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Abstract: As global warming accelerates in recent years, the frequency of droughts has increased
and water management at the national level has become very important. In particular, accurate
understanding and management of the forest is essential as the water storage capacity of forest is
determined by forest structure. Typically, data on forest vertical structure have been constructed from
field surveys that are both costly and time-consuming. In addition, machine learning techniques could
be applied to analyze, classify, and predict the uncertainties of internal structures in forest. Therefore,
this study aims to map the forest vertical structure for estimating forest water storage capacity from
multi-seasonal optical satellite image and topographic data using artificial neural network (ANN) in
Gongju-si, South Korea. For this purpose, the 14 input neurons of normalized difference vegetation
index (NDVI), two types of normalized difference water index (NDWI), two types of Normalized
Difference Red Edge Index (NDre), principal component analysis (PCA) texture, and canopy height
average and standard deviation maps were generated from Sentinel-2 optical images obtained in
spring and fall season and topographic height maps such as digital terrain models (DTM) and digital
surface models (DSM). The training/validation and test datasets for the ANN model were derived
from forest vertical structures based on field surveys. Finally, the forest vertical classification map,
the result of ANN application, was evaluated by creating an error matrix compared with the field
survey results. The result showed an overall test accuracy of ~65.7% based on the number of pixels.
The result shows that forest vertical structure in Gong-ju, Korea can be efficiently classified by using
multi-seasonal Sentinel-2 satellite images and the ANN approach.
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1. Introduction

Recently, as the importance of water resource management increases due to the occurrence of
drought in an environment such as global warming, interest in forests that play a large role in the global
water cycle is increasing. Forests with high water storage capabilities contribute to drought as well
as flood control [1]. An accurate understanding of forest water storage capacity in water circulation
functions is crucial for preventing water-related disasters and for sustainable water management at
the national level [2,3]. However, information on the forest vertical structure for estimating the exact
water storage capacity of forests is not quantified in most forest regions because of the complexity
and continuous change of the forest. Therefore, forest vertical structure information is essential for
understanding the water storage function of forests and for quantifying water storage capacity of forest.
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As most water resources originate in forests, forests should be well preserved and managed to
protect and maintain the quality of downstream rivers, lakes, and seawater [4]. Forests have thick
layers of organic matter and high water penetrating soils that hold a lot of rainwater. By regulating
the timing of water supply, forests act as a huge reservoir that mitigates the extreme damage caused
by water. The forest vertical structure, which is one of the important factors controlling the amount
of water the forest can store, is generally divided into four layers of canopy, understory, shrub, and
grass [5]. Forests differ in the degree of water storage by major species, and hardwoods have a higher
water storage capacity than conifers [6]. Natural forests with a variety of vertical structures have high
vitality and high water storage capacity, whereas artificial coniferous forests have low water storage
capacity; artificial forests generally have lower levels than natural forests so that forest management
can reduce the amount of evapotranspiration and increase the available water resources [7]. Therefore,
it is necessary to manage forests with high water storage capacity, considering the vertical structure
along with forest species.

In recent years, the Korean Forest Service is investigating forests based on aerial photographs to
produce forest maps. It is difficult to figure out the internal structure of the forest with this method, so
the vertical structure information is inevitably constructed through field survey by manpower. Due to
the characteristic of forest areas that are inaccessible to people, a large amount of budget is required for
field surveys in which 70% of the country is mountainous in South Korea. In addition, it takes a certain
time to survey a specific region, making it difficult to build data at the same time for multiple regions
with delayed updates. Satellite images enable periodic forest mapping as an effective approach to
continuous exploration over large areas where human access is not easy or impossible [8–10]. It is not
possible to directly estimate the water storage capacity of the forest, but it is possible to estimate the
forest vertical structure [11].

For the vegetation researches, an index map using multiple wavelength bands of an image is
generally used to detect vegetation characteristics [12]. Indicators widely used in the vegetation
field include normalized difference vegetation index (NDVI) [13], normalized difference water index
(NDWI) [14], texture, etc. For Sentinel-2 images, the red edge channels can be provided to produce
a normalized difference red edge index (NDre) [15]. As the reflectivity of the red edge wavelength
band increases in vegetation, it is effectively known for vegetation discrimination [16]. NDVI and
Red Edge Band of Sentinel-2 images were used to distinguish field crops and showed its usefulness
for classifying vegetation [17]. On the other hand, rather than using many bands for plant or species
classification, a method of selecting specific bands suitable for classification and classifying them into
several bands by using such as principal component analysis (PCA) [12].

