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Abstract: Development of local plant genetic resources grown in specific territories requires
approaches that are able to discriminate between local and alien germplasm. In this work, three potato
(Solanum tuberosum L.) local accessions grown in the area of Majella National Park (Abruzzo, Italy)
and five commercial varieties cultivated in the same area were characterized using 22 morphological
descriptors and microsatellite (SSR) DNA markers. Analysis of the DNA and of the plant, leaf, flower,
and tuber morpho-agronomic traits allowed for a reliable discrimination of the local potato accessions,
and provided a clear picture of their genetic relationships with the commercial varieties. Moreover,
infrared spectroscopy was used to acquire a fingerprint of the tuber flesh composition. A total of
279 spectra, 70% of which were used in calibration and the remaining 30% for prediction, were
processed using partial least squares discriminant analysis. About 97% of the calibration samples and
80% of the prediction samples were correctly classified according to the potato origin. In summary,
the combination of the three approaches were useful in the characterization and valorization of
local germplasm. In particular, the molecular markers suggest that the potato accession named
Montenerodomo, cultivated in Majella National Park, can be considered a local variety and can be
registered into the Regional Voluntary GR Register and entered into the foreseen protection scheme,
as reported by the Italian regional laws.

Keywords: potato; landraces; morpho-agronomic characterization; microsatellite (SSR) DNA analysis;
infrared spectroscopy; varietal discrimination; PLS-DA
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1. Introduction

Potato (Solanum tuberosum L.) is a major source of food for humans in many countries, as witnessed
by the fact that its worldwide production is surpassed only by that of rice, wheat, maize, and sugar
cane [1]. Potato tuber is regarded as a substantial fount of energy because of its high content of starch,
representing 60–80% of the dry matter, but it is also rich in proteins with a well-balanced aminoacidic
profile compared to other plant-derived foodstuffs, as well as minerals (calcium and potassium) and
vitamin C. Moreover, a wide range of health benefits has been attributed to the phytochemicals of
potato tubers, such phenolic acids, flavonoids, and carotenoids [2].

Potato landraces with specific peculiarities (purple or red flesh, for instance) or clear geographical
identity are increasingly more attractive to consumers. Late or early potato varieties also occupy an
important niche in the international market, but potatoes produced at lower costs may be illegally sold
as high-quality, extra-seasonal varieties [3]. In the framework of European policy on the safeguard
and valorization of the regional agronomical specialties, several potato landraces cultivated in specific
territories of various countries, including Italy, Spain, UK, France, and Greece, have received PDO
(Protected Designation of Origin) or PGI (Protected Geographical Indication) certification marks [4].
The first mark in particular can be considered the highest recognition of geographical unicity of cultivars
and their strong link to specific pedo-climatic conditions of the growing site [5]. In this context, the
possibility of determining the geographical origin of potato accessions is a powerful tool to guarantee
the authenticity of the typical or certified products and protect the consumers from commercial fraud.
The genetic resources of a specific territory are generally characterized by morphological descriptors
that are useful marker types accepted by the International Union for Protection of New Varieties
of Plants [6]. However, many morphological characters are influenced by environmental factors;
for this reason, the genetic characterization of the local germplasm is assessed via a combination of
morphological and molecular markers [7,8].

An increasing number of scientific studies are aimed at developing analytical/chemometric
strategies for the geographical classification of potato landraces or the differentiation of tubers obtained
using conventional and biological cultivation. Multi-elemental analysis of the mineral and trace
metal content of potato tubers [3,9–12], which reflect the composition of the soil and the environment
where they grow, is a powerful tool for establishing the geographical place of origin; however, it was
observed that the influence of soil type on the chemical composition of the tubers is also dependent
on the cultivar. The isotopic ratios of the stable bio-elements, which influenced by local agricultural
practice regimes together with geoclimatic factors and soil type, are also promising markers of the
cultivation region and cultivar [13–15]. In addition, metabolomic approaches by means of gas- or
liquid-chromatography and nuclear magnetic resonance [2,12,16,17] can identify various primary and
secondary metabolites, including carbohydrates, amino acids, organic acids, volatile compounds,
sterol lipids, and cerebrosides, which are potentially useful for classifying potatoes on the basis of the
geographical origin and/or botanical variety.

