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Abstract: Self-stabilization quantum key distribution (QKD) systems are often based on the Faraday
magneto-optic effect such as “plug and play” QKD systems and Faraday–Michelson QKD systems.
In this article, we propose a new anti-quantum-channel disturbance decoder for QKD without
magneto-optic devices, which can be a benefit for the photonic integration and applications in
magnetic environments. The decoder is based on a quarter-wave plate reflector–Michelson (Q–M)
interferometer, with which the QKD system can be free of polarization disturbance caused by
quantum channel and optical devices in the system. The theoretical analysis indicates that the
Q–M interferometer is immune to polarization-induced signal fading, where the operator of the
Q–M interferometer corresponding to Pauli Matrix σ2 makes it satisfy the anti-disturbance condition
naturally. A Q–M interferometer based time-bin phase encoding QKD setup is demonstrated, and the
experimental results show that the QKD setup works stably with a low quantum bit error rate about
1.3% for 10 h over 60.6 km standard telecommunication optical fiber.
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1. Introduction

Quantum key distribution (QKD) [1] allows two authenticated distant participants Alice and Bob
to securely share a long random string often called cryptographic keys even in the presence of an
eavesdropper Eve. The keys can be used to carry out perfectly secure communication via one-time-pad
and perfectly secure authentication via Wigman–Carter authentication scheme [2]. The first and the
best-known QKD protocol is BB84 proposed by C.H. Bennett and G. Brassard in 1984 [3]. Since then,
QKD technologies have made significant progresses. The unconditional security of QKD has been
proved through a series of outstanding works [4–6]. Practical security of QKD has also been fully
studied, such as the decoy state method [7–9] for beating the photon-number-splitting attack, and the
measurement-device-independent QKD for removing detector side channel attacks [10]. Up to now,
the transmission distance reaches 421 km in optical fiber [11], and 1200 km in free space from the
Micius satellite to the Xinglong ground station [12]. Several QKD network testbeds have been built
and demonstrated in metro areas [13–16]. Scientists hope to build a global quantum network through
quantum satellites connecting terrestrial quantum networks over commercial optical fiber in the future.

To build terrestrial QKD networks over commercial optical fiber, the stability of QKD systems or
exactly anti-quantum-channel disturbance is especially crucial and has received extensive attention
from both scientific researchers and engineers. Polarization encoding QKD systems rely on complicated
feedback compensation because polarization states of photons are randomly disturbed in optical fiber
quantum channels due to environmental vibration and/or temperature variation, and it is not suitable
for strong environmental disturbance. Owing to the fact that phase information encoded in quantum
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states can be maintained in environmental disturbance, phase encoding or time-bin phase encoding
QKD systems are more competitive in such situations as overhead and tube optical cables along roads or
bridges. However, decoding the phase information with unbalanced-arm Mach–Zehnder or Michelson
interferometers also suffers from polarization disturbance in transmission fiber that results in the
fringe visibility of the interferometers varying fast [17]. To solve the problem, Muller et al. proposed
the “plug and play” bidirectional QKD system which can automatically compensate the polarization
disturbance besides the phase drifting in the channel [18], and has been applied in QKD products by ID
Quantique, Inc., a well-known quantum company (located in Geneva, Switzerland). Moreover, Mo et al.
proposed the Faraday–Michelson (F–M) unidirectional QKD system [19], which has been applied in
the phase encoding QKD products by Anhui Asky Quantum Technology Co., Ltd. (Anhui, China),
and designed in the latest time-bin phase QKD scheme in a patent proposed by the University of
Science and Technology of China [20]. According to Ref. [17], for phase encoding QKD systems,
the disturbances of quantum channel are collected in the system if there is polarization-induced fading
at the receiver’s interferometer. Thus, it is crucial to construct an unbalanced-arm interferometer that
can self-compensate quantum channel disturbance. Up to now, the effective and widely used solutions
are mainly based on the two schemes mentioned above or their variants. Both of the schemes are based
on the Faraday magneto-optic devices, which is not conducive to photonic integration and applications
in magnetic environments.

