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Abstract: The aim of this paper is to investigate the influence of vertical fastener stiffness on the sound
power characteristics of rail rolling noise. The rail mobility is obtained by using the Timoshenko-beam
track model and the spectral element method. The decay rate is obtained by using the periodic track
model and the spectral transfer matrix method. Then, the simulation results of the rail mobility and
the decay rate are used to calculate the sound power level of the rail subjected to a harmonic point
excitation. Furthermore, the influence of vertical fastener stiffness on the rail sound power level is
investigated. Finally, field measurements of the rail accelerance and the decay rate are performed to
verify the accuracy of models and calculation methods. The results show that the sound power level
of the rail subjected to a harmonic point excitation increases with the increase of the frequency and
peaks at the center frequency of 800 Hz. When the vertical fastener stiffness decreases from 50 kN/mm,
the rail sound power level below the center frequency of 200 Hz gets increased. The increase of
the sound power level is most significant at the center frequency which is close to the decreased
vertical rail resonance frequency, because in the corresponding one-third octave band the rail mobility
amplitude increases significantly while the decay rate decreases considerably. The simulations of the
rail accelerance and the decay rate both coincide well with the measurements.

Keywords: vertical fastener stiffness; decay rate; rail sound power; spectral element method; spectral
transfer matrix method

1. Introduction

Ground-borne vibrations induced by subway trains can have terrible effects on buildings, residents
and instruments [1]. As comfortable urban living environments have become great concerns, track
vibration–mitigation techniques attract a lot of attention. In order to mitigate ground-borne vibrations,
fasteners of low vertical stiffness have been used to weaken the coupling between the rail and the
sleeper, which can prevent vibrations transmitted from the rail to the infrastructure. Nevertheless,
low stiffness reduces the decay of vibration with distance along the rail and leads to an increase of
rolling noise radiated by the rail, causing severe noise problems. Rail sound power reflects total sound
energy radiated by the rail per unit time, which does not depend on a receiver location. Therefore,
investigating the influence of vertical fastener stiffness on the sound power characteristics of rail rolling
noise is of great help to solve the problems of subway vibrations and noises.

The rail sound power is determined by the vibration velocity amplitude, the decay rate (DR)
and other factors [2]. There have been many studies on the rail vibration characteristics which are
essential to the insight into the rail sound power. Knothe and Wu [3] utilized a frequency-domain
analysis to explain the receptance behaviors of a railway track. Kaewunruen and Remennikov [4] used
the impact excitation technique to carry out the field investigations for the dynamic properties of the
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railway track. Oregui et al. [5] built whole- and half-track finite element models to investigate the
vertical dynamic behaviors of railway tracks with monoblock sleepers. Arlaud et al. [6] used a new
frequency-domain numerical method to study the frequency response of a railway ballast track and
performed low-frequency receptance measurements.

The DR reflects the attenuation characteristics of rail vibrations in the longitudinal direction and
controls the effective radiating length of the rail. Jones et al. [7] used simulations and measurements of
frequency response functions to investigate DRs of different track structures. Squicciarini et al. [8]
built a Timoshenko beam model to obtain the DR of an infinite beam on the continuous two-layer
foundation. Betgen et al. [9] established a finite element model of the ballast track to consider the
influences of section deformation and discrete supports on the DR. Li et al. [10] used the semi-analytical
finite element method to obtain the DRs of a continuously supported rail.

The rail sound power has also been investigated by the previous works. Vincent et al. [11] used
TWINS (Track-Wheel Interaction Noise Software) to calculate the total A-weighted sound power level
of rail rolling noise in different calculation cases, and analyzed the influence of vertical fastener stiffness
on the total A-weighted sound power level. However, the influence of vertical fastener stiffness on the
rail sound power level at different frequencies is not investigated in that literature. Zhang et al. [12]
predicted the sound radiation of a railway rail in close proximity to a ground by the boundary element
method in two dimensions, paying no attention to the influence of vertical fastener stiffness. Thus,
the influence of vertical fastener stiffness on the frequency-domain characteristics of rail sound power
requires further studies.

The spectral element method (SEM) is a wave-based frequency-domain analysis method with
high precision. The procedures of the SEM and the conventional finite element method (FEM) are
similar. The SEM firstly divides a whole structure into a series of spectral elements and then assembles
the spectral stiffness matrix of the whole structure with the spectral element stiffness matrixes [13]. It is
noteworthy that the spectral element stiffness matrix is determined by substituting the exact wave
solution into the governing differential equations. Both the element stiffness matrix and shape functions
in the SEM are frequency-dependent while those in the FEM are only functions of the coordinates. In
addition, the size of the spectral element has no influence on the calculation precision. A long and
uniform member can be modeled with only one spectral element [14]. Therefore, the computation time
and the number of degrees of freedom are both reduced.