Near- and mid-infrared vibrational spectroscopies have been extensively applied to trace
foodstuffs [18–22]. Compared with targeted analytical methods (such as those based on the gas-
or liquid-chromatographic determination of specific marker molecules), infrared spectroscopy allows
for the quick collection of a comprehensive fingerprint of the food composition by means of robust and
relatively cheap instrumentation with no or simple pre-treatment of the sample. Regarding potato
characterization, infrared spectroscopy is one of the most powerful and versatile techniques for the
elucidation of various physico-chemical aspects, including the structure and conformation of the
organic constituents, the determination of texture properties or the degree of order in polysaccharides,
and for the monitoring of natural or process-induced changes in tuber composition [23–28]. Vibrational
spectroscopy was also utilized to investigate the effect of irradiation [29], microwave baking [28],
and adulteration of flour or puree [30,31], but this technique was rarely used before to classify potatoes
on a varietal basis, and to this end, near-infrared spectroscopy was exclusively applied [32–34].
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In the present work, attenuated total reflectance Fourier transform infrared (ATR-FTIR)
spectroscopy in the mid-range (4000–400 cm−1) was utilized to attempt a discrimination of autochthone
potato accessions cultivated in the mountain territory of Majella National Park (Abruzzo, Italy) and
commercial varieties usually grown in the same area. Apart from the safeguard of natural biodiversity
and the wilderness, many actions are currently being implemented in the Majella National Park to
valorize the local germplasm [35,36] and promote the sustainable economic development of rural areas.
In this context, the plant genetic resources of the Majella National Park, including potatoes, have been
recently rediscovered. Valorization of these local agronomical specialties also requires approaches
that can discriminate them from commercial products. This work focused on the discrimination
of three potato landraces that have been historically cultivated within the territory of the park and
five non-local varieties. The latter include four commercial varieties and one old ecotype coming
from the nearby Gran Sasso-Laga National Park (Figure 1). All the accessions investigated in this
work were grown in the same experimental field located within the territory of Majella National
Park. Therefore, the possible variability related with the pedoclimatic features of the cultivation site
was removed. Preliminarily, a characterization of potato accessions was performed using selected
morpho-agronomic traits. In addition, we performed microsatellite (SSR) DNA analysis to properly
identify these accessions in comparison to other commercial potato varieties that are locally grown.
Varietal classification of the potatoes based on the ATR-FTIR spectra was conducted using partial least
squares discriminant analysis, which is suitable for handling large spectroscopic data matrices in food
traceability problems.
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tubers of the commercial varieties were acquired in local markets, whereas tubers of the local 
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with four replications was adopted. In each plot, ten tuber seeds were distributed in two rows, with 
inter- and intra-row distances of 0.70 and 0.40 m, respectively. The tubers were planted in April 2018 
and the cultivation techniques commonly applied by the farmers of the National Park of Majella were 
adopted. The tubers of all accessions were harvested on 10 September 2018. 
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2. Materials and Methods

2.1. Potato Samples

Eight different potato accessions were investigated: Gamberale (GA), Turchesa (TU),
Montenerodomo (MO), Pizzoferrato (PI), Désirée (DE), Agria (AG), Kennebec (KE), and Spunta
(SP). GA, MO, and PI potato accessions are named according to the localities of the Majella National
Park where they are traditionally cultivated, whereas TU is a local variety the comes from the nearby
Gran Sasso-Laga National Park (Figure 1). DE, AG, KE, and SP are commercial varieties that are also
usually grown by the farmers of the Majella National Park. Tubers of the eight potato varieties are
displayed in Figure A1 (Appendix A).

2.2. Potato Cropping

Potatoes were grown in an experimental field located in Montenerodomo (CH), one of the 39
municipalities included in the Majella National Park territory, at an altitude of about 1000 m asl. The
tubers of the commercial varieties were acquired in local markets, whereas tubers of the local accessions
were kindly provided by farmers of the Majella National Park. A randomized block design with four
replications was adopted. In each plot, ten tuber seeds were distributed in two rows, with inter- and
intra-row distances of 0.70 and 0.40 m, respectively. The tubers were planted in April 2018 and the
cultivation techniques commonly applied by the farmers of the National Park of Majella were adopted.
The tubers of all accessions were harvested on 10 September 2018.
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2.3. Morpho-Agronomic Characterization of Potato Cultivars

A total of 22 morpho-agronomic traits of plants, leaves, flowers, and tubers (listed in Table 1)
were used to characterize the eight potato accessions. These descriptors were mainly based on those
proposed by the International Union for the Protection of New Varieties of Plants (UPOV) [6].

Table 1. List of the descriptors used in the morpho-agronomic characterization of the potato varieties.

Plant Part Descriptors Expressions Abbreviation

Plant Height 1 = very short, 3 = short; 5 = medium;
7 = tall; 9 = very tall 23 1

Plant Growth habit 3 = upright; 5 = semi-upright; 7 = spreading 13

Plant Anthocyanin coloration
of stem

1 = absent or very weak; 3 = weak;
5 = medium; 7 = strong; 9 = very strong 14

Plant Foliage structure 1 = stem type; 2 = intermediate type;
3 = leaf type 12

Plant Flower frequency 1 = absent or very low; 3 = low;
5 = medium; 7 = high; 9 = very high 24

Leaf Openness 1 = closed; 3 = intermediate; 5 = open 16

Leaf Presence of secondary
leaflets 3 = weak; 5 = medium; 7 = strong 17

Leaf Anthocyanin coloration
on midrib of upper side

1 = absent or very weak; 3 = weak;
5 = medium; 7 = strong; 9 = very strong 19

Leaf Width in relation to
length of lateral leaflets 3 = narrow; 5 = medium; 7 = broad 20

