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Abstract: A lane change is one of the most important driving scenarios for autonomous driving
vehicles. This paper proposes a safe and comfort-oriented algorithm for an autonomous vehicle to
perform lane changes on a straight and level road. A simplified Gray Prediction Model is designed to
estimate the driving status of surrounding vehicles, and time-variant safety margins are employed
during the trajectory planning to ensure a safe maneuver. The algorithm is able to adapt its lane
changing strategy based on traffic situation and passenger demands, and features condition-triggered
rerouting to handle unexpected traffic situations. The concept of dynamic safety margins with
different settings of parameters gives a customizable feature for the autonomous lane changing
control. The effect of the algorithm is verified within a self-developed traffic simulation system.
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1. Introduction

Lane changing (LC) is among the most frequent scenarios encountered in daily driving,
and considered as one of most important research topics for autonomous vehicles and advanced
driver assistance systems [1]. Current research on autonomous driving encompasses different fields,
including perception, planning, and control. The lane change maneuver of autonomous vehicle is
considered as a challenge since the control involves changes in both the longitudinal and lateral
velocity as well as the movement of surrounding vehicles [2]. In this paper, a trajectory planning
method for autonomous lane change is investigated on the basis of the existing perceptive information
of traffic vehicles. In [3], LCs are classified into mandatory and discretionary ones. This paper focuses
on the latter, which is intended to improve the driving condition of the controlled vehicle.

Various research studies have focused on the trajectory planning and motion control of
autonomous driving technologies [4–6]. In order to achieve good results in the respective lane
change maneuvers, most of these proposed cooperative planning algorithms for autonomous driving
employed a rule-based control [7,8] or an optimization-based control [2,9]. However, to solve the
problems of computational complexity, the trajectory planning algorithm often assumes a given
reference trajectory or considers either the longitudinal or the lateral aspects of the planning problem.
A dynamic collision avoidance constraints is necessary for the autonomous lane change maneuvers.
In [10,11] the trajectory planning method of lane change maneuvers was studied, but none of the
methods considered the position constraint for the collision avoidance. The papers [12,13] attempt to
generate large numbers of trajectory candidates by the state-space sampling method, and choose the
best one based on collision detection and kinematic limitations. This method has good effectiveness
and robustness, but the computation complexity would be a challenge for the real-time implementation.
In [14] a trajectory planning algorithm is designed by the quadratic programming method to achieve
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kinematic constraint in the hazard avoidance scenarios, but the proposed approach assumes constant
longitudinal velocity without the consideration of lateral trajectory planning. In [15] a convex
optimization method for the trajectory planning during the collision avoidance was applied. However,
it employed a given reference trajectories without continuous path re-planning for real application.

The trajectory planning is based on an interactive model that captures mutual influences among
all surrounding cars. The difficulties of the lane change maneuvers are the mutual interactions between
the host vehicle and the surrounding cars. If the information of all traffic vehicles can be known,
the first issue is the determination of the right place and moment for lane change. The solution offered
in [16] makes the decision using a complicated logic tree, specifying an action for every scenario
that can be thought of, but some special cases still may not be covered. Another solution proposed
in [17,18] attempts to replicate human decision-making behavior using Fuzzy Inference System,
but the modulation of fuzzification and defuzzification parameters needs considerable experience.
Additionally, they only consider two lanes and a predefined number of vehicles, and output binary
results. The second issue is to generate proper reaction and trajectory for the lane change maneuver.
In practice, one-off trajectory planning is unsuitable in practice, since the unpredicted changes of the
surrounding vehicles make the planned path be no longer optimal or even unsafe. A continuous
trajectory planning is applied in [12], but this method requires large amount of calculation. A balance
should be found between the algorithm complexity and efficiency.

To overcome these limitations, the lane change maneuver algorithm proposed in this paper
considers both the longitudinal and the lateral planning in a dynamic traffic. The LC algorithm is
expected to have robustness to deal with the unexpected road events, while not inducing too heavy
calculated load. The availability of lane change manoeuvres is increased by reducing the required
margins to ensure a safe manoeuvre [19]. With these in mind, an algorithm with condition-triggered
safety margin function is proposed for the trajectory re-planning control of lane change. The trajectory
planning is designed with cost function to balance the safety, comfort and efficiency according to traffic
condition. The time-variant safety margins is designed with the longitudinal and lateral constraints
to avoid collision. This method can improve the success rate of lane change, and also reduce the
computational complexity. Furthermore, by the prediction of traffic states, an evaluation model to
select an appropriate inter-vehicle traffic gap and time instance for lane change is proposed. In the
final step, by the comparison with the existing methods in a traffic simulation system, the results verify
the effectiveness and robustness of algorithm under various traffic scenarios.