The spectral transfer matrix method (STMM) [15] is the combination of the SEM and the transfer
matrix method. The advantages of two methods can bring the superiority to the STMM in solving
the vibration problems for a one-dimensional periodic structure. However, not all the nodes of a
complicated periodic structure are located at two sides of the model, i.e., some nodes may be in the
middle of the model. To build the transfer relation between two ends, the STMM should be improved
by removing unnecessary degrees of freedom in the middle of the model. Recently, the SEM and the
STMM have been adopted to study the transmission characteristics of vertical rail vibrations in the
ballast track [16].

In this paper, the SEM and the STMM are adopted to investigate the rail sound power characteristics.
The rail mobility is obtained by using the Timoshenko-beam track model and the SEM. The decay
rate is obtained by using the periodic track model and the STMM. Then, the simulation results of the
rail mobility and the decay rate are used to calculate the sound power level of the rail subjected to a
harmonic point excitation. Furthermore, the influence of vertical fastener stiffness on the rail sound
power level is investigated. Finally, field measurements of the rail accelerance and the decay rate are
performed to verify the accuracy of models and calculation methods.
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2. Model and Method

2.1. Model and Method for the Rail Mobility/Receptance

2.1.1. Monolithic Track Bed Structure

The monolithic track bed is the most common track structure of subways in China, which is
investigated in this paper. It is comprised of CHN60 rails, fasteners, sleepers, the track bed and the
infrastructure, as shown in Figure 1. The rail is mounted on sleepers by fasteners. Because the track bed
connects the sleepers and the infrastructure rigidly, the sleepers, the track bed and the infrastructure
can be considered as a whole. The vertical fastener stiffness of subway lines in China is generally less
than 50 kN/mm [17].
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Figure 1. The monolithic track bed structure: (a) Photograph and (b) Sectional view. 
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As the cross-sectional deformation of the rail cannot be considered, the model is limited to 

frequencies of 1500 Hz [18]. To reduce the influence of the wave reflections, the non-reflecting 

boundary conditions are applied at both ends of the rail. In this way, the length of the model can also 

be shortened. The fastener is considered as a vertical extension spring whose upper end is connected 

to the rail beam and lower end is fixed. The fastener spacing (denoted by a) is obtained from the field 

measurement. To consider the damping of the fasteners, the complex vertical fastener stiffness kcv is 

adopted for the vertical extension spring: 

cv v f(1 i )k k    (1) 

where kv is the vertical fastener stiffness and ηf is the damping loss factor of the fastener. A vertical 

harmonic point excitation Fv=F0eiωt is applied on the rail at the middle of the model, where F0 is the 

amplitude, ω is the angular frequency, and t is the time. 

Figure 1. The monolithic track bed structure: (a) Photograph and (b) Sectional view.

2.1.2. Timoshenko-Beam Track Model

To investigate the rail mobility/receptance, a Timoshenko-beam track model is established based
on the structural properties of the monolithic track bed, as shown in Figure 2.
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Figure 2. The Timoshenko-beam track model.

The model includes a long straight rail and fasteners. The sleepers, the track bed and the
infrastructure are all considered as the fixed constraint. The rail is considered as a Timoshenko beam.
As the cross-sectional deformation of the rail cannot be considered, the model is limited to frequencies
of 1500 Hz [18]. To reduce the influence of the wave reflections, the non-reflecting boundary conditions
are applied at both ends of the rail. In this way, the length of the model can also be shortened.
The fastener is considered as a vertical extension spring whose upper end is connected to the rail beam
and lower end is fixed. The fastener spacing (denoted by a) is obtained from the field measurement.
To consider the damping of the fasteners, the complex vertical fastener stiffness kcv is adopted for the
vertical extension spring:

kcv = kv(1 + iηf) (1)
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where kv is the vertical fastener stiffness and ηf is the damping loss factor of the fastener. A vertical
harmonic point excitation Fv=F0eiωt is applied on the rail at the middle of the model, where F0 is the
amplitude, ω is the angular frequency, and t is the time.

2.1.3. Spectral Element Method

The SEM is used to solve the Timoshenko-beam track model. As the spectral element size has
no influence on the calculation precision of the SEM, the rail between two adjacent fasteners can be
modeled as only one spectral Timoshenko beam element. To simulate the non-reflecting boundary
conditions, two Timoshenko beam throw-off elements are modeled at two ends of the long rail.
The vertical extension spring is modeled with a two-node spectral spring element. The element division
is shown in Figure 3 where the black dots represent the nodes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 16 

2.1.3. Spectral Element Method 

The SEM is used to solve the Timoshenko-beam track model. As the spectral element size has 

no influence on the calculation precision of the SEM, the rail between two adjacent fasteners can be 

modeled as only one spectral Timoshenko beam element. To simulate the non-reflecting boundary 

conditions, two Timoshenko beam throw-off elements are modeled at two ends of the long rail. The 

vertical extension spring is modeled with a two-node spectral spring element. The element division 

is shown in Figure 3 where the black dots represent the nodes. 

Spectral Timoshenko beam element
Left-throw-off element

Load

Spectral spring element

Right-throw-off element

 

Figure 3. The element division using the spectral element method. 

The two-node spectral Timoshenko beam element is shown in Figure 4. 