Leaf Frequency of coalescence
of lateral leaflets

1 = absent or very low; 3 = low;
5 = medium; 7 = high; 9 = very high 21

Flower
Anthocyanin coloration
on peduncle of
inflorescence

1 = absent or very weak; 3 = weak;
5 = medium; 7 = strong; 9 = very strong 26

Flower
Intensity of anthocyanin
coloration on inner side
of corolla

1 = absent or very weak; 3 = weak;
5 = medium; 7 = strong; 9 = very strong 28

Flower
Extent of anthocyanin
coloration on inner side
of corolla

1 = absent or very small; 3 = small;
5 = medium; 7 = large; 9 = very large 30

Tuber Shape 1 = round; 2 = short oval; 3 = oval;
4 = long-oval; 5 = long; 6 = very long 32

Tuber Color of skin
1 = light beige; 2 = yellow; 3 = red; 4 = red
parti-colored; 5 = blue; 6 = blue
parti-colored; 7 = reddish brown

34

Tuber Color of base of eye 1 = white; 2 = yellow; 3 = red; 4 = blue 35

Tuber Color of flesh

1 = white; 2 = cream; 3 = light yellow;
4 = medium yellow; 5 = dark yellow;
6 = red; 7 = red parti-colored; 8 = blue; 9 =
blue parti-colored

36

Tuber Average tuber number Number N1
Tuber Average tuber weight Weight (kg) W

Tuber Average tuber number
(<40 mm) Number N2

Tuber Average tuber number
(40–60 mm) Number N3

Tuber Average tuber number
(>60 mm) Number N4

1 Numbering adopted by GlBA (Gruppo di lavoro Biodiversità in Agricoltura, http://dspace.inea.it/handle/inea/745).

2.4. Genotyping

Genomic DNA was isolated from fully developed young leaves of three different plants for
each accession using the GenEluteTM Plant Genomic DNA Miniprep Kit (Sigma-Aldrich, St. Louis,

http://dspace.inea.it/handle/inea/745
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MO, USA). Genotyping was carried out with five microsatellite (SSR) primer pairs chosen based on
their previously assayed discrimination power in a larger collection of potato varieties [12,37,38]. All
SSRs were recommended at CIP (International Potato Center, www.cipotato.org) based on quality
criteria, genome coverage, and locus-specific information content (Table A1). SSR-PCR and capillary
electrophoresis were performed, as reported by Bontempo et al. [39]. The alleles for SSR locus of
each potato genotype were assigned with their molecular size and scored as present (1) or absent (0)
using GeneScan Analysis software (version number 3.1, Applied Biosystems, Foster City, CA, USA).
A similarity matrix was calculated using the Dice coefficient [40] with the program DendroUPGMA
(http://genomes.urv.es/UPGMA/) [41]. Through the unweighted pair group method with arithmetic
mean (UPGMA) algorithm, it was possible to construct a tree diagram (dendrogram) to illustrate the
genetic clustering of the potato varieties under investigation. The R software version 3.2.1 (R Foundation
for Statistical Computing, Vienna, Austria) was employed to build the diagram.

2.5. ATR-FTIR Measurements

The infrared spectra of the potato samples were recorded on a PerkinElmer Spectrum Two™
(PerkinElmer, Waltham, MA, USA) FTIR spectrometer consisting of a deuterated triglycine sulfate
(DTGS) detector and a PerkinElmer Universal Attenuated Total Reflectance (uATR) accessory equipped
with a single bounce diamond crystal. Each spectrum was registered from 4000 cm−1 to 400 cm−1 with
a 4 cm−1 instrumental resolution and ten scans were averaged per spectral replicate. The background
was collected with the crystal exposed to the air. Before each measurement, the ATR crystal was
cleaned with methanol and air dried. ATR-FTIR spectra were collected on different sections of each
potato tuber obtained by cutting the tubers in thick slices and by contacting the central part of the slice
with the ATR crystal. A consistent force was applied using the pressure monitoring system integrated
with the instrument to maximize the spectrum intensity. The spectra were collected from eight to nine
tubers of each accession and three to five spectra were recorded from each tuber at different depths. The
tubers analyzed using ATR-FTIR were randomly extracted from those with size >60 mm (descriptor
N4 in Table A1, Appendix A) collected during morpho-agronomic analysis (ranging between about 30
and 180, depending on the accession) and stored in the dark in a dry and fresh room. Acquisition of
the spectra of the various accessions was carried out in a random order and was completed in one
week in December 2018 to avoid variations caused by differences in aging.

