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Abstract: Colonoscopy, which refers to the endoscopic examination of colon using a camera,
is considered as the most effective method for diagnosis of colorectal cancer. Colonoscopy is
performed by a medical doctor who visually inspects one’s colon to find protruding or cancerous
polyps. In some situations, these polyps are difficult to find by the human eye, which may lead to a
misdiagnosis. In recent years, deep learning has revolutionized the field of computer vision due to its
exemplary performance. This study proposes a Convolutional Neural Network (CNN) architecture
for classifying colonoscopy images as normal, adenomatous polyps, and adenocarcinoma. The main
objective of this study is to aid medical practitioners in the correct diagnosis of colorectal cancer.
Our proposed CNN architecture consists of 43 convolutional layers and one fully-connected layer.
We trained and evaluated our proposed network architecture on the colonoscopy image dataset with
410 test subjects provided by Gachon University Hospital. Our experimental results showed an
accuracy of 94.39% over 410 test subjects.
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1. Introduction

The Gastrointestinal (GI) tract, or the digestive tract, is a system of organs responsible for digestion
in humans. Like all other parts of the human body, the GI tract may have various diseases such as
inflammatory diseases, autoimmune diseases, tumorous diseases, etc. To diagnose these diseases,
clinical medical examination is required, which may include procedures like fecal occult blood test,
endoscopy, etc. In general, colonoscopy is considered as the most accurate method for identifying
lesions in one’s colon. In addition, colonoscopy is also used for therapeutic purposes. Colorectal
cancer is the second leading cause of cancer deaths and is one of the five most important cancers to be
screened. According to the National Statistical Office (NSO) survey in 2016, colorectal cancer was the
third most common cause of lung cancer and liver cancer. In the past, the colorectal cancer incidence
rate was high in Western countries. However, the incidence rate is rapidly increasing in South Korea
as well. According to the adenoma-cancer continuum hypothesis, 95% of colorectal cancers occurring
in the general population are advanced through the adenoma stage. Therefore, early detection and
elimination of polyps during the adenoma stage are crucial in the prevention of colorectal cancer [1].
Colorectal cancer is diagnosed by a physician, and the authenticity of this diagnosis depends on the
physician’s experience. Although certain objective criteria are used to ensure an accurate diagnosis,
however, most physicians tend to follow a subjective criterion. Therefore, the results of an endoscopic
colposcopy have a very subjective disadvantage [2]. The introduction of a system based on artificial
intelligence can assist in obtaining a more accurate diagnosis and reduce human errors.
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Attempts to analyze medical images using computerized methods date back many decades.
The concept of Computer Aided Diagnosis (CAD) appeared in the 1970s when scanned medical
images were analyzed on a computer. In the 1970s and 1990s, rule-based systems and expert systems
were widely used. Rule-based systems use low-level image processing to extract edges and lines
using filters. Mathematical structures are used to match circles and ellipses to obtain and analyze
components. On the other hand, an expert system is evaluated as Good Old-Fashioned Artificial
Intelligence (GOFAI) by analyzing the results of images using several conditional statements (if-else
statements) [3].

Training data to improve the performance of a system were popularized in the late 1990s.
This process required two main steps, namely feature extraction and classification. Features such as
color, shape, texture, etc., are extracted during the feature extraction step. The most crucial step is to
extract important features to represent the image. The extracted features are analyzed using various
machine learning algorithms. The work done by [3–7] followed the same approach, which included
feature extraction steps having several linear classifiers for classification. However, such methods rely
on texture analysis, which requires expert knowledge about the features during the extraction process.
Hence, they lack generalization and cannot be useful for transfer capabilities.