1 1,U  2 2,U 

1 1,F M 2 2,F M

1 2

x

y

EI, ρA, GA, ρI, L, κ, η 

 

Figure 4. Two-node spectral Timoshenko beam element. 

E is the Young’s modulus, I is the area moment of inertia, ρ is the mass density, A is the cross-

sectional area, G is the shear modulus, L is the length of the spectral element, κ is the shear correction 

factor and η is the damping loss factor. U1, Θ1, F1 and M1 are the spectral vertical displacement, spectral 

bending rotation, spectral vertical force and spectral bending moment at the left node, respectively, 

while U2, Θ2, F2 and M2 are the corresponding items at the right node. The relation between the 

spectral nodal displacements and the spectral nodal forces in a spectral Timoshenko beam element 

can be expressed as: 

( )t t tF S U  (2) 

where Ft = (F1, M1, F2, M2)T is the spectral nodal force vector, Ut = (U1, Θ1, U2, Θ2)T is the spectral nodal 

displacement vector, St(ω) is the frequency-dependent spectral element stiffness matrix, and ω is the 

angular frequency. The derivation of Equation (2) is based on the free vibration of a uniform 

Timoshenko beam and the spectral analysis. The spectral element stiffness matrix St(ω) is obtained 

by substituting the wave solution into the governing differential equations. The expression of St(ω) 

can be given by: 

2

1 2 2 2 1 2 2 1 2 2 2 1 2 2

1 2 1 1 1 2 1 1 1 2 1 1 1 2

2
1 2 2 2 1 2 2 1 2 2 2

(0, ) (0, ) ( ) ( ) ( ) ( )

ˆ ( ) ( ) ( ) ( )(0, )
( )

( ) ( ) ( )( , ) ( , )

( , )

EI I r r e R r r e r e r R r e r

r r e R r r e r e r R r e rEI

r e r R r e r r r e REI L I L

EI L

   




   



       
 

      

       
 
  

t

N N

N
S

N N

N

1 2 2

1 1 2 1 1 1 2 1 2 1 1 1 2 1

1

( )

( ) ( ) ( ) ( )

r r e

r e r R r e r r r e R r r e

 
 
 
  
 
      

 (3) 

1 2 1 2i i i ( ) i ( )
( , ) (e e e e

k x k x k L x k L x
x       

N ) (4) 
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The two-node spectral Timoshenko beam element is shown in Figure 4.
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Figure 4. Two-node spectral Timoshenko beam element.

E is the Young’s modulus, I is the area moment of inertia, ρ is the mass density, A is the
cross-sectional area, G is the shear modulus, L is the length of the spectral element, κ is the shear
correction factor and η is the damping loss factor. U1, Θ1, F1 and M1 are the spectral vertical
displacement, spectral bending rotation, spectral vertical force and spectral bending moment at the left
node, respectively, while U2, Θ2, F2 and M2 are the corresponding items at the right node. The relation
between the spectral nodal displacements and the spectral nodal forces in a spectral Timoshenko beam
element can be expressed as:

Ft = St(ω)Ut (2)

where Ft = (F1, M1, F2, M2)T is the spectral nodal force vector, Ut = (U1, Θ1, U2, Θ2)T is the spectral
nodal displacement vector, St(ω) is the frequency-dependent spectral element stiffness matrix, andω
is the angular frequency. The derivation of Equation (2) is based on the free vibration of a uniform
Timoshenko beam and the spectral analysis. The spectral element stiffness matrix St(ω) is obtained by
substituting the wave solution into the governing differential equations. The expression of St(ω) can
be given by:

St(ω) =


EIN′′ (0,ω) + ρIω2N(0,ω)

−EIN̂′(0,ω)
−EIN′′ (L,ω) − ρIω2N(L,ω)

EIN′(L,ω)




(r1 + r2e2) −R2(r1 − r2e2) −(r1e2 + r2) R2(r1e2 − r2)

−(r1 + r2e1) R1(r1 − r2e1) (r1e1 + r2) −R1(r1e1 − r2)

(r1e2 + r2) R2(r1e2 − r2) −(r1 + r2e2) −R2(r1 − r2e2)

−(r1e1 + r2) −R1(r1e1 − r2) (r1 + r2e1) R1(r1 − r2e1)

 1
∆ (3)

N(x,ω) = ( e−ik1x e−ik2x e−ik1(L−x) e−ik2(L−x) ) (4)
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k1 =

√√√
a1

2
+

√
a2

1

4
− a2, k2 =

√√√
a1

2
−

√
a2

1

4
− a2 (5)

a1 =
GAκρIω2 + EIρAω2

GAκEI
, a2 =

ρAω2(ρIω2
−GAκ)

GAκEI
(6)

Rm =
iGAκkm

GAκk2
m − ρAω2

(m = 1, 2) (7)

r1 = (R1 −R2)(1− e1e2), r2 = (R1 + R2)(e1 − e2), e1 = e−ik1L, e2 = e−ik2L, ∆ = r2
1 − r2

2 (8)

where k1 and k2 are the wavenumbers. The derivation of St(ω) has been demonstrated in the previous
work [16], which is omitted in this paper. Ft is the input determined by the external loads.