2.6. Multivariate Statistical Analysis

Principal component analysis (PCA) and hierarchical agglomerative cluster analysis (HCA) were
applied to the morpho-agronomic data. PCA [42] allows for representing multivariate information in a
low-dimensionality space defined by a relatively small number of uncorrelated principal components
(PCs). PCs are obtained using an orthogonal transformation of the original data in such a way that
the first is oriented along the direction of maximum variance and the successive PCs in turn explain
the greatest fraction of residual variance under the constraint of mutual orthogonality between the
components. Transformation of the original data matrix X is mathematically described by Equation (1):

X = TPT + E, (1)

where the columns of matrix P (loadings matrix) define the PC directions, the columns of matrix T (scores
matrix) are the coordinates of the samples in the PC space, and the error matrix E collects the residuals
associated with the approximation of the original data when fewer PCs than the original number of
variables are extracted. Usually, the scores are graphically projected onto the two- or three-dimensional
space of the most significant components (score plots), which allows for a straightforward visualization
of the trends within the data samples, such as clustering, retaining most of the original information. The
loadings can be also plotted (loading plot) in the compressed PC subspace to visualize the relationships
between the original variables and the relative weight of each variable in the selected PCs.

www.cipotato.org
http://genomes.urv.es/UPGMA/
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In HCA [43], single objects are gradually connected to each other in groups according to similarity,
which is inversely related to the distance between objects. The final sequence of merges is graphically
represented in a dendrogram, with the vertical axis showing the similarity measure at which each
successive object joins a group. In this work, the usual Euclidean distance was selected to compute the
similarity and the average linkage method was the clustering algorithm.

The classification of potato varieties was attempted using partial least squares discriminant
analysis (PLS-DA). PLS-DA [44,45] takes its origin from partial least squares regression, which allows
one to link a matrix X (i.e., raw experimental data) with a multi-response matrix Y (PLS-2 regression)
and overcome limitations related with an ill-conditionate covariance matrix (as in the case of a greater
number of X variables than the objects). The regression model is built by iteratively extracting latent
variables from X factors and Y responses (also referred to as X-scores and Y-scores, respectively). The
extracted X-scores are used to predict the Y-scores, and indirectly, the model responses. In classification
problems, the model response is categorized via the generation of a dummy binary Y matrix in which 1
and 0 indicates the “in-group” and “out-group” samples, respectively. After the regression model has
been built using a calibration data set, the calibration or even external samples are classified according
to the computed or predicted outputs. However, the PLS-DA responses are continuous and not binary,
and therefore a threshold must be defined to assign the objects; the value 0.5 was used in this work.
The optimal number of latent variables in the PLS-DA model was determined using leave-one-out
cross-validation. Multivariate statistical analyses were run in Matlab (version 2015b, The Mathworks,
Natick, MA, USA) using in-house routines.

3. Results and Discussion

3.1. Morpho-Agronomic Characterization of Potato Accessions

The results of the morpho-agronomic characterization of potato accessions are graphically shown
in Figure 2. The average of four replicates for each accession, collected in Table A1 (Appendix A),
and the descriptors were simultaneously projected onto the space of the first three principal components
(PCs), accounting for 58.8% of the variance. Plots (a) and (b) of Figure 2 display the biplots in the
PC1–PC2 and PC1–PC3 planes, respectively.
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Figure 2. Projection of the potato accessions and morpho-agronomic descriptors onto the (a) PC1–PC2
and (b) PC1–PC3 planes. Asterisks identify the accessions from the Majella National Park. Potato
accessions are Gamberale (GA), Turchesa (TU), Montenerodomo (MO), Pizzoferrato (PI), Désirée (DE),
Agria (AG), Kennebec (KE), and Spunta (SP). PC: Principal Component.

Figure 2a reveals a neat separation of the TU potatoes and a clustering of the remaining samples
into distinct groups separated along PC1: the first group collected the samples of three commercial
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varieties—AG, KE, and SP—while the latter was formed by the samples of the commercial potato
DE together with those belonging to the three accessions grown in Majella National Park—MO,
GA, and PI. Within each of these two groups, most of the samples belonging to different accessions
overlapped, especially those of the first group. The descriptors with higher loadings on PC1, namely
W, 23, N4, 30, 34, and 28 (defined in Table 1), were the morpho-agronomic traits that were more
influential in the differentiation of the two clusters and the isolation of the TU accession. On the
other hand, PC2 seemed to essentially describe the variability internal to the replicates of each potato
accession, which was mainly associated with the N1, N2, and N3 descriptors. The samples of the
three commercial potatoes—AG, KE, and SP—were still grouped together along PC3 (Figure 2b),
while those belonging to the DE, MO, GA, PI, and TU accessions were instead well separated along
this component. The morpho-agronomic traits 26, 14, 19, and 35 were mainly responsible for this
differentiation. In summary, the samples of five potato varieties (MO, PI, GA, DE, and TU) clustered in
distinct groups. Concerning the three commercial cultivars of AG, KE, and SP, variability within the
replicates seemed, by contrast, to be greater than the differences among the varieties. Nevertheless,
treatment of the morpho-agronomic data matrix by means of HCA revealed a clustering of potato
samples, including AG, KE, and SP, into eight distinct groups (Figure 3), each corresponding to a given
variety. Similarities among the various clusters roughly reflected the reciprocal position of the potato
classes within the explored PC subspace.
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Figure 3. Dendrogram showing the hierarchical clustering of potato samples based on the
morpho-agronomic descriptors. Asterisks indicate the accessions from Majella National Park.

