC (classifier selection based on clustering), CSBC uses Bagging to
produce base classifiers and partitions them by using a clustering algorithm. Then CSBC produces a final
ensemble by selecting one classifier from each cluster. Minaei-Bidgoli [23] proposed an ensemble-based
approach for feature selection in order to overcome the problem of parameter sensitivity of feature
selection approaches. In many cases, it is better to combine resampling with ensemble learning [26–32].
Kang et al. [26] proposed EUS (ensemble undersampling), which selects the same number of samples
from the majority class as the minority class to form several balanced subsets, and trains SVM-based
classifiers for each subset to overcome the problem of information loss in undersampling to a certain
extent. UnderBagging [29] is a combination of random undersampling and a bagging process, the
majority class is undersampled and a balanced training set is used to construct a bagging-based
ensemble. UnderBagging reduces the imbalance ratio effectively but random undersampling may
select noise samples that are unfavorable for classification. SMOTEBagging [30] combines SMOTE with
bagging-based ensemble classifiers. Different from SMOTEBagging, SMOTEBoost [31] uses AdaBoost
instead of bagging algorithm, which makes the classifier pay more attention to the minority samples
that are hard to distinguish. RUSBoost [32] proposed by Seiffert et al. is based on the SMOTEBoost
algorithm, which uses random undersampling for the majority class to balance the dataset. In the
training phase, boosting algorithm removes data samples from the majority class in each iteration, but
need not to assign new weights to the data samples.

Although researchers have proposed a lot of algorithms and models using resampling and
ensemble learning, the oversampling and undersampling used in the algorithm are random so that
increasing or removing samples have certain blindness and randomness. Generating a large number of
minority samples will lead to overfitting problem, and randomly deleting majority samples will easily
lose important data information. Therefore, EKR algorithm is proposed in this paper, in which the
majority samples will be oversampled or undersampled according to the distribution of the minority
samples. The resampling method used in this paper is not random, but after the K-means clustering
for the majority class, utilizing the similarity of samples in sub-clusters and the separability of samples
between sub-clusters to select the most representative samples and combining it with the minority
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samples to form a balanced subset, this way not only avoids the blindness of random undersampling
but also reduces the influence of imbalance ratio on classification.

3. The Proposed Approach EKR

In this section, we divide EKR into three parts to introduce step by step. First, K-means clustering
and the determination of k-value are given in Section 3.1. Section 3.2 introduces resampling strategy for
sub-clusters after clustering. In Section 3.3, we describe the procedure of the proposed EKR in detail.

In this paper, for the sake of easy understanding, we call the majority class the negative class,
whereas the minority class is called the positive class. Training set is presented by T and the number
of its samples is N. TN and TP are samples of the negative and positive classes respectively, where
TN ∪ TP = T, NN and NP represent the number of the negative and positive classes.

3.1. K-Means Clustering

Since there are fewer data samples in the positive class and it contains important information, EKR
clusters only for the negative class. There are two reasons why we choose k-means as the clustering
algorithm. On the one hand, K-means is a relatively low complexity algorithm, and it only needs
to specify the parameter k-value. On the other hand, each sample only belongs to the cluster with
the highest similarity after k-means, which can be better combined with the resampling method
we proposed.

The process of K-means is as shown in Figure 1. Figure 1a gives an original dataset for clustering.
First, the clustering number k is determined and k initial centroids are randomly selected. We use k
= 2 as an example here. In Figure 1b, red and blue forks represent two random clustering centroids.
Then the nearest centroid is found for each point, and each point is assigned to the cluster corresponding
to the centroid, after that the centroid of each cluster is updated to the average of all points in the
cluster, as shown in Figure 1c. Finally, the final cluster centroids and the determined sub-clusters are
formed after several iterations as in Figure 1d.