In order to simulate the non-reflecting boundary conditions, the Timoshenko beam throw-off

elements are modeled at both ends of the rail. The reflected waves can be prohibited by removing
the reflection items in the wave solutions of the Timoshenko beam. The one-node Timoshenko beam
right-throw-off element which prevents the reflecting waves from travelling to the left is shown in
Figure 5.
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UR, ΘR, FR and MR are the spectral vertical displacement, spectral bending rotation, spectral
vertical force and spectral bending moment at the node, respectively. Similarly, the relation between
the spectral nodal displacements and the spectral nodal forces in a Timoshenko beam right-throw-off

element can be expressed as:
FR = SR(ω)UR (9)

where FR = (FR, MR)T is the spectral nodal force vector, UR = (UR, ΘR)T is the spectral nodal displacement
vector, and SR(ω) is the frequency-dependent spectral element stiffness matrix. The expression of
SR(ω) can be given by:

SR =

 EI
k2

2−k2
1

R1−R2
EI

R2k2
1−R1k2

2
R1−R2

+ω2ρI

EI i(k1−k2)
R1−R2

EI i(R1k2−R2k1)
R1−R2

 (10)

The derivation of SR (ω) is omitted as in the case of Equation (2). Because the derivations of
the spectral element stiffness matrixes of the spectral spring element and the Timoshenko beam
left-throw-off element follow the same pattern, these spectral elements are not represented for the
purpose of conciseness.

Using the coordinate transformation approach, the spectral element stiffness matrix in the local
coordinate system can be transformed for the global coordinate system. The spectral stiffness matrix of
the whole model can be obtained by assembling the spectral element stiffness matrixes and processing
the constraint conditions, which is same as the conventional finite element method. The relation
between the spectral nodal displacements and the spectral nodal forces for the whole model can be
expressed as:

F = S(ω)U (11)
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where F is spectral nodal force vector of the whole model, U is the spectral nodal displacement vector,
and S(ω) is the spectral stiffness matrix. By solving Equation (11), we can obtain the frequency-domain
dynamic characteristics of rail vibrations in the Timoshenko-beam track model. For a static and linear
system, the amplitude of the mobility is 2πf times that of the receptance at the frequency f, while
the amplitude of the accelerance is 2πf times that of the mobility. Based on this knowledge, the rail
mobility/accelerance can be obtained by the simple post processing.

2.2. Model and Method for the Decay Rate

2.2.1. Periodic Track Model

To investigate the DR, a periodic track model is established, as shown in Figure 6. The length
of the model equals to the fastener spacing a. The modeling ways of track components are the same
as those in the Timoshenko-beam track model. As the monolithic track bed can be considered as the
one-dimensional periodic structure, the Bloch theorem for the periodic structure is applied at both
ends of the rail.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 16 

( )F = S U  (11) 

where F is spectral nodal force vector of the whole model, U is the spectral nodal displacement vector, 

and S(ω) is the spectral stiffness matrix. By solving Equation (11), we can obtain the frequency-

domain dynamic characteristics of rail vibrations in the Timoshenko-beam track model. For a static 

and linear system, the amplitude of the mobility is 2πf times that of the receptance at the frequency 

f, while the amplitude of the accelerance is 2πf times that of the mobility. Based on this knowledge, 

the rail mobility/accelerance can be obtained by the simple post processing. 

2.2. Model and Method for the Decay Rate 

2.2.1. Periodic Track Model 

To investigate the DR, a periodic track model is established, as shown in Figure 6. The length of 

the model equals to the fastener spacing a. The modeling ways of track components are the same as 

those in the Timoshenko-beam track model. As the monolithic track bed can be considered as the 

one-dimensional periodic structure, the Bloch theorem for the periodic structure is applied at both 

ends of the rail. 

kcv

Rail

Fastener

Fixed constraint

Bloch theorem

a

 

Figure 6. The periodic track model. 

2.2.2. Spectral Transfer Matrix Method 

The STMM is used to solve the periodic track model. The short rail is divided into two spectral 

Timoshenko beam elements. The vertical extension spring representing the fastener is modeled with 

a two-node spectral spring elements. The model has 4 nodes and 3 spectral elements in total. The 

element division is shown in Figure 7. 

Spectral Timoshenko beam element

1 2

3

4

Spectral spring 

element

 

Figure 7. The element division of the periodic track model. 