The better separation of AG, KE, and SP varieties in the HCA analysis compared to PCA was
not surprising considering that some information on the morpho-agronomic characters may not be
retained by the first three components selected in PCA, which explained less than 60% of variance.

3.2. DNA Fingerprinting

Five SSR markers were used to evaluate the diversity of the samples at the genetic level. Due
to their high mutation rate and extensive genome coverage, these markers have been successfully
adopted in various applications, including plant DNA fingerprinting [46]. In addition, the SSR markers
assayed in this study belong to the robust and highly informative microsatellite-based genetic identity
kit set up by Ghislain et al. [47], and have been proposed as a reference for standardizing potato
germplasm analyses across laboratories. In total, 21 alleles were identified, with an average of 4.2
alleles per locus. The number of alleles per marker varied from 2 (locus STP0AC58) to 7 (locus STI
001) (Table A2, Appendix A). To evaluate the strength of the relationship among the analyzed samples,
an UPGMA dendrogram was built (Figure 4). The genetic distances between potatoes studied here
varied from 0.52 (between AG and TU) to 1.00 (GA and DE, PI and TU), with an average value of
0.74 (Table A3, Appendix A). Overall, the dendrogram allowed for distinguishing several clusters.
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In particular, as DNA markers (such as SSR) are not environmentally influenced [48], genotypes were
clustered according to their genetic makeup, regardless of the sampling area. The DE and GA local
accessions were grouped together with the control DE. Similarly, PI and TU fell into the same group due
to their high genetic similarity. By contrast, MO and AG were sorted into different clusters, displaying
an independent genetic status compared to the other genotypes. Our findings demonstrate that SSR
analysis was useful for providing a reliable discrimination of potato accessions collected in Majella
National Park and providing a clear picture of their genetic relationships with other varieties included
in the study.
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Figure 4. Dendrogram of the eight potato genotypes created using unweighted pair group method
with arithmetic mean (UPGMA) cluster analysis of microsatellite (SSR) marker data; the Dice coefficient
was used to estimate the degree of similarity among genotypes. Asterisks identify the accessions from
Majella National Park.

3.3. Characterization of Potatoes Using ATR-FTIR Spectroscopy

Figure 5a displays the ATR-FTIR spectra in the range 4000–940 cm−1 acquired from representative
samples of the eight potato accessions, which reflected the typical tuber flesh composition [32,49],
mainly consisting of water (77%–80%) and carbohydrates (9%–19%, predominantly starch), followed
by minor components, such as proteins (≈2%), fibers (0.4%–0.8%), lipids (0.1%), and organic acids
(0.4%−1%). Absorption bands in the 1800–940 cm−1 range are shown in Figure 5c. The spectral region
below 940 cm−1, showing a continuous absorption band with no fine structure, was not used in the
classification analysis. The broad absorption band at 3750–2800 cm−1 was associated with the O–H
stretching vibrations of carbohydrates and water [50]. This band strongly overlapped with the signals
ascribed to the symmetric and asymmetric stretching modes of the C–H bond that appeared as a single
shoulder in the region near 2930 cm−1. The broad band centered at about 2100 cm−1 was ascribed to
the rocking and scissoring vibrations of water molecules not directly bound to starch. The relatively
sharp signal at 1800–1500 cm−1 was associated with the vibrations of water molecules adsorbed in
the amorphous regions of starch [31]; however, the amide I and amide II peaks of proteins also fall
in this spectral range [26]. The shoulder at about 1742 cm−1 was assigned to the C=O stretching of
lipids and organic acids [51]. Previous studies revealed that the intensity of the absorption bands at
3750–2800, 2100, and 1800–1500 cm−1 is directly related to the hydration degree of the potato starch [31].
The weak and partially superimposed bands in the spectral range between 1500 and 1200 cm−1 were
predominantly due to the deformational modes of the CH/CH2 groups [50]. The absorption bands
between 1150 and 940 cm−1 arose from the coupling of C–O, C–C and C–O–H stretching, and the
C–O–H bending of starch. Despite the poor resolution and overlapping of the related signals, which
did not allow for an unequivocal attribution, changes in this region were ascribed to the differences in
the relative amounts of amorphous and crystalline starch and hydration of the crystalline form [26].
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3.4. Discrimination of Potato Varieties Using the PLS-DA of ATR-FTIR Spectra

A total of 279 ATR-FTIR spectra were collected by analyzing different slices extracted from
7–9 tubers of each accession (Figure 5a). ATR distortion of the relative intensities of the bands and