Currently, deep learning is widely used in medical image analysis. The 1998 paper by Yann
LeCun [8] laid the foundation of today’s deep learning. Artificial intelligence using deep learning has
shown excellent results in various fields such as speech recognition, language discrimination, behavior
recognition, and image retrieval. Mostly medical image analysis deals with diagnosing diseases and
detecting the affected area. Disease diagnosis using artificial intelligence is an active research area
due to the development and state-of-the-art performance of deep learning. Recently, CNN has been
reported to be highly useful in the field of endoscopy, especially Esophagogastroduodenoscopy (EGD),
capsule endoscopy, and colonoscopy. The works done by [9–12] utilized a CNN-based diagnostic
system to localize and classify EGD images effectively. Further, it was also applied to colonoscopy
images to detect and classify colorectal polyps [13–16], and it was shown that the CNN-based method
outperformed the traditional hand-crafted features method. Other typical usages of deep learning for
disease diagnosis include skin cancer screening and diabetic retinopathy diagnosis [17,18]. Esteva [17]
used Google’s Inception v3 [19] model to recognize 757 types of skin cancer. In addition, CNN was
used to measure the severity of knee osteoarthritis in X-ray images and to detect lymph nodes in [20]
and [21], respectively. CNN has also achieved good results in detecting brain tumors [22,23] and in
lung nodule classification [24]. A better model and data are required to obtain good performance.
Although the availability of a large amount of data has significantly increased performance, good
quality training data are also needed to increase the diagnostic ability of the network. However, since
medical images are obtained in a relatively controlled situation, they are stereotypical and can provide
a good generalization performance even with a relatively small dataset. Furthermore, the number of
layers in the network also plays a vital role to extract deep features from the images.

In this paper, we analyze the performance of the networks with the addition of different numbers
of layers and propose a convolutional neural network that can classify normal colon, adenomatous
polyp, and adenocarcinoma in colonoscopy images.

2. Image Classification Using Deep Learning

In the late 1990s, the LeNet [8] architecture was used for image classification using deep learning.
LeNet’s architecture consists of a convolution layer, a pooling layer, and a fully-connected layer.
The architecture of most deep image classification methods is inspired by LeNet. The operation
performed in the convolution layer is given by Equation (1).

Fi = bi + ∑
i
(Wij ∗ Xi) (1)
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where Xi refers to the ith pixel, Wi j corresponds to the weight value used for convolution, * denotes
the convolution operation, and bi is the bias. The kernel W slides across the image and performs the
convolution operation between Wij and Xi. The convolution output for all pixels of an image results in
a feature map Fi. Multiple kernels are used to generate multiple feature maps.

To reduce the image size, the pooling layer selects the maximum value in k-sized kernels at row r
and column h in feature map F as shown in Equation (2). This procedure is known as max-pooling.
If the average value is extracted instead of the maximum value, it is known as average pooling.

Pi,h = maxFr,h, Fr+1,h+1, ...., Fr+k,h+k (2)

AlexNet [25], published in 2012, consists of five convolution and three fully-connected layers
as shown in Figure 1. To solve the problem of the vanishing gradient, AlexNet replaces the existing
sigmoid function or hyperbolic tangent activation function with the Rectified Linear Units (ReLU) [26]
activation function as shown in Equation (3). To reduce overfitting, the dropout [27] method was
applied for neural network learning. The AlexNet structure showed excellent results with a 15.4% test
error rate in the image recognition part of ImageNet.

f (x) = max(0, x) (3)

Two years after AlexNet was published, VGGNet [28] was developed by the University of Oxford.
VGGNet consists of up to sixteen convolution layers. Unlike AlexNet, which uses a variety of kernel
sizes, VGGNet reduces the number of parameters by using a fixed kernel size of 3 × 3. The nonlinearity
in a network increases with the increase in the number of convolution layers. This aids in extracting
more unique features.

A limitation with deep learning is that it may be trained poorly due to the slope loss as the
architecture gets deeper. To solve this problem, ResNet [29] introduced the method of a block structure
as shown in Figure 2 in which the input layer and the output layer are connected to each other.
This structure is called the residual structure, and it is a structure that learns to minimize the difference
between the input and output. Through this structure, the problem of slope disappearance is solved,
and the training result is compared and evaluated by increasing the layers of the neural network.

Figure 1. An illustration of the architecture of AlexNet.

Figure 2. Residual learning: a building block in ResNet.
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Further, DenseNet [30] was introduced in 2017, where each layer takes all preceding feature maps
as the input. Unlike ResNet, DenseNet has a structure in which an input layer and an output layer
having the same feature map size are directly connected to each other and transmitted as the input
values of the next layer as shown in Figure 3. It has small parameters and fewer computations with
better performance than the state-of-the-art.

Figure 3. A five-layer dense block in DenseNet.

3. Proposed Network Architecture

In this section, we propose and describe our convolutional neural network architecture for
classification of colonoscopy images.