The spectral stiffness matrix of the periodic track model can be obtained by using the SEM. Thus, 

the relation between the spectral nodal forces and displacements of the periodic track model can be 

expressed as: 

     
    
    
    
    
    

11 12 13 14 1 1

21 22 23 24 2 2

31 32 33 34 3 3

41 42 43 44 4 4

S S S S U F

S S S S U F
=

S S S S U F

S S S S U F

 (12) 
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2.2.2. Spectral Transfer Matrix Method

The STMM is used to solve the periodic track model. The short rail is divided into two spectral
Timoshenko beam elements. The vertical extension spring representing the fastener is modeled with a
two-node spectral spring elements. The model has 4 nodes and 3 spectral elements in total. The element
division is shown in Figure 7.
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The spectral stiffness matrix of the periodic track model can be obtained by using the SEM. Thus,
the relation between the spectral nodal forces and displacements of the periodic track model can be
expressed as: 

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44




U1

U2

U3

U4

 =


F1

F2

F3

F4

 (12)

where Ui is the spectral nodal displacement vector of node i (i = 1–4), and Fj is the spectral nodal force
vector of node j (j = 1–4). The spectral stiffness matrix of the model is divided into a 4 × 4 partitioned
matrix according to the node number, while the submatrix is denoted by Sij. To build the transfer
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relation between the left and right ends, the matrix in Equation (12) is partitioned again, as shown in
the following: 

S1L S1M S1R

S2L S2M S2R

S3L S3M S3R




UL

UM

UR

 =


FL

FM

FR

 (13)

where
S1L=S11, S1M =

(
S12 S13

)
, S1R = S14,

S2L =
(

S21 S31
)T

, S2M =

(
S22 S23

S32 S33

)
, S2R=

(
S24 S34

)T
,

S3L = S41, S3M =
(

S42 S43
)
, S3R=S44,

UL = U1, UM =
(

U2 U3
)T

, UR=U4,

FL = F1, FM=
(

F2 F3
)T

, FR = F4,

(14)

As nodes 2 and 3 are not subjected to any external loads in the transfer relation, i.e., FM = 0, the
following can be obtained from Equation (13):

T
(

UL

UR

)
=

(
−FL

FR

)
(15)

where

T=

[
T11 T12

T21 T22

]
=

[
−S1L + S1MS−1

2MS2L −S1R + S1MS−1
2MS2R

S3L−S3MS−1
2MS2L S3R−S3MS−1

2MS2R

]
(16)

Equation (15) may be expressed in the form of the transfer relation between two ends:(
UR

FR

)
= t(ω)

(
UL

−FL

)
(17)

where t(ω) is the spectral transfer matrix:

t(ω) =
[

−T−1
12 T11 T−1

12
T21 −T22T−1

12 T11 T22T−1
12

]
(18)

The following can be obtained using the Bloch theorem [19]:(
UR

FR

)
= e−ikxa

(
UL

−FL

)
(19)

where kx is the one-dimensional Bloch wave vector, i.e., the wavenumber. A standard eigenvalue
problem of the 4 × 4 matrix can be obtained by combining Equations (17) and (19):∣∣∣t− e−ikxaI

∣∣∣ = 0 (20)

The dispersion relation between the wavenumber kx and the angular frequency ω can be obtained
by solving the eigenvalue problem. For the bending motion of the Timoshenko beam, the solutions of
the wavenumbers appear in pairs of opposite sign (±kx), describing two waves propagating in opposite
directions. As the eigenvalue problem is represented by a 4 × 4 matrix, the solution contains two pairs
of Bloch waves for the periodic track model. Furthermore, the DR can be obtained according to [20]:

DR = −8.686Im(kx) (21)
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where Im(kx) is the imaginary part of kx. The parameters of the Timoshenko-beam track model and
the periodic track model are listed in Table 1. The vertical fastener stiffness kv is obtained by fitting
simulations to field measurements.

Table 1. Parameters of models.

Track component Parameter Symbol Value

CHN60 rail

Elastic modulus (GPa) E 210
Cross-section area (m2) A 7.745 × 10−3

Mass density (kg/m3) ρ 7850
Shear correction factor κ 0.5329

Area moment of inertia (m4) I 3.217 × 10−5

Damping loss factor ηr 0.05
Shear elastic modulus (GPa) G 80.77

Fastener
Vertical stiffness (kN/mm) kv 37

Damping loss factor ηf 0.25
Spacing (m) a 0.625

2.3. Calculation of Rail Sound Power Level

The sound power level Lw of an infinite rail can be expressed as [2]:

Lw ≈ 101g(
4.343ρ0c0σP

2W0
) + 201g

∣∣∣v(0)∣∣∣− 101gDR (22)

where W0=10−12 W is the reference of the sound power, v(0) is the velocity amplitude of the rail at x
= 0, ρ0 = 1.225 kg/m3 is the air density, c0 = 340 m/s is the propagation velocity of sound waves in
air, σ is the radiation ratio, and P is the length that the cross-section perimeter projected onto a plane
perpendicular to the motion (P = 0.413 m for vertical rail vibrations). The radiation ratio σ is given
from the reference [2], which is calculated by using a rail above a rigid ground surface.

Equation (22) indicates that the increase of the velocity amplitude at x = 0 and the decrease of
the DR will both lead to the increase of the rail sound power level. By substituting the calculation
results of the rail mobility amplitude and the DR into Equation (22), the sound power level of the rail
subjected to a harmonic point excitation can be obtained.