Appl. Sci. 2020, 10, 1630 10 of 19

shifts occur at lower frequencies, which can crucially affect quantitative analyses or accurate band
assignments; however, this was expected to have a negligible impact on the fingerprinting ability of
the infrared spectra in the classification of the potato accessions. Therefore, ATR correction on the
spectra was not performed. The data matrix was partitioned into calibration and prediction data
sets consisting of 194 and 85 samples, respectively, via application of the duplex Kennard–Stone
algorithm [52] to ensure a good representativeness of both groups. Finally, each potato category
was represented using a variable number of calibration samples ranging from 19 (SP) to 29 (MO),
whereas the external samples belonging to a given potato accession ranged from 8 (SP) to 13 (MO).
The raw ATR-FTIR spectra were subjected to various pre-processing methods [53], namely standard
normal variate (SNV), first- and second-derivative transformation, and their combinations, with the
aim of removing spurious variability and/or enhancing the systematic differences within the spectra
profiles. In particular, SNV consists of autoscaling on the rows such that every spectrum will have a
mean of 0 and a standard deviation of 1 after scaling. The Savitzky–Golay approach with a 15-point
window was applied in the first- and second-derivative transformation using second- and third-order
polynomial fittings, respectively. Regardless of the pre-treatment mode applied to the ATR-FTIR
spectra, PLS-DA was conducted on the autoscaled variables (autoscaling on columns). The influence
of the spectra pre-treatment on the PLS-DA predictive performance was evaluated using leave-one-out
cross-validation. The comparison of the proportion (%) of correctly classified samples for various
pre-processing methods, reported in Table 2, revealed that SNV scaling (Figure 5b) provided the best
results, with over 97% of classifications being correct. It is worth noting that discrimination based on
the raw spectra was noticeably worse (87.1% of correct classifications in cross-validation), despite a
relatively wide variability in their intensities. Such differences are probably related with variations in
the extent of the contact of the potato flesh with the ATR crystal, which can only be partially controlled
through the pressure monitoring system integrated with the instrument. SNV scaling seemed to
remove this kind of random variability and to enhance the spectral differences due to the potato
accession, especially at lower wavenumbers (Figure 5c).

Table 2. Proportion of correctly classified potato samples (non-error-rate, NER%) in leave-one-out
cross-validation for different pre-processing methods of the ATR-FTIR spectra.

Pre-Processing of ATR-FTIR Spectra NER% in Cross-Validation

None 87.1
First derivative 86.1

Second derivative 81.4
SNV 1 97.4

SNV + first derivative 88.7
SNV + second derivative 79.9

1 Standard Normal Variate.

The proportion of correctly assigned potato samples in the calibration and external prediction
is reported in Table 3, whereas Figure 6 graphically displays the calculated and predicted PLS-DA
responses for each class. In each insert of Figure 6, the data above or below the line represent the
samples accepted or refused, respectively, by a given class.

Table 3. Proportion (%) of correctly classified potato samples using PLS-DA in the calibration (computed
classes) and external prediction (predicted classes).

Class GA TU MO PI DE AG KE SP

Computed classes 100.0 96.0 100.0 90.9 96.2 100.0 100.0 94.7
Predicted classes 75.0 72.7 84.6 80.0 81.8 90.9 77.8 75.0
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Inspection of Figure 6 reveals that all the calibration samples belonging to the accessions GA,
MO, AG, and KE were correctly classified, while one or two classification errors can be observed for
the other potato samples with the associated proportions of correct classifications ranging between
90.9% and 96.0% (Table 3). Concerning the external potato samples, the number of classification errors
ranged between one (AG) and three (GA and TU). Because of the lower number of prediction samples
compared to the calibration data, the percentage of correctly predicted classes was slightly worse than
that in calibration. The observed values, ranging between 72.7% (TU) and 90.9% (AG), do however
indicate a good predictive performance of the PLS-DA model. To further confirm the reliability of the
classification model, PLS-DA was used to discriminate between the potato samples after shuffling
the classes. To this end, 30 different random assignments of the 194 calibration samples into eight
categories were generated and PLS-DA classification was applied for every repetition. The model
predictive performance was evaluated using cross-validation with five cancellation groups. The trend
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of prediction errors over the 30 repetitions is displayed in Figure A2 (Appendix A). It can be observed
that the proportion of correctly assigned samples to individual groups only rarely surpassed 40% and
the total error was less than 15%, much lower than that observed when PLS-DA was applied to the
true potato classes. It follows that the ATR-FTIR spectra of tubers really contained information on the
potato accession and the good prediction results provided by PLS-DA applied to the true classes is
unlikely to have occurred by chance.

The influence of the various regions of the ATR-FTIR spectrum in the discrimination of the potato
samples using PLS-DA was quantified using VIP (variable importance in the projection) scores [54].
The variables with VIP indices greater than one are usually assumed to be significant. The results of
the VIP analysis are displayed in Figure 7.
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The most influential regions of the ATR-FTIR spectrum (VIP > 1) in the potato discrimination
that could be unequivocally assigned included the spectral regions around 3370 cm−1 and 2900 cm−1

associated with the O–H and C–H stretching signals, respectively, and the bands centered at 2100 and
1640 cm−1, which were attributed to the vibrational modes of free water molecules and those bound to
starch, respectively. The intensity of the infrared spectrum in these regions has been related to the
level of hydration of starch [31], which can be considered a character of potato flesh that is mainly
influenced by the kind of accession. It is worth noting that, as described in Section 2.2, the eight potato
accessions investigated in this study were grown in the same experimental field and the plants were
not artificially irrigated. Therefore, the effect of possible differences in watering on the potato flesh
composition can be neglected.