3.1. Structure

The proposed network architecture consists of a total of 43 convolution layers, five pooling layers,
and a fully-connected layer as shown in Figure 4. The size of the input image is resized to 224 × 224
pixels. According to VGGNet [28], we used a three by three kernel for each of the convolution layers.
The three by three kernel has the same effect as the use of 7 × 7 and 5 × 5 kernels. The dotted line
in Figure 4 shows the functions performed between the preceding and the next convolution layer.
After every convolution layer, batch normalization is applied, which is followed by the ReLU activation
function. This structure was inspired by the ResNet [29] structure and is applied in the same way in
this study. The feature map size reduction is performed five times in total. Max-pooling is performed
by a 2 × 2 kernel in all pooling layers except the last pooling layer. In the last pooling layer, global
average pooling is performed using a 7 × 7 kernel. Lastly, the fully connected layer consists of 1024
neurons, which are connected to the output layer composed of three classes.

Figure 4. Proposed network architecture. Note that each long rectangle means “convolution layer”.
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3.2. Number of Convolution Layers

In this section, we discuss the influence of the number of convolution layers and discuss the
proposed number of convolution layers. As shown in Figure 5, if we calculate a convolution product
with a kernel size of three centered at x3, the result y3 of the first convolution product is obtained by
the influence of input values x2, x3, and x4. In the result of second convolution product, z3 is the result
from the convolution product of y2, y3, and y4 of Hidden Layer 1. y2, y3, and y4 are derived from x1,
x2, x3, x4, and x5 of the input layer. Therefore, z3 is also affected by x1, x2, x3, x4, and x5 of the input
layer. In other words, the result z3 is calculated by a kernel with the identical kernel size of the first
convolution layer. However, the result of the convolution product shows the effect of it, which is a
size twice as large asthe size of the kernel used in the first layer as shown by the blue area in Figure 5.
In this way, when calculating the convolution product in Hidden Layer 2, f3 is calculated by z2, z3,
and z4 with a kernel of size three, but indirectly, it is affected by the kernel of size seven in the first
input layer. Therefore, the increase of the convolution layers can be expected to increase the size of
the kernel. When applied to 2D images, if the number of convolution layers is increased, it can be
expected to increase the size of the kernel.

Figure 5. Influence of the number of convolution layers. (a) Influence on neural networks; (b) influence
on 2D images.

The successive convolution layers have different influences depending on the size of the image.
As shown in Figure 6, convolutions with the first down sampling and second down sampling use the
same size kernel, but the influence of the convolution product applied to each image size is different.

Figure 6. Influence area of the convolution product according to the size of the 2D image.
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4. Experiments

Our dataset consisted of three types of images, which were used for training and testing our
network. Sample images from our dataset can be seen in Figure 7, where Figure 7a shows colonoscopy
images of a normal person, Figure 7b shows colonoscopy images containing an adenomatous polyp,
and Figure 7c shows colonoscopy images containing a cancerous adenomatous polyp. As shown in
Figure 7, the colon of a normal person is without any polyps in the mucosa. When a polyp develops in
the colon of a normal person (see Figure 7b), it can develop into a relatively large adenomatous polyp
(see Figure 7c). Adenocarcinoma of the adenomatous polyps develops into malignant tumors and
become cancer. The shape and size of the polyps developed by the cancer appear in various forms
without any specific rules (see Figure 7c).

Figure 7. Endoscopy image type in this experiment. (a) Normal images; (b) adenoma images;
(c) adenocarcinoma images.

4.1. Experimental Data

Our original image dataset consisted of 449 cancer images, 626 adenomatous polyp images,
and 773 normal images as shown in Table 1. However, this meager amount of data was insufficient for
a deep neural network. To tackle this issue, we used data augmentation to increase the dataset size.
Specifically, each image was rotated at various angles between 10◦ and 360◦. After data augmentation,
we obtained 16,609 adenocarcinoma images, 16,616 adenomatous polyposis images, and 16,233 normal
images as shown in Table 1. Our final dataset consisted of a total of 49,458 endoscopic images. Our test
dataset consisted of 140 cancer images, 142 adenomatous polyp images, and 128 normal images as
shown in Table 2.

Table 1. Configuration of our training dataset.

The Number of Original Images The Number of Rotated Images Total Training Images

Normal 773 15,460 16,233

Adenoma 626 15,990 16,616

Adenocarcinoma 449 16,160 16,609

Table 2. Configuration of our test dataset.