The remainder of this paper is organized as follows. The detailed methodology of the lane change
control is described in Section 2, including the algorithm design of gap evaluation, trajectory planning
and time-variant safety margin. Simulation analysis with random traffic scenarios and specified traffics
are given in Section 3. The conclusions of this paper are presented in Section 4.

2. Methodology

The control algorithms of lane change maneuvers generally contain three consecutive parts:
decision-making system for the start of lane change, generating a reference path for the vehicle to
follow, and real time path re-planning during the overall process. To take the analysis of algorithm,
the space between the two vehicles on the road is defined as a traffic gap. The host vehicle VH is
controlled to perform a lane change maneuver, and it will move from one traffic gap in the current
lane to another traffic gap in a neighboring lane. To simplify the algorithm design, the lane change
maneuver is taking place in adjacent lanes, without the consideration of other specific maneuvers,
such as crossing multiple lanes at once.

Figure 1 shows the flowchart of the lane change algorithm, which features three major parts:
evaluation of available traffic gaps, trajectory planning and trajectory correction. The lane change
algorithm is carried out in a loop cycle for the real-time control, and one cycle is executed per time step
ts. For each cycle, monitored traffic information is updated, and input into the lane change algorithm
for calculation.



Appl. Sci. 2020, 10, 1626 3 of 17

When the host vehicle VH is controlled for a lane change maneuver, the algorithm cycle will start
as the control diagram in Figure 1. Firstly, by using the monitored and predicted traffic information,
the algorithm will evaluate available traffic gap for lane change (Part A). When the target traffic gaps
better than the current driving gap are determined, the algorithm attempts to generate LC trajectory
for these gaps with relative constraints. The traffic gap with successful trajectory planning and highest
evaluation index will be selected for lane change. If none gap is successful, VH stays in its original gap,
otherwise, an optimal trajectory for lane change is determined for VH to follow (Part B). During the
lane changing, the viability of current LC trajectory is constantly monitored, and if it is no longer
feasible, a trajectory correction is required. Thus a trajectory re-planning control is conducted to satisfy
the changed constraints (Part C). The time cost for one calculation cycle is related to the current stage
of lane change maneuver. Based on the hardware environment, three stages shown in Figure 1 have
different calculation time. To satisfy the real-time requirement, the time cost for one cycle should be
controlled below 50 ms. All procedures above will be explained in the following Sections.

Figure 1. The control diagram of the lane change algorithm with three parts: identification of available
vehicle gaps, trajectory planning and trajectory correction.

2.1. Gap Evaluation

This subsection covers the methods used in Part A of the algorithm, which are used to evaluate
the available gaps for lane change. For each lane, we only consider the single gap in which the current
longitudinal position of VH resides. This means we only need to examine two or three gaps, which is
in accordance to the fact that ordinary sensors on autonomous vehicles can only guarantee detection of
the nearest vehicles in current and adjacent lanes, as Figure 2 shows. Besides, the solution is simplified
and calculated load can be significantly reduced.
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Figure 2. An illustration of available gaps for lane change. The circled vehicle is host vehicle VH ,
the bright area around it is available gaps. The gray area is the blind zone which is unavailable gaps.

2.1.1. Traffic Prediction with Gray Prediction Model

Assuming the total number of vehicles to consider is N, for the ith vehicle (1 6 i 6 N), we denote
its speed series measured at discrete time instances {1, 2, . . . , m} as {vi(1), vi(2), . . . , vi(m)}, where m
is the present time instance. To balance the algorithm complexity and efficiency, here a Gray Prediction
Model is employed to approach the traffic prediction [20]. The sequence of future vehicle speeds
{vi(m + 1), vi(m + 2), . . . , vi(n)} for discrete time instances {m + 1, . . . , n} can be obtained by the
following calculations. We denote {Xi(1), Xi(2), . . . , Xi(m)} as the accumulation of vi:

Xi(k) =
k

∑
j=1

vi(j), 1 6 k 6 m (1)

Here Xi is a monotonically increasing sequence, which is suitable for the exponential fitting.
Assuming Xi in general satisfies the following differential equation:

∆Xi(k) + aXi(k) = u (2)

where a and u are constant scalar parameters, then solving for Xi by an exponential sequence gives

Xi(k + 1) = [Xi(1)−
u
a
]e−ak +

u
a

(3)

Since ∆Xi(k) = Xi(k) − Xi(k − 1) = vi(k), and Xi(k) can be replaced by the approximation
1
2 [Xi(k− 1) + Xi(k)], the Equation (2) can be rewritten in matrix form as

vi(k) =
[
− 1

2 (Xi(k− 1) + Xi(k)) 1
] [a

u

]
(4)

Let
Yi =

[
vi(2) . . . vi(m)

]T
(5)

Bi = −
1
2


Xi(1) + Xi(2) −2
Xi(2) + Xi(3) −2

...
...