In addition, forest density classifications were conducted by using aerial images and forest
textures [18]. The texture information of the forest can be extracted by considering the difference in
canopy arrangement between the single-layer structure and the multi-layer structure. The arrangement
of crowns is considered uniform in single-layer forests and uneven in multi-layer forests [18]. In this
study, Sentinel-2 optic satellite images were used to obtain optical information based on differences in
reflectance caused by forests, height, and arrangement of canopy.

As the height of trees is closely related to the vertical structure of forests, Light Detection And
Ranging (LiDAR) data are mainly used to measure tree height [19–21]. The height of trees was
estimated using digital surface model (DSM) and digital elevation model (DEM) extracted from LiDAR
data, and the texture data was derived from the estimated height [22]. However, LiDAR data is time-
and cost-consuming such as field surveys, which could lead to a long update cycle. Among the remote
sensing satellite images, the optical image only observes the surface information of the forest, and
hence there is a limitation in the internal structure observation. In this regard, digital terrain models
(DTM) and DSM data, which are already constructed around the world, could be used to reflect forest
height components [23]. Research has been conducted to estimate and validate the vertical distribution
of forests from DEM data [24,25].
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Additionally, machine learning has recently been increasingly utilized in terms of the abundance
of data available for learning, including satellite images. Machine learning techniques can be applied
based on large amounts of remote sensing data [26] to produce information about continuous internal
structures in forest areas with high uncertainty [27–29]. When conducting forest investigations over
large areas of high uncertainty, the application of artificial neural networks (ANN) to satellite remote
sensing data could be more effective than time- and cost-consuming aerial photography or human
surveying. In addition, support vector machines (SVM) [30,31] and decision tree-based models such
as random forests [32] and boosted trees [33,34] are being applied to various fields. In this study,
the analysis of forest vertical structure using optical satellite images and machine learning of ANN
was conducted.

In this study, the analysis of forest vertical structure to estimate forest water capacity from satellite
images by using machine learning method. For this purpose, to extract input layers, index map and
texture map were prepared from two seasonal Sentinel-2 optical satellite images after preprocessing.
In addition, two types of canopy height maps were produced using the difference between two
topographic data of DTM and DSM. The 14 input layers were produced considering the vitality of the
canopy, the image texture, and the difference in tree height. Finally, the input layers were applied to
ANN algorithms with training/validation and test dataset of forest vertical structure data constructed
by field survey; the classification map of forest vertical structure was generated. The accuracy of the
result map was evaluated through error matrix. The proposed methods for forest vertical structure
could be used for establishing a plan for forest water management by enabling more accurate forest
water capacity estimation than previous methods.

2. Study Area and Data

The study area is a part of Gongju-si, South Korea where the Charyeong Mountains are located in
the north, Gyeryong Mountain is distributed in the southeast, and major tributaries are joined by the
Geum River. The study area covers an area of 864.29 km2 and is ~400 m above sea level. The study
area is climatically located in the mid-latitudes and belongs to a humid continental climate zone. The
Charyeong Mountains block the cold north wind so that it is much warmer than the north, but the
area is inland basin and influenced by Geum River, the temperature difference between summer and
winter is great. Figure 1 shows the study area on the peninsula with the orthoimage of the Sentinel-2.
According to the field survey data, this study area is known to have variously deciduous and coniferous
trees as natural and artificial forests.
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Figure 2 shows (a) three-dimensional structure, (b) major species, (c) artificial and natural forests,
and (d) deciduous and coniferous forests from existing vegetation for the vegetation in the study area.
Most of the single-layered forests in this area are consists of chestnut artificial forests, whereas the
main species of the double-layered forests are natural forests with oyster oak, oak hardwood mixed
forests, and pinus rigida artificial forests. In the triple-layered forest, oak natural forest, pinus rigida
artificial forest, and oyster-oak tree natural forest are distributed. In this study, the vegetation map of
Gongju area was used from the 3rd National Natural Environment Survey conducted by the National
Institute of Ecology (NIE) in 2009 [35]. The forest vertical structure data from vegetation map was used
as training/validation and test dataset as shown in Figure 2a. In this study, among the canopy layer, the
understory layer, and the shrub layer, the layer structure including one or two of layers was defined by
the single-and double-layer structure, respectively, whereas the triple-layer structure includes all of
the layers.
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Figure 2. Forest vertical structure classification map of study area constructed by the field survey:
(a) Forest vertical structure, (b) dominant species, (c) natural and artificial forests, and (d) dominant
species’ leaf type [35].