However, K-means must determine k-value in advance, different k-value lead to different final
classification results, so k-value cannot be determined blindly. In this paper, we utilize Average
Silhouette Coefficient (ASC) to define k-value. Silhouette Coefficient combines Cohesion and Separation
of clustering to evaluate the effect of clustering. Silhouette Coefficient of point i. is given in the follows
equation:

S(i) =
b(i) − a(i)

max
{
a(i), b(i)

} (1)

where a(i). denotes the average of Euclidean distance between sample point i. and other points in the
same sub-cluster, which is used to describe Cohesion within cluster. b(i). is the average of Euclidean
distance from point i to all points in the nearest sub-cluster, which quantifies separation between
sub-clusters. Silhouette Coefficient is between −1 and 1. The larger the value is, the better the clustering
effect will be. The average of Silhouette Coefficient of all points is Average Silhouette Coefficient.
Hence, we choose the k-value that maximizes the Average Silhouette Coefficient. For example, we
calculate Average Silhouette Coefficient of dataset in Figure 1a, as shown in Figure 2, when k = 3,
Average Silhouette Coefficient reaches the maximum, so we choose k = 3 as the number of sub-clusters.
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Figure 1. The process of K-means. (a) An original dataset; (b) randomly selecting two points as cluster
centroids; (c) updating cluster centroid; (d) determining the final cluster centroids and two sub-clusters
after iterations.
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3.2. Resampling Strategy

After determining the k-value and clustering the negative class into k sub-clusters, TN =

{C1, C2, . . . , Ck} where ci is a sub-cluster, correspondingly, its cluster centroid is represented by ci, and
the number of data samples of Ci. is Ni. Then we combine k sub-clusters with the positive class into k
subsets separately, Si = Ci ∪ TP, i = 1, 2, . . . , k, where Si expresses a subset. The imbalance ratio of
each sub-cluster is IRi, where IRi = Ni/NP. Comparing the number of data samples of each sub-cluster
with that of the positive class, namely, comparing IRi with 1, there are three cases:

1. If IRi > 1, we calculate the distance between ci. and all data samples in the same sub-cluster
and sort from near to far, then select the nearest m neighbors to ci, where m = Np. This operate is
equivalent to undersampling the sub-cluster. The reason for this is that these selected data samples
have high similarity and represent the primary information of the sub-cluster. They are used to replace
the whole sub-cluster and combined with the positive class to form a balanced subset.

2. If IRi < 1, the negative class of the sub-cluster correspond to the minority class, because it is
comparatively small in quantity. So in order to balance the subset, oversampling the negative class.

In this paper, we use ADASYN (adaptive synthetic sampling) as the oversampling method.
ADASYN determines the number of synthetic data samples need to be generated according to the
Equation (2):

G = (Nmin −Ni) × β (2)

where β denotes the desired balance after synthesizing data, β ∈ [0, 1], we need to achieve a balanced
subset, so β = 1. Then calculating n neighbors with Euclidean distance for each negative sple xi, pi is
the number of the positive class among n neighbors, distribution Γi is calculated as

Γi =
pi/n

Z
(3)

where Z is a normalization factor to ensure that Γi can form a distribution. In this way, if there are
more positive samples around a negative sample xi, the higher Γi is. Finally, the number of samples
need to be synthesized for each negative sample xi is defined as

gi = Γi ×G (4)

ADASYN uses distribution Γi to automatically determine the number of samples to be synthesized
for each negative sample, which is equivalent to assigning a weight for each negative sample. For the
negative samples that are difficult to learn, more synthetic data should be generated.

3. If IRi = 1, we do not make any changes to the subset because it is balanced.
After the above resampling strategy, we can obtain k balanced subsets {BS1, BS2, . . . , BSk}, which

can transform imbalanced classification into balanced classification and make the problem easier
to solve.

3.3. The Ensemble Framework based on K-Means and Resampling Technology

Eventually, after resampling the subsets and combining the sub-cluster and the minority class
into k balanced subsets, base classifiers {BC1, BC2, . . . , BCk} are trained on each balanced subset, and
then integrated into a strong ensemble classifier by voting mechanism. Figure 3 gives the procedure of
EKR. Data preprocessing contains K-means and resampling strategy, and ensemble framework refers
to the process of training base classifiers on balanced subsets separately and combining them into a
strong ensemble classifier.
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4. Experiment Preparation and Result Analysis

4.1. Datasets

To verify the effectiveness and reliability of the proposed algorithm EKR for imbalanced
classification, we use 16 imbalanced datasets from KEEL dataset repository, Table 1 introduces
the selected datasets in detail, including the number of features (#Features), the number of data
samples (#Samples), the imbalance ratio (IR), and the optimal k-value calculating by Average Silhouette
Coefficient for each dataset. The imbalance ratio of these datasets are between 1.87 and 41.4 with the
number of data samples ranging from 214 to 5472.