Xi(m− 1) + Xi(m) −2

 (6)

By the least square method, the estimation of a and u is solved as

(ai, ui)
T =

(
BT

i Bi

)−1
BT

i Yi (7)

The speed prediction for discrete time instances {m + 1, . . . , n} is calculated as

vi(k) = Xi(k)− Xi(k− 1), m + 1 6 k 6 n (8)
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where the prediction of Xi(k) is obtained by the fitting result according to the exponential rule

Xi(k) =
(

Xi(1)−
ui
ai

)
e−ai(k−1) +

ui
ai

(9)

Due to traffic randomness, the accuracy of prediction by Gray Prediction Model can deteriorate
quickly as prediction horizon extends. Since typical lane changes have a duration of 3–6 s, during the
prediction of each traffic vehicle status, we set the prediction horizon tp = 4 s. Based on general
road standards and vehicular kinetic characteristics, the velocity and acceleration of host vehicle VH
is subject to the parameter limitations listed in Table 1. These parameters is set to allow enough
maneuverability for regular driving, while retaining an acceptable level of ride comfort.

2.1.2. Gap Rating

To determine which traffic gaps are more favorable, all available gaps are rated with an evaluation
function. Based on the analysis of human decisions during a lane change driving [21], the score of each
traffic gap is a weighted sum of vehicle dynamic parameters:

Sg = wT
1 dFH + wT

2 vF + wT
3 dFR (10)

where Sg is the evaluated score of a target traffic gap; dFH is the longitudinal distance between the
leading vehicle and the host vehicle VH ; vF is the speed of the leading vehicle at the target traffic
gap; and dFR is the longitudinal distance between the leading vehicle and the following vehicle,
which indicating the size of the gap. It is noted that dFH ,vF,dFR are discrete series formulated as the
column vectors within the prediction horizon. w1,w2,w3 are column vectors of weight coefficients.
The parameters of evaluation function are shown in Figure 3.

By adjusting the weight coefficients wi, the evaluation function can be designed based on the
desired optimization objective. Because the prediction accuracy will deteriorate when the prediction
horizon becomes longer, the weight coefficients are designed as

wi(k) = wi(m + 1)eβ(k−m−1), m + 1 6 k 6 n (11)

where β controls the decaying rate of wi.

Figure 3. Diagram of the parameters used in calculating each gap’s score.

2.2. Trajectory Planning with Time Variant Safety Margin

Based on the results of evaluation, traffic gaps with higher scores than the current one will be set
as the targets for trajectory planning. It should be noted that the gap with the highest score may not
become the final choice, since a lane changing trajectory to that gap may fail to be planned. The order
of trajectory planning for each traffic gap is arranged by their evaluated score. Therefore, the traffic
gap with relatively better evaluation index and successful trajectory planning can be chosen as the
final lane changing target.

2.2.1. Trajectory Planning

During the trajectory planning of vehicle, safety and comfort are two influential factors for the
performance evaluation. The safety mainly refers to avoid potential collisions, which keep a distance
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away from other vehicles; and the comfort refers to minimize the variation of vehicle movement,
such as the changing rate of velocity and acceleration. In order to consider these factors during the
trajectory planning, a cost function for the optimum programming is designed in this section.

The basic cost function for trajectory planning is designed to minimize the changes of the motion
status of host vehicle VH , such as vehicle speed, acceleration and jerk, while keeping them within
the longitudinal and lateral constraints. Here the longitudinal and lateral trajectory planning employ
similar cost functions by utilizing a Quadratic Programming (QP) method. The function for the
longitudinal trajectory planning is defined as

Jx = q1x
∣∣vxH − vxH,des

∣∣2 + q2x |axH |2

+ q3x |jxH |2 + qεx

(
|εx1|2 + |εx2|2

)
s.t.

vxmin
axmin
jxmin

− εx1 6

vxH
axH
jxH

 6

vxmax

axmax

jxmax

+ εx2

[xH (1) , vxH (1) , axH (1)] = [xH1, vxH1, axH1]