3. Methodology

To map the forest vertical structure, a probability map of forest vertical structure was generated by
applying artificial neural network to input layers from (1) Sentinel-2 optical image and (2) DTM (NGII
DEM) and DSM (WorldDEM) with the training/validation dataset based on the forest vertical map
through fieldwork. Probability maps are classified into single, double, and triple vertical hierarchies,
taking into account the characteristics of the forest structures in study area. Finally, test data of
field survey data was compared to determine the accuracy of classification through the Error Matrix.
Figure 3 shows the overall flow of this study.
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Figure 3. Overall data processing flow to map the forest vertical structure.

3.1. Preprocessing of Input Layers

3.1.1. Preprocessed Layers of Sentinel-2 Images

In this study, two Sentinel-2 images from different seasons of spring and fall were used (European
Space Agency (ESA), Paris, France). Figure 4a shows images from 3 May 2017, at 65.3◦ solar elevation
and 143.5◦ solar azimuth while Figure 4b is from 30 October 2017, with the sun altitude of 38.5◦ and the
azimuth angle of 165.5◦ (Table 1). The spectral bands defined for the Sentinel-2 used in this study are
shown in Table 2. As vegetation, especially hardwoods, could have reflectivity differences depending
on the season, images of both seasons were used to account for seasonal characteristics. The NDVI,
NDWI, NDre maps, and the PCA texture maps were generated from the Sentinel-2 orthoimages of
both seasons by using Matlab (Mathworks, Natick, MA, USA).
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Figure 4. Sentinel-2 satellite ortho-rectified images acquired in the study area: (a) spring season; and
(b) fall season.

Table 1. Parameters of Sentinel-2 images used in this study.

Parameters Spring Fall

Date (YYYY.MM.DD) 2017.05.03 2017.10.30
Ground sample distance (m) 10 10

Sun altitude angle (deg.) 65.3 38.5
Sun azimuth angle (deg.) 143.5 165.5

Table 2. Definition of Sentinel-2 spectral bands used in this study [36].

Sentinel-2 Bands Central Wavelength (nm) Band Width (nm) Spatial Resolution (m)

3 (Green) 560 35 10
4 (Red) 665 30 10

5 (Vegetation red edge) 705 15 20

6 (Vegetation red edge) 740 15 20

7 (Vegetation red edge) 783 20 20

8 (NIR) 842 115 10
11 (SWIR) 1610 90 20
12 (SWIR) 2190 180 20

Sentinel-2 satellite image data were preprocessed for atmospheric correction and topographic
correction. Radiant energy reaches the sensor and is affected by the atmosphere in various ways.
Atmospheric correction is a method of eliminating the effects of the atmosphere that disturbs the image
by reaching the sensor with unnecessary energy by the atmosphere [36]. Thus, in this study, Sentinel-2
image was converted to Bottom-Of-Atmosphere, which ignores the atmospheric effects of the original
image [37]. Atmospheric correction of Sentinel images was performed with a tool called Sen2Cor from
Sentinel Application Platform (SNAP) provided by ESA.

In addition, the satellite image data has a difference in reflectivity according to the sun incidence
angle in a mountain area with the slope land; high mountainous region has shade and sunlit slopes.
Topographic correction is necessary for mountainous area to minimize other impacts besides the forest
features. In this study, a commonly used terrain correction model of statistical-empirical correction [38]
was applied to Sentinel-2 optical image as follows,

ρh = ρ− {a· cos i + b}+ ρ (1)
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where ρ and ρh are pixel values from original and topographic-corrected images, respectively, ρ is the
mean value of the original image and i indicates the incidence angle. a and b are parameters of the
statistical empirical model.

After the topographic correction process, NDVI, NDWI, and NDre maps are generated from the
topographic-corrected Sentinel-2 images, which were used for forest vertical mapping in this study
instead of the original image. NDVI is an index based the reflectance difference between red and
near-infrared, which increases when the vegetation activity becomes more active. The red band (Band
4) and NIR band (Band 8) are used in combination defined as follows [13].