3. Field Measurement

Field measurements were carried out to verify the accuracy of models and methods in this paper.
The measurements were conducted in an existing subway line in China, where the track structure type
is the straight monolithic track bed. It consists of CHN60 rails, GJ-III fasteners, sleepers, the track bed
and the infrastructure. The measurement section was far from the turnout and the rail joints. The track
was in good condition, and the fastener spacing was 0.625 m.

3.1. Rail Accelerance

The rail accelerance was measured for the purpose of verifying the accuracy of the
Timoshenko-beam track model and the SEM. An accelerometer was placed on the mid-span railhead,
and then a hammer was used to impact the same position. The direct vertical accelerance of the
mid-span rail was obtained by processing the signals of the accelerometer and the hammer. The field
measurement is shown in Figure 8.
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The operating frequency range, the nominal sensitivity, and the measurement range of the
accelerometer were 1–15,000 Hz, 5 mV/g, and 1000 g, respectively. As distinct hammers have different
applicable frequency ranges, a heavy hammer with a nylon head was used to acquire the low-frequency
measurement result, while a light hammer with an aluminum head was used to acquire the middle- and
high-frequency measurement result. The lower boundary of the applicable frequency range depends
on the coherent coefficient of the rail accelerance. It should exceed 0.8 within the applicable frequency
range [21]. The upper boundary of the applicable frequency range should meet the requirement that
the decrease of the amplitude spectrum of the impact force is less than 10 dB when the amplitude at
low frequencies is taken as the reference [22]. Based on these rules, the applicable frequency ranges of
the heavy and light hammers were 25–600 Hz and 90–3900 Hz, respectively. The sampling frequency
of the acquisition instrument was 3200 Hz when the heavy hammer was used, and it was changed to
25,600 Hz when the light hammer was used. Besides, the measurement ranges of the heavy and light
hammers were 125 kN and 50 kN, respectively.

To eliminate the measurement errors induced by the noises, five effective impacts were required
in the measurement, and the average of the results was taken as the final result. The final measurement
result of the rail accelerance is comprised of two parts: the result obtained by the heavy hammer for
the frequency range of 30–90 Hz and the result obtained by the light hammer for the frequency range
of 90–2000 Hz.

3.2. Decay Rate

The standard EN15461: 2008+A1: 2010 [23] presents a general measurement method of the DR.
However, this method does not perform the experimental wavenumber decomposition, as a result of
which only one DR curve encompassing the attenuation behaviors of all waves is obtained. In order to
obtain the separate DR of each wave, the experimental analysis method of wave propagation in the
reference [24] was adopted for the DR measurement. After placing an accelerometer on the mid-span
railhead, a number of hammer impacts were applied on the railhead in the longitudinal direction at
equal intervals of ∆x = 0.625/4 m = 0.15625 m. The number of impact points was Q = 21. The positions
of the accelerometer and hammer impacts are shown in Figure 9.
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The rail accelerance h(x) at the position x= (q-1)∆x, where q = 1, 2, . . . , Q, was obtained by
processing the signals of the accelerometer and the hammer. At each frequency, the rail accelerance
h(x) can be approximated as a sum of N waves:

h(x) = h((q− 1)∆x) ≈
N∑

n=1

Anesn(q−1)∆x (23)

where sn = -βn-ikn is the complex propagation coefficient, βn is the decay coefficient, kn is the
wavenumber, and An is the complex amplitude. The Prony method [25] was used to solve the Equation
(23). After obtaining the unknown sn, we calculated the DR of each wave according to:

DRn = −201g
∣∣∣esn

∣∣∣ = 8.686βn (24)

In order to make a better comparison between the measurement and the simulation, let N be
given by 2. Therefore, the results of the simulation and measurement each include two DR curves
corresponding to two different waves. As same with the measurement of the rail accelerance, the result
of the DR is comprised of two parts: the result obtained by the heavy hammer for the frequency range
of 30–90 Hz and the result obtained by the light hammer for the frequency range of 90–2000 Hz.

4. Results

4.1. Rail Accelerance and Mobility

The rail accelerance and mobility are helpful to the investigation of vibration characteristics, which
are of great importance to explain the rail sound power characteristics. The amplitudes of the direct
vertical rail accelerance and mobility are shown in Figures 10 and 11, respectively.
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According to Figure 10, the simulated amplitude of the direct mid-span rail accelerance increases
with the increase of the frequency in the low-frequency range and reaches the peak at 163 Hz where the
vertical rail resonance occurs. The resonance frequency is denoted by f v, and it depends on the vertical
fastener stiffness. In the frequency range of 200–1000 Hz, the accelerance amplitude does not change
much. Another peak appears at 1063 Hz where the first-order vertical pinned–pinned rail resonance
occurs. This resonance frequency is denoted by f p. The corresponding modal shape turns out to be
a standing wave with nodes at the fastener, and the half-wavelength equals to the fastener spacing.
The on-support and mid-span rail accelerance amplitude curves coincide with each other besides the
parts near f p. As the nodes of the standing wave are located at the fasteners, there is a trough at f p in
the on-support rail accelerance amplitude curve.