Table 1. Summary of 16 imbalanced datasets.

#No. #Datasets #Features #Samples IR k-Value

D1 Pima 9 768 1.87 3
D2 Vehicle2 18 846 2.88 3
D3 Vehicle0 18 846 3.25 4
D4 Ecoli1 7 336 3.36 3
D5 Glass6 9 214 6.38 3
D6 Page-blocks0 10 5472 8.79 3
D7 Yeast-2_vs_4 8 514 9.08 5
D8 Vowel0 9 988 9.98 3
D9 Glass2 9 214 11.59 4
D10 Shuttle-c0-vs-c4 9 1829 13.87 5
D11 Glass4 9 214 15.47 3
D12 Ecoli4 7 336 15.8 3
D13 Yeast-1-4-5-8_vs_7 8 693 22.1 4
D14 Yeast4 8 1484 28.41 4
D15 Yeast5 8 1484 32.73 5
D16 Yeast6 8 1484 41.4 5

4.2. Metrics for Performance Evaluation

In machine learning, in order to evaluate the classification performance of a model, some evaluation
metrics have been introduced including Accuracy, F1-score, G-mean, and AUC. The definition of these
evaluation metrics needs to use the confusion matrix that introduces connection of actual and predicted
classifications given in Table 2.
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Table 2. Confusion matrix.

Confusion Matrix
Predicted Labels

Positive Negative

Actual labels
Positive TP FN

Negative FP TN

True Positive (TP) is the number of positive samples predicted as “positive.” False negative (FN) is the number
of positive samples predicted as “negative.” False positive (FP) is the number of negative samples predicted as
“positive.” True negative (TN) is the number of negative samples predicted as “negative.”

Accuracy means the proportion of correctly predicted samples to total samples, which is calculated
as Equation (5):

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

F1-score takes into account both the Precision and Recall of the classification model, which is the
harmonic average of Precision and Recall, F1-score of the positive data is as follows:

PrecisionP =
TP

TP + FP
(6)

RecallP =
TP

TP + FN
(7)

F1− scoreP =
2× PrecisionP ×RecallP

PrecisionP + RecallP
(8)

Similarly, for the negative samples, F1-score is calculated as:

PrecisionN =
TN

TN + FN
(9)

RecallN =
TN

TN + FP
(10)

F1− scoreN =
2× PrecisionN ×RecallN

PrecisionN + RecallN
(11)

Therefore, for the entire data, synthetic Precision, Recall, and F1-score are calculated as:

Precision =
PrecisionP + PrecisionN

2
(12)

Recall =
RecallP + RecallN

2
(13)

F1− score =
F1− scoreP + F1− scoreN

2
(14)

G-mean can be used to evaluate the comprehensive performance of an algorithm, which is defined
as Equation (17):

G−mean =
√

TPR× TNR (15)

TPR =
TP

TP + FN
(16)

TNR =
TN

FP + TN
(17)

G-mean uses TPR and TNR to measure the classification performance of positive and negative
classes. If one of both is very small, the G-mean is not ideal.
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AUC (area under curve) is also a very reliable classification evaluation criteria, which represents
the area under the ROC (receiver operating characteristic). The ROC can visualize the trade-off between
TPR and FPR. The range of AUC is from 0 to 1. The larger the AUC is, the better the performance of
the algorithm is.