NDVI =
Band 8− Band 4
Band 8 + Band 4

(2)

NDWI is an index that is widely used for vegetation analysis by using the difference of spectral
characteristics according to moisture content in vegetation [16]. The difference between NIR and SWIR,
and the difference between green and SWIR, are the widely used methods [37]. In this study, two types
of NDWIs were generated using the difference between green (Band 3) and SWIR (Band 11, Band 12)
as follows [39].

NDWI1 =
Band 3− Band 11
Band 3 + Band 11

(3)

NDWI2 =
Band 3− Band 12
Band 3 + Band 12

(4)

NDre is an index using vegetation red edge band, indicating that the higher the NDre value, the
greater the activity of vegetation. In this study, two types of NDre were created using three red edge
bands (Bands 5–7) provided by Sentinel-2 [40,41].

NDre1 =
Band 6− Band 5
Band 6 + Band 5

(5)

NDre2 =
Band 7− Band 5
Band 7 + Band 5

(6)

In addition, texture data were used to visually consider the difference in the forest texture and the
reflectivity of forest communities according to the dominant species. In the RGB image, the texture
of the image is determined by the distribution of shadows. In the case of the artificial forest of the
single-layer structure having the same number of species and ages, the texture is smooth due to the
constant height between the trees. Multi-layered natural forests of varying ages and species are roughly
textured [18]. It is also considered that the arrangement of canopies is uniform in single-layer forests
and uneven in multi-layer forests [18,22]. To take this into account, the PCA, which is a representative
dimensional reduction feature extraction technique used in multiband image processing, was used [42].
An image that has undergone the PCA technique has the advantage of showing surface characteristics
and spectral information that were difficult to read from the original image [43].

The calculation of the PCA texture maps is conducted by three steps: (1) generation of base map
by applying a 5 × 5 median filter to the produced PCA image with the moving window technique, (2)
subtracting a texture image from the PCA image and applying the root mean square deviation equation,
and (3) applying a 3 × 3 median filter to the texture image to reduce unwanted noise information. The
final PCA texture map was produced by converting the calculated image value into a DB unit [37,44]
as follows.

Texturedb(i, j) = −20· log10(Texture(i, j)) (7)

3.1.2. Canopy Height Maps from DSM and DTM

Finally, DTM and DSM data were collected for the forest height measurement. The DTM used in
this study is a 5 m DEM produced by the National Geographic Information Institute (NGII) (Figure 5a).
For DSM, 12 m resolution WorldDEM data were obtained which is created by using TerraSAR-X
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X-band radar interferometry (Figure 5b) from German Aerospace Center (Deutsches Zentrum für Luft-
und Raumfahrt e.V., DLR). Both data were resampled into 10 m based on the GSD (Ground Sample
Distance) of the Sentinel-2 image, and the forest height map was generated by subtracting DTM which
means the terrain height of ground and DSM data which includes the height of ground objects such as
canopies and buildings. The canopy height map was created. In addition, DSM data were used to
correct the terrain of Sentinel-2 images.
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WorldDEM (12 m).

In addition, the canopy height maps were created in consideration of the fact that the forest vertical
structure is closely related to the canopy height. The canopy height map is effective for measuring tree
height over large areas which could be calculated from the difference between DSM and DTM [23]. In
this study, 5 m resolution DTM (NGII DEM) generated based on 1:5000 digital topographic maps (NGII,
Suwon, South Korea) and the 12 m resolution DSM (WorldDEM) generated using the TerraSAR-X
SAR interferometry (InSAR) were resampled to 10 m as Sentinel-2 image and used to extract the
canopy height from German Aerospace Center (Deutsches Zentrum für Luft-und Raumfahrt e.V., DLR).
Average canopy height and standard deviation canopy height maps were generated by calculating the
mean and standard deviation in a window with the kernel of 5 × 5.

DTM data could be less accurate in slope areas, and DSM could be underestimated as radar signals
penetrate through forest areas. Thus, the average canopy height map estimated from InSAR-based
DSMs may appear somewhat lower than the actual canopy. The standard deviation canopy height map
shows higher values in areas with large differences in canopy heights and smaller values in smooth
areas. As such, the height of the forest that shows the distribution characteristics of the forest existing
in the image could be calculated by subtracting the DTM in the DSM.