Due to the vertical rail resonance and the first-order vertical pinned–pinned rail resonance, there
are also two peaks at f v and f p in the direct mid-span rail mobility amplitude curve. However, the rail
mobility amplitude decreases with the increase of the frequency above f v, which is different from
the accelerance amplitude curve. The on-support and mid-span rail mobility amplitude curves also
coincide with each other besides the parts near f p.

The measurement and the simulation of the mid-span rail accelerance amplitude match well.
The peaks at f v and f p are obvious in the measured accelerance amplitude curve. Therefore,
the Timoshenko-beam track model and the SEM are adequate for studying the rail vibration
characteristics of the monolithic track bed structure.

4.2. Decay Rate

The DR controls the effective radiating length of the rail. The simulation and the measurement of
the DRs are shown in Figure 12, which is presented in the form of one-third octave spectra.

Figure 12 shows that the DRs of two waves are quite different. The first wave (marked by the
circles) holds a high DR at all frequencies, which is called the near-field wave. The second wave (marked
by the triangles) only has a high DR in the low-frequency range, which is called the propagating wave.
As the near-field wave is attenuated significantly, the transmission characteristics of the rail vibrations
in the longitudinal direction is mainly determined by the propagating wave. Thus, this paper primarily
investigates the DR of the propagating wave.

According to the simulation result, the vertical rail resonance does not occur below f v.
Consequently, the propagating wave cannot propagate freely, and the DR of the propagating wave
keeps a high value. Below the center frequency of 100 Hz, the DR is more than 8 dB/m. The DR
starts decreasing quickly near the frequency of f v. Thus, the vertical rail resonance frequency f v is
the boundary frequency of the high DR band. Then, the DR decreases with the increase of frequency.
It is only about 0.5 dB/m at the center frequency of 1000 Hz. The DR in the low-frequency range
is higher than that in the high-frequency range, so the vertical rail vibrations in the low-frequency
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range are mainly transmitted in the downward direction while those at high frequencies are primarily
transmitted along the rail.
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The measurement and the simulation of the DR of the propagating wave match well. Below the
center frequency of 160 Hz, they coincide with each other. In the high-frequency range, the measured
DR keeps the low values as the simulated DR does. Therefore, the periodic track model and the STMM
are adequate for studying the attenuation characteristics of rail vibrations in the longwise direction.

4.3. Rail Sound Power Level

By substituting the calculation results of the rail mobility amplitude (Figure 11) and the DR
(Figure 12) into Equation (22), the sound power level of the rail subjected to a harmonic point excitation
can be obtained, as shown in Figure 13 (in the form of the one-third octave spectra).
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Below the center frequency of 800 Hz, the rail sound power level increases with the increase of
frequency. A peak appears at the center frequency of 800 Hz with the value of 48 dB. In the frequency
range of 1000–1600 Hz, the rail sound power level is within the range of 36–39 dB.

The high rail mobility amplitude and the low DR will both lead to a significant rail sound power
level. Figures 11 and 12 show that although the direct mid-span rail mobility amplitude is significant
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near the frequency f v, the DR also has a high value. As a result, no peak occurs in the curve of the
rail sound power level near f v. However, there is a peak at the center frequency of 800 Hz. As the
DR and the mobility amplitude both decrease with the increase of frequency, the contributions of the
second and the third items of Equation (22) to the rail sound power level are cancelled out by each
other to a certain extent. Furthermore, the rail radiation ratio increases with the increase of frequency
and reaches a peak near the center frequency of 800 Hz [2]. Thus, it is the main reason why the rail
sound power level reaches a peak at the center frequency of 800 Hz.

5. Influence of the Vertical Fastener Stiffness

5.1. Influence on the Rail Mobility Amplitude

The simulated influence of the vertical fastener stiffness on the direct mid-span rail mobility
amplitude is shown in Figure 14. The general vertical stiffness of the non-vibration-mitigation fasteners
in subway lines is 30–40 kN/mm. The vertical stiffness of the vibration-mitigation fasteners can be
20 kN/mm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 16 

100 1000
10-7

10-6

10-5

10-4

30

A
m

p
li

tu
d
e 

(m
(s

N
)-1

)

Frequency (Hz)

 20 kN/mm

 30 kN/mm

 40 kN/mm

 50 kN/mm

1500

 

Figure 14. Influence of vertical fastener stiffness on direct mid-span rail mobility amplitude. 

When the vertical fastener stiffness varies within the range of 20–50 kN/mm, only the part below 

400 Hz has the obvious changes of the vertical rail resonance frequency and the amplitudes. With the 

increase of the vertical fastener stiffness, the vertical rail resonance frequency fv increases while the 

value of the peak decreases slightly. When the vertical rail resonance frequency increases from fv to 

fv*, the mobility amplitude below fv decreases while that above fv* increases. The maximal decrease 

and increase occur at fv and fv*, respectively. The influence of vertical fastener stiffness on the 

amplitude is small in the high-frequency range. 