4. Conclusions

The ATR-FTIR spectrum of potato flesh, although dominated by the high content of moisture
and starch in the tubers, which may hide the potential role of minor constituents, provides useful
information on the origin of potato accessions. Chemometric treatment of the ATR-FTIR spectra
allowed for discrimination of the potato cultivars with a good accuracy. These results confirmed the
great potentiality of mid-infrared spectroscopy toward tracing foodstuffs. Because of the low cost, easy
use, and minimal sample manipulation, ATR-FTIR can be preferred to more sophisticated instrumental
techniques used for the varietal/geographical discrimination of cultivars.

The results obtained in this study are useful for the characterization and valorization of
local germplasm. In particular, the molecular markers suggest that the potato accession named
Montenerodomo, cultivated in Majella National Park, can be considered a local variety and can be
registered into the Regional Voluntary GR Register and entered into the foreseen protection scheme,
as reported by the Italian regional laws [48].
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Table A1. Values of the morpho-agronomic descriptors defined in Table 1 for the eight potato accessions.

Accession 12 13 14 16 17 19 20 21 23 24 26 28 30 32 34 35 36 N1 W N2 N3 N4

AG 1 2 1 3 5 1 7 5 6 7 7 1 5 4 2 2 4 81 14.7 14 21 46
2 5 1 2 5 1 7 5 6 7 3 1 1 4 2 2 4 105 15.8 17 46 42
2 5 3 5.8 5 3 7 5 6 7 7 1 1 4 2 2 4 149 18.0 59 45 45
2 6 3 2 5 1 7 5 6 7 7 1 1 4 2 2 4 122 18.6 24 49 49

DE 1 6 7 5 3.6 5 5 1 3 7 7 4 7 4 3 2 2 76 12.2 16 29 31
1 5 7 4.4 3.6 5 5 1 3 7 7 4.8 7 5 3 2 2 129 18.0 30 58 41
2 6.2 7 3 3 7 5 5 3 7 7 3.9 6.3 4 3 2 2 86 16.8 12 31 43
2 5 7 3 3 6 5 3 3 7 7 4 5 3 3 2 2 152 16.4 73 40 39

GA 2 5.2 7 4.4 3 7 5.8 4 1 5 5 3.7 6.4 4 3 2 2 103 9.4 52 25 26
2 5.8 5.4 3 3 3 5.8 3 1 5 5 4.6 7 4 3 2 2 101 12.6 34 33 34
2 5.8 5 4.2 3 3.6 7 3.8 1 5 7 4 5 5 3 2 2 79 7.7 29 36 14
2 5 5 4 3 5 7 3 1 5 5 3.9 7 4 3 2 2 86 10.0 33 32 21

KE 3 5 1 2.2 3 1 7 3 4 3 7 1 1 4 1 2 1 68 11.8 12 28 28
3 5 1 2 6 1 7 1 4 3 7 1 1 3 3 3 1 155 18.7 73 36 46
3 4.2 1 1 3 1 7 1 4 3 7 1 1 4 2 2 1 133 18.7 41 47 45
2 4.2 1 1.6 3 1 7 1 4 3 7 1 1 4 2 2 1 120 16.9 42 36 42

MO 1 4.4 5 3 5 4.4 5 1 2 5 7 5 9 4 3 2 2 87 6.9 34 46 7
1 3 5 4.1 5 5 5 3 2 5 7 3.8 7 4 3 2 2 142 9.5 72 55 15
1 3.8 5 5 3 5 5 1 2 5 7 5 7 4 3 2 2 101 6.5 47 46 8
2 3 3 5 5 7 5 2 2 5 7 5.7 7 4 3 1 2 122 8.65 72 40 10

PI 2 5 5 3 3 3.6 7 1 3 9 5 8.3 9 4 4 4 1 169 12.8 89 64 16
2 5 3 3 3 3 7 3.4 3 9 5 9 9 4 4 4 1 173 14.0 72 77 24
1 3 3 3 3 3 7 5 3 7 5 9 7 4 4 4 1 123 12.3 51 56 16
2 3.8 5 5 4 5 5 6.2 3 7 5 9 9 5 4 4 1 183 15.1 93 73 17

SP 2 4 3 3 6.4 1 7 1 5 3 5 1 1 5 3 2 3 76 12.2 16 29 31
1 2.2 1 1.8 3 1 7 1 5 3 7 1 5 5 1 2 3 141 20.2 38 62 41
2 5 7 4.4 3.6 5 7 1 5 3 5 1 1 5 2 2 3 152 19.5 60 59 33
2 5 1 1 5 1 7 1 5 3 5 1 1 5 1 2 3 136 19.0 60 48 28

TU 1 7 3 4.5 3.5 3 7 5 1 7 5 9 9 6 4 4 1 43 5.5 16 20 7
2 4.6 3 4.2 3.4 3 5 5 1 7 5 9 9 5 4 4 1 81 4.5 52 25 4
2 5 4 4.7 3 3 7 3 1 5 5 9 9 5 4 4 1 54 5.9 24 19 11
2 5 3.7 4 5 3 5 3 1 5 5 9 9 5 4 4 1 53 4.4 34 8 11
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Table A2. List of microsatellite loci used for genotyping the eight potato accessions. For each locus, the repeated pattern, the primer sequences, the annealing
temperature (Ta), the chromosome position, and alleles found are reported.