4.3. Experimental Results and Analysis

In order to ensure the fairness of the results, this paper adopts five-fold cross validation to divide
the datasets into five parts on average, 80% of which is the training set, the rest is the test set, and
the average of ten experimental results is taken as the final result. An important theme to notice, if
cross validation is used, the optimal k-valve need be calculated several times and the can be different
for different folds. So for each dataset, we calculate the Average Silhouette Coefficient on each fold
for 50 times, which is 250 times in total, then recording the times of corresponding k-value when the
Average Silhouette Coefficient reaches the highest, and selecting the best k-value by the principle that
the minority is subordinate to the majority. The process of k-value determination and data training
is independent.

Table 3 shows the classification performance of EKR with different base classifiers on 16 datasets.
We compared the performance of three base classifiers for EKR, including SVM, Naïve Bayes, KNN and
C4.5, and recorded Accuracy, F1-score, G-mean, and AUC of EKR with four base classifiers. When the
data is extremely imbalanced, Accuracy cannot objectively evaluate the algorithm, it can only be used
as a reference index. F1-score, G-mean, and AUC are used to evaluate the comprehensive performance
of the algorithm, which are more proper evaluation metrics. As the results shown, we can find that
C4.5 produces the highest average on all the evaluation metrics, and it maintains the most winner
times, followed by SVM, KNN, and Naïve Bayes. However, C4.5 does not obtain the best performance
on all datasets. On each dataset, we mark the highest value of each evaluation metrics in bold, C4.5
wins the most times. C4.5 can use the unique feature selection method to deal with data samples with
more features. SVM can map data to high-dimensional feature space, so it can solve the problem of
linear indivisibility in the original space. KNN is the simplest algorithm in machine learning, but it is
easy to be affected by surrounding samples when classifying. In this experiment, the kernel function

used in SVM is Gaussian radial basis kernel function K(x, y) = e−
||x−y||2

2 . We set K in KNN to 15. Naïve
Bayes is not very sensitive to the data with missing features, so the classification effect is poor.

As shown in Figures 4–6, we recorded Precision, Recall, and F1-score of EKR with C4.5 for positive
samples, negative samples, and overall samples respectively. For positive samples, Recall is higher
than Precision, and Recall is more than 89% or even 100% in many datasets, which shows that EKR is
suitable for the classification of positive samples. Simultaneously, for negative samples, Precision is
higher than Recall, and F1-score of negative samples is better than that of positive samples. Precision
and Recall are mutually exclusive, one rise often leads to another fall. For the overall sample of most
datasets, there is little difference among Precision, Recall, and F1-score. As for datasets D11, D13, D14,
D15, and D16, Recall is much higher than Precision obviously. Figures 4–6 prove that the classification
ability of EKR for imbalanced datasets.
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Table 3. Classification performance of EKR with different base classifiers.

Datasets
Base Classifiers Used by EKR

SVM Naïve Bayes KNN C4.5

Acc F1 GM AUC Acc F1 GM AUC Acc F1 GM AUC Acc F1 GM AUC

D1 0.7197 0.6807 0.7257 0.7520 0.7050 0.6710 0.7020 0.7330 0.7294 0.6824 0.7430 0.7615 0.7255 0.6900 0.7414 0.7594
D2 0.9314 0.8665 0.9469 0.9680 0.9220 0.8550 0.9450 0.9640 0.9124 0.8497 0.9302 0.9527 0.9413 0.8670 0.9510 0.9706
D3 0.9811 0.9447 0.9624 0.9880 0.9490 0.9370 0.9460 0.9450 0.9755 0.9429 0.9506 0.9621 0.9792 0.9450 0.9599 0.9914
D4 0.8403 0.7797 0.8876 0.9140 0.8140 0.7190 0.8690 0.8780 0.8444 0.7801 0.8911 0.8967 0.8529 0.7860 0.9122 0.9267
D5 0.9341 0.8585 0.9365 0.9380 0.8530 0.8340 0.9110 0.9150 0.8920 0.8230 0.8972 0.8993 0.9286 0.8610 0.9357 0.9409
D6 0.9493 0.8483 0.9240 0.9340 0.9530 0.8560 0.9340 0.9350 0.9572 0.8594 0.9359 0.9484 0.9638 0.8720 0.9467 0.9573
D7 0.9022 0.8544 0.9215 0.9400 0.8840 0.8420 0.9330 0.9360 0.9307 0.8618 0.9372 0.9383 0.9254 0.8530 0.9277 0.9326
D8 0.9355 0.8981 0.9417 0.9630 0.9290 0.8950 0.9380 0.9540 0.9258 0.8874 0.9385 0.9488 0.9411 0.9100 0.9369 0.9640
D9 0.6822 0.6308 0.7346 0.7730 0.6590 0.5860 0.7070 0.7450 0.6740 0.6484 0.7225 0.7618 0.6836 0.6470 0.7358 0.7683