3.2. Application of Artificial Neural Network

The machine learning model of ANN with MultiLayer Perceptron (MLP) algorithm was used for
learning in this study. The MLP algorithm adds hidden layers to compensate for the limitation of the
linear classification of the conventional perceptron [45]. The MLP algorithm consists of three groups
of layers: input layer, hidden layer, and output layer. The MLP algorithm adjusts the connection
strength between layers and processes it repeatedly to perform prediction and estimation by using the
error back propagation learning technique for learning. In the error back algorithm, an input signal
is transmitted to a hidden layer through a feedforward network and generates the final output. The
weight is corrected by propagating the error in the direction of reducing the error by comparing the
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output with the true value. An activation function is used to adjust the strength of the connection. In
this study, logistic function, the commonly used unipolar sigmoid function, is used as follows.

σ(z) =
1

1 + exp(−z)
(8)

This function adjusts the result to a value between 0 and 1, which represents the result with a
probability of 0 to 1 [46].

The input layers of NDVI, two types of NDWI, two types of NDre, PCA Texture, average canopy
height, and standard deviation canopy height map produced from the above process are assumed to be
correlated with forest vertical structure. To estimate the forest vertical structure, Waikato Environment
for Knowledge Analysis (WEKA), a widely used data mining tool, was used in this study [47]. Training
(70%) and test (30%) data were randomly set for each layer. Training (including validation) was
processed with 70% (1,608,912 pixels including 297,365, 186,573, 1,124,975 for single-, double- and
triple-layers, respectively) and test was performed with rest of data. The training and validation
process of ANN algorithms were performed by using 10-fold cross validation technique; it is a method
of repeating the training and validation by dividing the training and validation set into 10 and finding
the optimal condition by the average of the errors recorded in each fold attempt to tune the optimal
hyperparameters. For this purpose, the training/validation dataset was divided into 10 groups with
nine groups of training data and one group of validation data; each group was used once for validation
and nine times for training. Finally, forest vertical structure classification was conducted using the
preprocessed data above as an input layer to the ANN and test accuracy was calculated by using
test dataset.

4. Results

In this study, MLP-ANN method is applied to map forest vertical structure in Gongju-si, which
is located near the center of South Korea. Fourteen input neurons generated from Sentinel-2 optical
satellite images, existing DTM and DSM data were used as input layers for the MLP-ANN approach.

4.1. Results Maps from Preprocessing

A total of 12 neurons were prepared by Sentinel-2 optical satellite images of spring and fall
season, 6 input data were generated each: NDVI, NDWI1, NDWI2, NDre1, NDre2, and PCA texture.
Figures 6–8 show the NDVI, NDWI, and NDre maps of Sentinel-2 represented by using ArcMap 10.4
(ESRI, Redlands, CA, USA). Preprocessed Sentinel-2 images with a Statistical-empirical model shows
very little topographic effect even in mountain slope area (see Figures 6–8).
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In addition, PCA texture maps were generated using Equations (4) and (5) from seasonal Sentinel-2
optic satellite images, respectively. The smoother the surface, the higher the texture values as shown in
Figure 9a,b.
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The other two input neurons were generated by differentiating the DTM obtained from NGII
and the DSM obtained from WorldDEM as described above. From the canopy height map obtained
from this process, two data were generated by a moving window technique with the kernel of 5 × 5.
The first kind of canopy height map is an average canopy height map that could be used to estimate
the average height of the canopies in the forest as shown in Figure 10a. Most average values range
from 7 m to 15 m, with average values up to 25 m in some regions. Another canopy height map is a
standard deviation canopy height map that reflects the varying heights of adjacent trees (Figure 10b).
The varying vertical structure of forest means that there is a difference in the canopy height, so the
standard deviation of the height data was obtained to recognize the difference in height of adjacent
trees. In other words, the higher the standard deviation in forest region, the larger the difference in the
tree height of the region, which leads to complicated vertical structure of the forest.
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4.2. Results from Artificial Neural Network

As a result from ANN approaches, probability maps for each vertical structure were obtained as
shown in Figure 11: (a) single-layer structure, (b) double-layer structure, and (c) triple-layer structure.
As aforementioned, the single-, double-, and triple-layer structures in this study are defined by how
many layers it contains among the canopy layer, the understory layer, and the shrub layer. In the
probability maps, most pixels of a single-layer structure probability map have relatively low values of
less than 10%. Some pixels of the double layer probability maps have low values of less than 20%,
whereas others have values between 40% and 60%. In the case of a triple-layer structure probability
map, some pixels have a probability value higher than 70%, and the outer pixels of the forest appear to
have a probability value lower than 20%.
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double-layer, and and (c) triple-layer.