The Number of Test Images

Normal 128

Adenoma 142

Adenocarcinoma 140
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4.2. Experiments of Convolution Layer

As described above, the effect of the convolution differed according to the number of convolutions
and the pooling phase. In this paper, In order to find an optimal model for colon endoscopy
recognition, we performed experiments in which the convolution layer structure changed as shown
in Table 3. We proposed the number of layers that had the highest result by changing the number
of the convolutional layers after each pooling step. In the first experiment of the convolution layers,
we experimented to increase the number of convolution layers by 4, 6, and 8 configurations, which were
the same numbers of convolution layers after each pooling step. The second experiment of the
convolution layers was an experiment in which the number of convolution layers was increased
around a specific pooling step.

Table 3. Configuration of the experiment of the convolution layers.

Layers 21-Layer 30-Layer 41-Layer 43-Layer-a 43-Layer-b 43-Layer-c 43-Layer-d

conv1 [3 × 3128] × 4 [3 × 3128] × 6 [3 × 3128] × 8 [3 × 3128] × 15 [3 × 3128] × 9 [3 × 3128] × 6 [3 × 3128] × 6

Pooling 2 × 2 ma × pool, stride 2

conv2 [3 × 3128] × 4 [3 × 3128] × 6 [3 × 3128] × 8 [3 × 3128] × 9 [3 × 3128] × 15 [3 × 3128] × 9 [3 × 3128] × 8

Pooling 2 × 2 ma × pool, stride 2

conv3 [3 × 3128] × 4 [3 × 3,128] × 6 [3 × 3128] × 8 [3 × 3128] × 6 [3 × 3128] × 6 [3 × 3128] × 15 [3 × 3128] × 9

Pooling 2 × 2 ma × pool, stride 2

conv4 [3 × 3128] × 4 [3 × 3128] × 6 [3 × 3128] × 8 [3 × 3128] × 8 [3 × 3128] × 8 [3 × 3128] × 8 [3 × 3128] × 15

Pooling 2 × 2 ma × pool, stride 2

conv5 [3 × 3128] × 4 [3 × 3128] × 6 [3 × 3128] × 8 [3 × 3128] × 5 [3 × 3128] × 5 [3 × 3128] × 5 [3 × 3128] × 5

Pooling 7 × 7 average pool, stride 2

Pooling 1024D fully-connected

Pooling 3D fully-connected

As a result of the first experiment, the accuracy was gradually increased with the increasing
number of convolution layers as shown in Table 4. This showed that the result was better as the number
of convolution layers increased, but when the number of convolution layers was further increased,
the performance deteriorated due to over-fitting. In a second experiment in which the convolution
layers were increased around a particular scale, high accuracy was demonstrated when the largest
number of convolution layers was constructed after the second pooling step.

Table 4. The result of the experiment of the convolution layers.

Layers 21-Layer 30-Layer 41-Layer 43-Layer-a 43-Layer-b 43-Layer-c 43-Layer-d

Accuracy 62% 68% 80% 83% 86% 91% 88%

4.3. Experimental Evaluation

This section shows various metrics used for evaluation during the experiments on the testing sets.
If a model correctly predicted the positive class, then it is known as a True Positive (TP). Similarly,
if a model predicts the negative class correctly, then it is known as a True Negative (TN). On the
other hand, if a model incorrectly predicts a positive class, then it is referred to as a False Positive
(FP). A False Negative (FN) is when the model incorrectly predicts the negative class. The accuracy,
precision, and sensitivity are calculated using Equation (4).

Accuracy = TP + TN
TP + TN + FP + FN

Precision = TP
TP + FP

Recall = TP
TP + FN

(4)
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4.4. Network Training

The implementation was based on Keras with a TensorFlow backend. We used stochastic gradient
descent with a batch size of 8 for all methods. The learning rate started from 0.001 and decreased by a
factor of 0.1 when the tolerance level exceeded 4. We used a weight decay of 0.0001 and a momentum
of 0.9 without an accelerated gradient. Overall training was done for different network architectures
on a single NVIDIA GTX 1080 Ti GPU. We fine-tuned DenseNet-121, ResNet-152, and VGG16 using
RMSProp [31] with a decay of 0.9. Each network was trained for 100 epochs. Figure 8 shows the
inference time during training each architecture with same number of batches. As can be seen in the
figure, the proposed method processed fewer images, but it had fewer parameters in comparison
to other architectures. Due to the increasing number of channels added in the existing CNNs, its
complexity overfit the model. However, we used the same number of channels in all layers and
increased the convolutional layer, which made the method less complex. Table 5 shows the overview
of each network’s computation capability with its parameters.