Locus Motif Primer Ta Map Total Found Alleles

STM5121 (TGT)5

FW:
CACCGGAATAAGCGGATCT 48 XII 301, 305, 308
RW:
TCTTCCCTTCCATTTGTCA

STI0001 (AAT)n

FW:
CAGCAAAATCAGAACCCGAT 60 IV 196, 199, 202, 205, 207, 210
RW:
GGATCATCAAATTCACCGCT

STM1064 (TA)12..(TG)4 GT (TG)5

FW:
GTTCTTTTGGTGGTTTTCCT 55 II 207, 210, 212
RW:
TTATTTCTCTGTTGTTGCTG

STG0016 (AGA)8

FW:
AGCTGCTCAGCATCAAGAGA 55 I 142, 149, 152, 155, 173
RW:
ACCACCTCAGGCACTTCATC

STPoAc58 (TA)13

FW:
TTGATGAAAGGAATGCAGCTTGTG 55 V 250, 264
RW:
ACGTTAAAGAAGTGAGAGTACGAC
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Table A3. Dice similarity matrix of the eight potato genotypes based on SSR markers. Two control varieties (AG and DE) are also included.

DE_1 DE_2 DE_3 KE_1 KE_2 KE_3 GA_1 GA_2 GA_3 MO_1MO_2MO_3TU_1 TU_2 TU_3 SP_1 SP_2 SP_3 PI_1 PI_2 PI_3 AG_1 AG_2 AG_3 AG_control DE_control

DE_1 1 1.000 1.000 0.828 0.828 0.828 1.000 1.000 1.000 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
DE_2 1 1.000 0.828 0.828 0.828 1.000 1.000 1.000 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
DE_3 1 0.828 0.828 0.828 1.000 1.000 1.000 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
KE_1 1 1.000 1.000 0.828 0.828 0.828 0.667 0.667 0.667 0.769 0.769 0.769 0.759 0.759 0.759 0.769 0.769 0.769 0.593 0.593 0.593 0.615 0.828
KE_2 1 1.000 0.828 0.828 0.828 0.667 0.667 0.667 0.769 0.769 0.769 0.759 0.759 0.759 0.769 0.769 0.769 0.593 0.593 0.593 0.615 0.828
KE_3 1 0.828 0.828 0.828 0.667 0.667 0.667 0.769 0.769 0.769 0.759 0.759 0.759 0.769 0.769 0.769 0.593 0.593 0.593 0.615 0.828
GA_1 1 1.000 1.000 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
GA_2 1 1.000 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
GA_3 1 0.692 0.692 0.692 0.720 0.720 0.720 0.786 0.786 0.786 0.720 0.720 0.720 0.615 0.615 0.615 0.640 1.000
MO_1 1 1.000 1.000 0.696 0.696 0.696 0.692 0.692 0.692 0.696 0.696 0.696 0.583 0.583 0.583 0.609 0.692
MO_2 1 1.000 0.696 0.696 0.696 0.692 0.692 0.692 0.696 0.696 0.696 0.583 0.583 0.583 0.609 0.692
MO_3 1 0.696 0.696 0.696 0.692 0.692 0.692 0.696 0.696 0.696 0.583 0.583 0.583 0.609 0.692
TU_1 1 1.000 1.000 0.640 0.640 0.640 1.000 1.000 1.000 0.522 0.522 0.522 0.545 0.720
TU_2 1 1.000 0.640 0.640 0.640 1.000 1.000 1.000 0.522 0.522 0.522 0.545 0.720
TU_3 1 0.640 0.640 0.640 1.000 1.000 1.000 0.522 0.522 0.522 0.545 0.720
SP_1 1 1.000 1.000 0.640 0.640 0.640 0.769 0.769 0.769 0.800 0.786
SP_2 1 1.000 0.640 0.640 0.640 0.769 0.769 0.769 0.800 0.786
SP_3 1 0.640 0.640 0.640 0.769 0.769 0.769 0.800 0.786
PI_1 1 1.000 1.000 0.522 0.522 0.522 0.545 0.720
PI_2 1 1.000 0.522 0.522 0.522 0.545 0.720
PI_3 1 0.522 0.522 0.522 0.545 0.720
AG_1 1 1.000 1.000 0.957 0.615
AG_2 1 1.000 0.957 0.615
AG_3 1 0.957 0.615
AG_control 1 0.640
DE_control 1
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