D10 1.0000 1.0000 1.000 1.0000 0.9970 0.9810 0.9990 0.9990 0.9967 0.9763 0.9945 0.9943 1.0000 1.0000 1.0000 1.0000
D11 0.8394 0.7416 0.8797 0.9140 0.8220 0.7550 0.8760 0.9130 0.8343 0.7388 0.8628 0.9115 0.8424 0.7530 0.8931 0.9212
D12 0.8971 0.8192 0.9259 0.9450 0.8510 0.7900 0.9170 0.9210 0.9118 0.8360 0.9312 0.9531 0.9076 0.8380 0.9366 0.9519
D13 0.5396 0.4283 0.6547 0.6710 0.5150 0.4100 0.6490 0.6600 0.5036 0.4124 0.6364 0.6507 0.5332 0.4320 0.6587 0.6826
D14 0.8283 0.6798 0.8548 0.8730 0.8080 0.6720 0.8430 0.8720 0.7912 0.6639 0.8610 0.8697 0.8405 0.6860 0.8741 0.8798
D15 0.9291 0.693 0.9629 0.9690 0.9260 0.6780 0.9610 0.9620 0.9158 0.6795 0.9538 0.9566 0.9334 0.7180 0.9651 0.9770
D16 0.8748 0.5043 0.8912 0.8940 0.8960 0.5130 0.8850 0.8910 0.8519 0.4862 0.8769 0.8715 0.8787 0.5160 0.8881 0.8846
Ave. 0.8615 0.7642 0.8844 0.9020 0.8430 0.7520 0.8760 0.8890 0.8529 0.7590 0.8789 0.8923 0.8673 0.7740 0.8940 0.9068

Winner 4 1 5 4 1 1 0 0 3 2 2 2 10 14 11 12
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Figure 4. Precision, Recall, and F1-score for the positive samples of 16 datasets.
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Figure 5. Precision, Recall, and F1-score for the negative samples of 16 datasets.
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Appl. Sci. 2020, 10, 1684 12 of 16

Four approaches have been used as the baseline for comparison with EKR, including
UnderBagging4, RUSBoost4, SMOTEBagging4, and Clustering-based Undersampling (CBU), where
the numbers 4 mean the numbers of base classifiers used in these ensemble approaches. Figure 7
shows AUC comparisons of four baseline models and EKR using C4.5 as base classifier in the form of
histogram. As indicated by the results, the proposed EKR demonstrated the highest average AUC of
0.9068, followed by SMOTEBagging4, RUSBoost4, UnderBagging4, and CBU, average AUC of which
are 0.8807, 0.8799, 0.8763, and 0.8672 respectively. Compared with the four baseline approaches, the
average AUC of EKR increased by 0.0261, 0.0269, 0.0305, and 0.0396 separately. Except for datasets D4,
D6, D9, and D11, EKR obtains the highest AUC. EKR is better than other algorithms. The resampling
methods adopted by the four algorithms have their own limitations. The common point of CBU and
EKR is to cluster the negative samples, but the k-value of CBU is determined by the number of positive
samples, finally, only the nearest neighbor of cluster centroid is selected in each cluster to represent
the whole cluster, which is combined with positive samples to form a balanced dataset. In this way,
although the imbalance ratio of the data is reduced, only one classifier is trained. Though the effect of
CBU is better than that of random sampling, the classifier lacks diversity. Therefore, inspired by CBU,
EKR selects several representative samples from the sub-cluster and forms several balanced subsets
with the positive samples, which increases the diversity of classifiers and improves the classification
effect. SMOTEBagging4 uses SMOTE as the oversampling method to generate a large number of
positive samples that are similar to the existing samples, which can cause overfitting problem. Random
undersampling4 used in RUSBoost4 and UnderBagging4 may select unrepresentative samples or noise
samples so that the information is beneficial to classification. EKR use Average Silhouette Coefficient
to determine the optimal k-value before K-means for each dataset, this makes each sample closest
to all samples in its sub-cluster and furthest from samples in other sub-clusters. EKR integrates the
classification results on many balanced subsets, especially when the number of negative class samples
in the subset is more than that of positive class samples, we use the resampling strategy introduced in
Section 3.2, and select the most representative negative samples in each sub-cluster to replace the whole
sub-cluster, and combine them with the positive samples to form the balanced subset. The resampling
method proposed in this paper avoids the influence of blind random sampling on classification results.
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Figure 7. Area under curve (AUC) comparisons of four baseline models and EKR.