In this article, we propose a new decoder based on a quarter-wave plate reflector-Michelson
(Q–M) interferometer, which is free of polarization disturbance caused by quantum channel and optical
devices in QKD systems. The theoretical analysis is given to reveal how the Q–M interferometer works
to eliminate the polarization-induced signal fading automatically. We also build a time-bin phase
encoding QKD system based on the Q–M interferometer. The system exhibits high degree of stability
with a low quantum bit error rate (QBER) about 1.3% in 10 h over 60.6 km standard telecommunication
optical fiber in the outfield. Compared with the schemes using Faraday magneto-optic devices, our
scheme is easier to realize photonic integration as shown in our subsequent work [21] and can be
applied in magnetic environments owing to the absence of magnetic-optic devices.

2. The Q–M Interferometer Scheme and Theoretical Analysis

According to Ref. [17], for the phase encoding QKD systems with an unbalanced-arm
Mach–Zehnder or Michelson interferometer as the decoder, the polarization disturbance in optical fiber
quantum channel affects the stability of the systems, and the anti-disturbance condition is L+ · S = I or
L = S, where L and S represent the operators of the whole long and short arms of the unbalanced-arm
interferometer, respectively, and they are unitary. We propose the Q–M interferometer in this paper
which satisfies the anti-disturbance condition. The Q–M interferometer is composed of a polarization
maintaining coupler (PMC) and two unbalanced arms (the upper and lower arms), as shown in
Figure 1. Both the upper and lower arms are comprised of the polarization maintaining (PM) optical
fiber, a quarter-wave plate (QWP), and a reflector. The QWP and the reflector can be fabricated into
an integral optical component, i.e., a quarter-wave plate reflector (QWPR). We denote that the slow
and fast axes of the QWP are along x- and y-directions, respectively, and the slow and fast axes of
the PM optical fiber are along X- and Y-directions, respectively. The angle between the slow axes of
the PM optical fiber and the QWP is 45 degrees. In addition, there is a phase shifter (PS, as shown in
Figure 1) or a phase modulator in one arm, for example in the upper arm, for compensating phase
drifting or implementing phase encoding. Through the analysis below, we find that either arm of the
Q–M interferometer corresponds to Pauli Matrix σ2 while that of the Faraday Michelson interferometer
corresponds to Pauli Matrix σ3. The two Pauli matrices will be defined below. It is easy to confirm that
the Pauli Matrix σ2 naturally satisfies the anti-disturbance condition and makes QKD systems immune to
polarization-induced signal fading [17]. In the article, the mathematical notations are the same as Ref. [22].
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Figure 1. Unbalanced-arm Michelson interferometer with two quarter-wave plate reflectors (QWPRs)
as mirrors, a polarization maintaining coupler (PMC), a phase shifter (PS), and PM optical fibers.

Physically, a QWPR can turn an X-direction linear polarization light to Y-direction, and vice versa,
when the angle between the polarization direction of the linear light and the slow axis of the QWP
equals 45 degrees. As shown in Figure 2, a forward X(Y) polarization incident light along the slow (fast)
axis of PM optical fiber can be transformed into a backward Y(X) polarization output light along the
fast (slow) axis of PM optical fiber after reflected by the QWPR. Due to the same phase accumulation
during the round-trip transmission, only the exchange of the X- and Y-polarization states happens
between the input and output light, namely, the operator of the long or short arm can be written as

Pauli Matrix σ2

[
0 1
1 0

]
. Therefore, the output polarization state is independent of PM optical fiber in

the interferometer arms and can be expressed as the product of the incident polarization state and
Pauli Matrix σ2.
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Figure 2. The forward light (or incident light) and backward light (or output light) after the reflection
by a QWPR, where the angle between the direction of X-polarization state, and the slow axis of the
QWP (x-direction) is 45 degrees.

For proving the function of the Q–M interferometer decoder, we give a rigorous theoretical
analysis. To describe the change of the polarization state more intuitively, we take the coordinate
system as right-handed and the light propagation direction as +z direction when the light propagates
to the QWPR along PM optical fiber, and the coordinate system as left handed after the reflection by
the reflector. For the convenience of theoretical analysis, we use the same notations as those in Ref. [22].
According to Ref. [22], the operator U of any optical component can be described by using Stokes
parameters s1, s2, and s3 and Pauli matrices σ1, σ2, and σ3 and 2D unit matrix σ0 as follows:

U(γ, s1, s2, s3) = σ0 cosγ+ i(s1σ1 + s2σ2 + s3σ3) sinγ

=

[
cosγ+ is1 sinγ is2 sinγ− s3 sinγ

is2 sinγ+ s3 sinγ cosγ− is1 sinγ

]
σ0 =

[
1 0
0 1

]
σ1 =

[
1 0
0 −1

]
σ2 =

[
0 1
1 0

]
σ3 =

[
0 i
−i 0

] (1)

where the angle γ/2 corresponds to the birefringence strength of the transmission medium, and Stokes
parameters, s1, s2, s3, originate from the X−Y and +45◦ and−45◦ components of rectangular birefringence,
and from the circular birefringence, respectively. Then, for the Q–M interferometer, the operator
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of PM optical fiber in the long arm (short arm) can be expressed as l (s) = U(δ/2,1,0,0), where δ
is the birefringence strength of the PM fiber, and the operator of the QWPR can be expressed as
QRλ/4 = U(π/4,0,1,0)t

· U(π/4,0,1,0) = U(π/2,0,1,0). Then, the long arm operator L is:

L =
←

l ·QRλ/4 ·
→

l
= U( δ2 , 1, 0, 0)t

·U(π2 , 0, 1, 0) ·U( δ2 , 1, 0, 0)
= U( δ2 , 1, 0, 0) ·U(π2 , 0, 1, 0) ·U( δ2 , 1, 0, 0)
= U(π2 , 0, 1, 0) = QRλ/4 = iσ2

(2)

where the arrows← and→ indicate the backward and forward propagation, respectively, and the
superscript t designates the transposed matrix. For reciprocal optical element, the backward

propagation notation
←

l equals the transposed matrix of the notation
→

l in the forward coordinate
system. The conclusion also applies to the short arm operator S.

Now, consider double Q–M interferometers in two distant participants Alice and Bob, respectively,
connected with each other by commercial optical fiber quantum channel as seen in Figure 3. We only
set up a phase shifter in the Q–M interferometer on Bob’s side because the phase shifter is used for
compensating the relative phase drifting of the two Q–M interferometers. When Alice sends a quantum
pulse to Bob, there are two paths for the pulse to interfere on Bob’s side [17]:

Path 1: La→ channel→ Sb

Path 2: Sa→ channel→ Lb

where the subscripts a and b represent the operators of the components on Alice’s and Bob’s side,
respectively. Li and Si (i = a or b) are the long and short arm operators of the Q–M interferometer
on Alice’s or Bob’s side, respectively. According to Equation (2) and considering the phase resulting
from transmission along the long and short arms, the transformation matrices of the two paths can be
described respectively by

Path1 : (
←
sb ·QRλ/4 ·

→
sb) · eiφ

·C · (
←

la ·QRλ/4 ·
→

la)
= eiβb ·QRλ/4 · eiφ

·C · eiαa ·QRλ/4

Path2 : (
←

lb ·QRλ/4 ·
→

lb)eiϕ
· eiφ
·C · (

←
sa ·QRλ/4 ·

→
sa)

= eiαb ·QRλ/4 · eiφ
·C · eiβa ·QRλ/4 · eiϕ

(3)

where C is the operator of quantum channel and can represent arbitrary birefringence resulting from
quantum channel, li and si (i = a, b) represent the operators of the long and short PM optical fiber in the
arms of the Q–M interferometer, αi and βi are the phase caused by the interferometer’s long and short
arms, respectively, φ is the phase of transmission fiber, and ϕ is the phase shift from the phase shifter
in Bob’s interferometer. Supposing that the input Jones vector is Ein on Alice’s side, the output of Bob’s
interferometer can be written as

Eout =
1
4

[
ei(αa+βb+φ) + ei(αb+βa+ϕ+φ)

]
·QRλ/4 ·C ·QRλ/4 · Ein (4)

where the factor 1/4 originates from the PMCs of Alice’s and Bob’s interferometers. Since Si, Li, and C
are unitary, the interference output power can be expressed as

Pout = E+
out · Eout

= E+
in[

1
4 (e

i(αa+βb+φ) + ei(αb+βa+ϕ+φ))QRλ/4 ·C ·QRλ/4]
†
· [ 1

4 (e
i(αa+βb+φ) + ei(αb+βa+ϕ+φ))QRλ/4 ·C ·QRλ/4]Ein

=
Pin
8 [1 + cos(∆α+ ∆β−ϕ)]