A high percentage of low values in the single- and double-layer structure probability maps
indicates that there is a relatively small percentage of single- and double-layer forests in the study
area. In a triple-layer structure probability map, probability values greater than 70% indicate a high
probability for a triple-layer structure forest, whereas probability values lower than 20% indicate little
or no triple-layer structure, which means that the triple structure could be clearly distinguished. In
addition, the probability of a triple-layer forest occupies most of the study area since the probability
density function of triple-layer structure is closer to the Gaussian distribution than the single- and
double-layer structure forests.

The final classification map was created using the maximum operation that considers the highest
value in the same pixel of each layer’s probability map (Figure 12). The probability of single- and
double-layer structure maps was relatively low, so that the percentage of single- (20%) and double-layer
(15%) structure area was low; the triple-layer structure forests dominate with 65% in the study area as
represented in the classification map. As the study area is mostly composed of multi-layered natural
forests, the classification results are considered to be in line with expectations.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18 

Figure 11. Probability maps of forest vertical structure using ANN approach: (a) single-layer, (b) 
double-layer, and and (c) triple-layer. 

A high percentage of low values in the single- and double-layer structure probability maps 
indicates that there is a relatively small percentage of single- and double-layer forests in the study 
area. In a triple-layer structure probability map, probability values greater than 70% indicate a high 
probability for a triple-layer structure forest, whereas probability values lower than 20% indicate little 
or no triple-layer structure, which means that the triple structure could be clearly distinguished. In 
addition, the probability of a triple-layer forest occupies most of the study area since the probability 
density function of triple-layer structure is closer to the Gaussian distribution than the single- and 
double-layer structure forests. 

The final classification map was created using the maximum operation that considers the highest 
value in the same pixel of each layer’s probability map (Figure 12). The probability of single- and 
double-layer structure maps was relatively low, so that the percentage of single- (20%) and double-
layer (15%) structure area was low; the triple-layer structure forests dominate with 65% in the study 
area as represented in the classification map. As the study area is mostly composed of multi-layered 
natural forests, the classification results are considered to be in line with expectations. 

 
Figure 12. Forest vertical structure map classified from forest vertical probability maps using the 
maximum operation. 

The classification map was evaluated for accuracy, as shown in Table 3, through the error matrix 
based on the forest vertical structure data based on the field survey of Figure 2a. The total number of 
test data pixels excluding non-forest areas is 689,534. The overall test accuracy for the total pixels 
estimated from the error matrix was ~65.06%, which was not very high. The application of ANN 
approach with full-waveform Lidar data could expect higher accuracy. However, full-waveform 
Lidar data is difficult to build for large areas at a single time, and is difficult to use for most areas 
because of the high cost. Optical satellite images and topographic data including DSM and DTM are 
available for most parts of the world, which could be used for cost- and time-efficient production of 
forest vertical maps. As a result, it is possible to observe the forest vertical structure over a large area 
using optical images and topographic data with ~65% accuracy. 

The user and producer accuracy in single-layer structure was approximately 51.04% and 56.46%, 
respectively, with more than half the accuracy. Double-layer forests have 19.73% and 25.23% user 
and producer accuracy, respectively, which could be represented to have been identified with very 
low probability. This is due to the fact that there are very few data in the double-layer forest for 

Figure 12. Forest vertical structure map classified from forest vertical probability maps using the
maximum operation.



Appl. Sci. 2020, 10, 1666 14 of 18

The classification map was evaluated for accuracy, as shown in Table 3, through the error matrix
based on the forest vertical structure data based on the field survey of Figure 2a. The total number
of test data pixels excluding non-forest areas is 689,534. The overall test accuracy for the total pixels
estimated from the error matrix was ~65.06%, which was not very high. The application of ANN
approach with full-waveform Lidar data could expect higher accuracy. However, full-waveform Lidar
data is difficult to build for large areas at a single time, and is difficult to use for most areas because of
the high cost. Optical satellite images and topographic data including DSM and DTM are available for
most parts of the world, which could be used for cost- and time-efficient production of forest vertical
maps. As a result, it is possible to observe the forest vertical structure over a large area using optical
images and topographic data with ~65% accuracy.

Table 3. Validation of forest vertical structure classified by using the ANN (unit: pixel).