Figure 8. The inference time per image is estimated for the same batch size of 8 for all methods.

Table 5. Network complexities with the parameters.

Model Processed Images per Second Parameters (in Million)

VGG 96 138

ResNet 102 25.5

DenseNet 104 27.2

Proposed Method 38 6.5

4.5. Performance Evaluation

In this section, we compare the performance of the proposed method with the existing CNN
method due to the limited work on colorectal diseases using deep learning. We first evaluated different
layers of the CNN as shown in Table 4. Next, we evaluated the proposed method with the baseline
architectures with the same number of parameters. The results of our experimentation and evaluation
are summarized in Tables 6–9. Table 9 shows the confusion matrix results for the test data, whereas
Table 6 shows the sensitivity, precision, and accuracy of the test results.

Table 6. Confusion matrix of the experimental results.

Actual Class Predicted Class

Normal Adenoma Adenocarcinoma

Normal 120 8 0

Adenoma 3 135 4

Adenocarcinoma 3 5 132
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Table 7. Error images.

Actual Class Predicted Class Error Images

(a) Normal Adenocarcinoma

(b) Adenoma Normal

(c) Adenoma Adenocarcinoma

(d) Adenocarcinoma Normal

(e) Adenocarcinoma Adenoma

In the experimental results with 128 normal images, there were 8 TN cases, which showed food
and excrement in colonic mucosa and colorectal crescentic wrinkles similar to polyps. Further, it was
also observable that the problem that had the biggest impact on the overall error rate was images
with small-sized polyps that were difficult to detect in the normal area. It showed a 4.6% error rate in
the experimental results. This was the most error of the total error rate of 5.61%. In all the test data,
adenoma images showed the lowest precision by 91.21%, but adenocarcinoma images showed the
highest accuracy of 97.05%. The accuracy of the whole image was 94.39%.

Table 8. Experimental results.

Class Sensitivity (%) Precision (%) Accuracy (%)

Normal 93.37 95.23

Adenoma 95.07 91.21 94.39 (%)

Adenocarcinoma 94.28 97.05

The comparison with the well-known network in the ImageNet Challenge is shown in Table 9.
The test result showed 87% on VGG19 [28], 90% on ResNet [29], and 89% on DenseNet [30] when
trained with the same dataset.

Table 9. Accuracy with other CNN networks.

CNN Networks Accuracy (%)

VGG19 87

ResNet 90

DenseNet 89

Proposed Architecture 94
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5. Discussion

In this work, we presented an automated system to classify colorectal diseases with high accuracy.
The experimental evaluation showed that the proposed method could accurately differentiate high-risk
polyps and adenocarcinoma effectively in the endoscopic domain. This method leveraged the VGG
architecture and enabled the development of effective models with high accuracy for colorectal
images in comparison to existing approaches. Although this best-performing model processed fewer
images per second during inference, it was more important to classify the diseases more accurately.
The availability of fewer data in the medical domain made it difficult for the CNN model to converge.
However, our proposed method had much fewer parameters and converged fast when the dataset had
fewer images. This technology will improve the quality of colorectal cancer screening and performance
if combined with endoscopic experts.

One drawback of our method for endoscopic characterization was the black box approach to
the results. Therefore, the visualization method in the network after or during training needs to be
developed for improvement. It will surely help doctors or medical experts to gain insight into the
influential regions and features in the image. Beside this, we plan to compare our performance with
medical experts and validate the efficacy of the method in clinical practice.

6. Conclusions

In this paper, we used our proposed deep neural network architecture to recognize normal,
adenomatous polyps, and adenocarcinoma in colonoscopy images. We studied the effect of the
addition of convolutional layers in the network, and based on this, we proposed a convolutional
neural network architecture that consisted of a total of 43 convolutions and one fully-connected
layer. To evaluate our network, we calculated the sensitivity, precision, and accuracy. With extensive
experiments and evaluation, it was proven that our method was more accurate and able to extract
features from the colorectal images. In the future, the endoscopy diagnosis system will be developed
and improved.

7. Data Availability

The endoscopy image data used to support the findings of this study were supplied by Yoon-Jae
Kim under license and so cannot be made freely available. Requests for access to these data should be
made to yoonmed@gilhospital.com.
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