5.2. Influence on the Decay Rate 

The simulated influence of the vertical fastener stiffness on the decay rate is shown in Figure 15 

(in the form of the one-third octave spectra): 

100 1000
0.1

1

10

100

D
e
c
a
y

 R
a
te

 (
d

B
/m

)

Frequency (Hz)

 20 kN/mm

 30 kN/mm

 40 kN/mm

 50 kN/mm

30 1600

 

Figure 15. Influence of vertical fastener stiffness on the decay rate (DR). 

The increase of the vertical fastener stiffness will strengthen the coupling between the rail and 

the sleeper. Thus, the DR increases below the center frequency of 1600 Hz, and more vertical rail 

vibration energy is transmitted in the downward direction. Besides, as the boundary frequency of the 

high DR band, i.e., fv, is increased, the high DR band also gets widened. When the vertical rail 

resonance frequency increases from fv to fv*, the most significant increase of the DR is in the frequency 

range of fv to fv*. However, the influence of vertical fastener stiffness on the DR is not obvious in the 

high-frequency range. 

 

 

Figure 14. Influence of vertical fastener stiffness on direct mid-span rail mobility amplitude.

When the vertical fastener stiffness varies within the range of 20–50 kN/mm, only the part below
400 Hz has the obvious changes of the vertical rail resonance frequency and the amplitudes. With the
increase of the vertical fastener stiffness, the vertical rail resonance frequency f v increases while the
value of the peak decreases slightly. When the vertical rail resonance frequency increases from f v to f v

*,
the mobility amplitude below f v decreases while that above f v

* increases. The maximal decrease and
increase occur at f v and f v

*, respectively. The influence of vertical fastener stiffness on the amplitude is
small in the high-frequency range.

5.2. Influence on the Decay Rate

The simulated influence of the vertical fastener stiffness on the decay rate is shown in Figure 15
(in the form of the one-third octave spectra):
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Figure 15. Influence of vertical fastener stiffness on the decay rate (DR).

The increase of the vertical fastener stiffness will strengthen the coupling between the rail and
the sleeper. Thus, the DR increases below the center frequency of 1600 Hz, and more vertical rail
vibration energy is transmitted in the downward direction. Besides, as the boundary frequency of
the high DR band, i.e., f v, is increased, the high DR band also gets widened. When the vertical rail
resonance frequency increases from f v to f v

*, the most significant increase of the DR is in the frequency
range of f v to f v

*. However, the influence of vertical fastener stiffness on the DR is not obvious in the
high-frequency range.

5.3. Influence on the Rail Sound Power Level

In order to directly elaborate the influence of vertical fastener stiffness at different frequencies,
the relative sound power level of the rail subjected to a harmonic point excitation is investigated in this
section, while the rail sound power level with the vertical fastener stiffness of 50 kN/mm is taken as the
reference. The simulated influence of the vertical fastener stiffness on the relative sound power level of
the rail subjected to a harmonic point excitation is shown in Figure 16 (in the form of the one-third
octave spectra).
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When the vertical fastener stiffness decreases from 50 kN/mm, the rail sound power level below
the center frequency of 200 Hz gets increased. More rail vibration energy spreads outward in the
form of sound energy. For each relative rail sound power level curve, a peak appears at the center
frequency close to the decreased vertical rail resonance frequency, where the increase of rail sound



Appl. Sci. 2020, 10, 1682 15 of 16

power level is most significant. In the corresponding one-third octave band, the rail mobility amplitude
increases significantly while the decay rate decreases considerably. At the center frequency of 126 Hz,
the rail sound power level with the stiffness of 20 kN/mm is 14 dB higher than that with the stiffness of
50 kN/mm. The influence of vertical fastener stiffness on the rail sound power level is small above the
center frequency of 200 Hz.

6. Conclusions

The main conclusions can be drawn as follows:
(1) Below the center frequency of 800 Hz, the sound power level of the rail subjected to the

harmonic point excitation increases with the increase of frequency. A peak appears at the center
frequency of 800 Hz mainly because the rail radiation ratio peaks near the center frequency of 800 Hz.

(2) With the increase of the vertical fastener stiffness, the vertical rail resonance frequency increases
while the value of the corresponding peak in the direct mid-span rail mobility amplitude curve
decreases slightly. Meanwhile, the decay rate increases below the center frequency of 1600 Hz. When
the vertical rail resonance frequency increases from f v to f v

*, the mobility amplitude below f v decreases
while that above f v

* increases. The maximal decrease and increase occur at f v and f v
*, respectively.

The most significant increase of the decay rate is in the frequency range of f v to f v
*.

(3) When the vertical fastener stiffness decreases from 50 kN/mm, the sound power level of the
rail subjected to a harmonic point excitation below the center frequency of 200 Hz gets increased.
The increase of the sound power level is most significant at the center frequency close to the decreased
vertical rail resonance frequency, because in the corresponding one-third octave band the rail mobility
amplitude increases significantly while the decay rate decreases considerably.

We suggest that the adoption of the vibration-mitigation measures should be accompanied with
the corresponding noise investigation. The optimal value of the vertical fastener stiffness should be
determined by the vibration-noise conjoint analysis and optimization.
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