ANN
Reference Single Layer Double Layer Triple Layer Total User Accuracy (%)

Single Layer 71,952 9,904 59,110 140,966 51.04%
Double Layer 15,421 20,170 66,624 102,215 19.73%
Triple Layer 40,069 49,886 356,398 446,353 79.85%

Total 127,442 79,960 482,132 689,534

Producer accuracy (%) 56.46% 25.23% 73.92%

Overall accuracy (%) 65.06%

The user and producer accuracy in single-layer structure was approximately 51.04% and 56.46%,
respectively, with more than half the accuracy. Double-layer forests have 19.73% and 25.23% user and
producer accuracy, respectively, which could be represented to have been identified with very low
probability. This is due to the fact that there are very few data in the double-layer forest for training
and testing the MLP-ANN model, and ~62.3% of the double-layer structure has been misclassified as
a triple-layer structure due to the similar canopy characteristics of the double-layer and triple-layer
forests. Therefore, it could be mentioned that 62.3% of double-layer forests are very similar to the
pattern of triple-layer forests. This result in this study means that a double-layer structured area
cannot be completely separated from a triple-layer structure forest. The user and producer accuracy in
triple-layer structure forest is about 79.85% and 73.92%, respectively. Triple-layer structure accuracy
was higher than the accuracy of single- and double-structure. It can be interpreted that this is due to the
well-trained MLP ANN model parameters in the triple-layer structure. Nevertheless, about 12.3% and
13.8% of the triple-layer structure were misclassified as single-and as double-layer forests, respectively.

To analyze the cause of the misclassification, the forest map and the original Sentinel-2 RGB
image were compared and analyzed by visual interpretation. As a result, it was confirmed that forest
trees were artificially removed or newly formed in the single-, double-, and triple-layer structure, as
shown in Figure 13. This type of misclassification is occurred due to the time difference between the
acquisition time of satellite images and the field survey, which could lead to the learning and output of
ANN algorithm.
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5. Conclusions

The purpose of this study is to analyze forest vertical structure in Gongju-si to enhance the function
of forest related to water resource management. MLP-ANN model machine learning technology
was applied to Sentinel-2 optical satellite images and previously constructed DTM and DSM data.
Machine learning techniques can be applied based on large amounts of remote sensing data to produce
information about continuous internal structures in areas with high uncertainty. Therefore, input
data NDVI, NDWI1, NDWI2, NDre1, NDre2, and PCA texture maps were generated from Sentinel-2
optical satellite images. In addition, an average canopy height map and a standard deviation canopy
height map were generated from DTM and DSM. The classification result from ANN shows that the
triple-layer forest with the highest water reserves has shown a relatively accurate 73.92% classification
in producer accuracy.

Understanding the vertical structure of forests is essential for estimating forest water storage
capacity for integrated water management. The results of this study show that the satellite image data,
including optical satellite images and DEM data, could be used for more accurate estimation of the
forest water storage by constructing data on forest vertical structures. Therefore, more accurate water
storage on forest could be estimated using the vertical structure constructed using satellite images
along with the forest type data provided from the forest map.

The diversity of vertical structures with the various age of forests could improve the soil penetrating
structure of rainwater and increase the amount of water the forest can store. However, estimation of
the forest structure in a large area is difficult due to its difficult accessibility and various forms; it is
necessary to use periodic satellite images for estimating vertical structures in national-scale forests
which could support forest management for water resource management. Also, the combination of
remote sensing, which is essential for exploring large areas, and machine learning, which is effective
for classifying and analyzing large amounts of data, could be very useful as in this study. Especially, as
there is a limit in obtaining information on the internal structure of forests, it is possible to estimate the



Appl. Sci. 2020, 10, 1666 16 of 18

vertical structure of the forest through the methodology applied in this study using remote sensing
satellite imagery and machine learning technology. It is also expected to reduce research costs, such as
time and budget for field surveys.

In this study, the degradation of the learning and classification results was derived using the
data with the difference between the acquisition time of the image and the investigation time of the
reference data. In the future study, images of similar time should be collected to reflect the difference
in survey time and improved results could be expected by obtaining reference data from multiple
regions with different forest types. Additionally, various deep learning technologies which are being
developed recently could reflect the detailed characteristics of the images. Based on the results of
this study, the forest vertical structure data through remote sensing and machine learning could be
used to estimate the forest water storage and establish forest administration measures for integrated
water management.
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