(5)
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where ∆α = αa − αb, ∆β = βa − βb. This means that the interference output Pout is independent of any
polarization perturbation in the whole QKD system, especially that caused by the quantum channel.
In an ideal case, ∆α and ∆β are invariable; hence, interference fringe is only modulated by the phase
shifter in the interferometer. In the real case, the phase drifting of ∆α and ∆β caused by the fluctuation
of temperature or environmental vibration can be solved by active compensation, such as controlling
the phase shifter in real time.
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Figure 3. Double Q–M interferometers on Alice’s and Bob’s side, respectively, connected with each
other by optical fiber quantum channel. LD: laser, Cir: optical circulator, PMC: polarization maintaining
coupler, PS: phase shifter, QWPR: quarter-wave plate reflector, SPD: avalanche diode single photon
detector, Li (i = a or b): the long arm operator of the Q–M interferometer on Alice’s or Bob’s side,
Si (i = a or b): the short arm operator of the Q–M interferometer on Alice’s or Bob’s side.

3. Experimental Results

To demonstrate the theory above, a time-bin phase encoding intrinsic-stabilization QKD
experimental setup is built. The schematic setup of the QKD system is shown in Figure 4a. In the setup,
the transmitter Alice encodes the key information randomly into a phase basis {0, π} and a time-bin
basis, and sends quantum pulses to the receiver Bob. Both Alice and Bob have a Q–M interferometer as
the phase encoder and decoder for phases {0, π}, respectively, as seen in the red dash boxes in Figure 4a,
which is similar as that in Figure 3. The stability of the QKD system validates the effectiveness of the
Q–M interferometer. The BS1 and BS4 are used for time-bin encoding and decoding as seen in the
black dash boxes in Figure 4a. A variable optical attenuator (VOA) on Alice’s side is used to attenuate
the transmitted light to a single photon lever, the BS3 on Bob’s side is used for passive basis selection,
and a dense wavelength division multiplexer (DWDM) used on Bob’s side is for spectral filtering to
reduce the scattered and background noise. The system works in a way of decoy-state BB84 protocol
including vacuum and weak decoy states [2,23]. The geographic distribution of the quantum channel
with a standard telecommunication optical fiber is shown in Figure 4b, which is a round-trip loop fiber
with the fiber length of 60.6 km and the optical loss of 16.9 dB.

In the experiment, the photons are generated by four strongly attenuated 1549.32 nm
distributed-feedback pulsed laser diodes with a pulse width of 500 ps and 100 MHz repetition rate.
The average photon number per pulse is 0.6, including transmitted signal, decoy state, and vacuum
state. The vacuum state is generated by not triggering the lasers. The ratio of signal, decoy, and vacuum
state numbers is 6:1:1. Four avalanche diode single photon detectors are used on Bob’s side with a gate
width of 1 ns.

With the setup described above, we measure the QBER and safe key rate to examine the
performance of the system. As shown in Figure 5, the average QBER and safe key rate are 1.3% and
1.0 kbps during 10 h, respectively. Here, we deal with the data collected from detectors every second
as a QBER point in Figure 5a. In Figure 5b, every point represents the average number of the safe keys
in one minute. The experimental results indicate that the Q–M interferometer scheme can keep the
QKD system working stably.
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Figure 5. Temporal fluctuation of the key generation performance. (a) the quantum bit error rate as a
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4. Conclusions

In summary, we propose a new decoder based on the Q–M interferometer for QKD systems,
which is free of polarization disturbance caused by optical fiber quantum channel and optical devices
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in the system. Physical and theoretical analysis has been presented. An experimental verification is
also implemented by building a Q–M interferometer based time-bin phase encoding QKD system.
The experimental result reveals a long-term low QBER with about 1.3% over 60.6 km standard
telecommunication optical fiber. All of the components in the Q–M interferometer are conventional
commercial passive optical components, and can be easily fabricated. Since the Q–M interferometer is
without Faraday magneto-optic components, our scheme can be expected to realize optical integration,
which will be shown in our subsequent work, and also be applicable in magnetic environments [21].
The theoretical analysis and the experimental results indicate that the Q–M interferometer based QKD
system is immune to quantum channel disturbance, and will be a competitive scheme in practical
QKD applications.
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