Figure 7 clearly shows the advantages of EKR in AUC index. In order to prove the significant
difference between EKR and other algorithms, we use the Friedman test, which is a non-parametric
statistical test. We assume that the performances of all of the algorithms for comparison are the same
and set the p-value at 0.05. The experimental results reject the initial hypothesis, and the p-value
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is less than the given significance level (p < 0.05). To further demonstrate the differences between
the comparison algorithms, the Nemenyi post-hoc test is also applied for this experiment. On the
premise that the hypothesis has been rejected, the Nemenyi test can compare the algorithm in pairs
and show the differences between the algorithms more intuitively. Figure 8 shows the Nemenyi test
results, where CD = 1.525. When the rank gap between two different algorithms exceeds CD, the
performance of these two algorithms can be viewed as significantly different. Therefore, there are
significant differences between EKR and other algorithms.
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Figure 9 shows AUC comparison of different k-values on 16 datasets, k-value is from 3 to 10.
The k-value of K-means clustering cannot be set too large, otherwise it may cause the sample not
matching the most appropriate sub-cluster, so we use the Average Silhouette Coefficient to calculate
the k-value, which ensures the large Cohesion within the sub-cluster and the large separation between
sub-clusters. The results show that the most appropriate k-value is basically between 3 and 5 in all
datasets, and the AUC value corresponding to the optimal k-value is the highest.
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Figure 9. (a) AUC comparison of different k-values on D1–D4; (b) AUC comparison of different k-values
on D5–D8; (c) AUC comparison of different k-values on D9–D12; (d) AUC comparison of different
k-values on D13–D16.
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5. Conclusions and Future Works

As a research hotspot of machine learning, imbalanced classification has attracted the attention
of many scholars. In this paper, we propose a novel ensemble framework based on K-means and
resampling called EKR to alleviate the adverse effect of imbalanced datasets. On 16 datasets with
different imbalance ratios from 1.87 to 41.4, we tested EKR in all aspects and proved the validity and
superiority of EKR.

In order to retain the effective information of positive samples, EKR only uses K-means to cluster
negative samples into several sub-clusters, the optimal k-value is determined by the Average Silhouette
Coefficient of each dataset. Then each sub-cluster is combined with the positive samples to form a
subset, and the subset is balanced by resampling negative samples. Particularly, when the number of
negative samples is more than that of the positive samples, EKR selects negative samples that are closest
to the clustering center, because these samples can represent the whole sub-cluster. We evaluated EKR
with six different metrics, including Accuracy, Precision, Recall, F1-score, G-mean, and AUC, and the
compared AUC of EKR with four baseline models, EKR shows better performance, which indicates
that EKR is effective for imbalanced classification.

Some datasets have fewer positive samples, so the number of samples in the subset may also be
less, which has a certain impact on the classification effect of the classifier. However, oversampling
the positive samples may lead to class overlapping. Therefore, in future research work, we need to
further improve the algorithm in detail to avoid class overlapping and increase the number of samples
of a subset. In addition, we will pay more attention to the multi-classification task and design the
algorithm suitable for multi-classification.
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