0 6 εxi 6

MvxiE
MaxiE
MjxiE

 , i = 1, 2

(12)

where the longitudinal position, speed, acceleration and acceleration jerk of VH are represented as xH ,
vxH , axH and jxH , they are discrete series formulated as the column vectors with length kend, and kend
is the length of the discretization for prediction horizon. E = [1, 1, . . . , 1]T is a column vector also with
length kend; vxH,des is the desired longitudinal speed of VH ; q1x, q2x, q3x and qεx are weight coefficients.
The initial parameter values xH1, vxH1 and axH1 are obtained through measurement at the start of
lane change.

To improve the success rate of trajectory planning, slack variables εx1 and εx2 are employed
to loosen the constraints. The slack variables are only applied during trajectory re-planning due to
unexpected traffic events. The upper bounds of the slack variables are determined by Mvxi, Maxi and
Mjxi. The cost function of the lateral trajectory planning can be obtained by change the parameters
of Equation (12) with yH , vyH , ayH , jyH , vyH,des, q1y, q2y, q3y, qεy, Mvyi, Mayi and Mjyi. All of the
predefined longitudinal and lateral constraints are listed in Table 1. The velocities of all traffic vehicles
will be varied within the range of the constraints.

Table 1. Predefined Constraint Parameters.

Symbol Value Symbol Value Symbol Value

vxmin 15 m/s axmin −2 m/s2 jxmin −5 m/s3

vxmax 30 m/s axmax 2 m/s2 jxmax 5 m/s3

vymin −2 m/s aymin −2 m/s2 jymin −5 m/s3

vymax 2 m/s aymax 2 m/s2 jymax 5 m/s3

Mvx1 15 m/s Max1 6 m/s2 Mjx1 15 m/s3

Mvx2 10 m/s Max2 2 m/s2 Mjx2 15 m/s3

Mvy1 2 m/s May1 2 m/s2 Mjy1 15 m/s3

Mvy2 2 m/s May2 2 m/s2 Mjy2 15 m/s3

For the algorithm of trajectory planning, we need to specify a planning horizon. Based on the
prediction horizon for the traffic vehicles, it is reasonable to set the trajectory planning horizon the
same as tp. Since the actual time horizon for LC process is less than the planning horizon. In order
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to design the relative algorithm, the finished time horizon for the LC is defined as t f in, which can be
calculated by

t f in = min

[
tgc − t1,

(
tp − t2

) ∣∣yinit − ytgt
∣∣

wl
+ t2

]
(13)

where tgc is the time left before current and target gap no longer intersect; yinit is the initial lateral
position of VH , ytgt is the lateral coordinate of target lane centerline; t1 and t2 are constant times, t1 is
used to make sure LC is finished before gap intersection disappears; t2 is used to leave enough time
when yinit is close to ytgt; and wl is the width of one traffic lane.

As a pre-requirement for performing numerical computing for our simulation experiment, tp and
t f in are discretized by the algorithm time step ts. We then define kend = tp/ts + 1 as the length of the
discretized planning horizon, and k f in = t f in/ts + 1 as the length of the time horizon for the finish of
lane change.

2.2.2. Supplementary Longitudinal Constraints

During the lane change, the traffic states is in a dynamic and ongoing process. In addition to
the predefined constraints of host vehicle in Equation (12), a supplementary dynamic constraints
is proposed for the trajectory planning. In the time-varying traffic flow, a safety margin concept
with the dynamic constraints is employed to improve the lane changing control effect. In this
part, the calculation of the supplementary constraints used in longitudinal trajectory planning
is investigated.

The longitudinal position constraint sequence xmin and xmax are defined for the host vehicle VH .
These constraints are sequences made up of the lower and upper boundary of current and target
lane safe region intersection at each time instance within the planning horizon. From the Figure 4,
the horizontal axis is the discrete time sequence k, k f in is the finished time instance of lane change,
and kend is end time instance of planning horizon. The vertical axis represents the longitudinal
displacement of the host vehicle VH during the lane change. The yellow colored region is the safe zone
of VH with respect to time, and its boundaries are determined by xmin and xmax.

Figure 4. Illustration of position constraint sequence for VH .

Since the safe region intersection of the current and target lane, constraint sequence xmin and xmax

are given by

xmin (k) =

{
max

[
xt

min (k) , xs
min (k)

]
, k 6 k f in

xt
min (k) , k f in < k 6 kend

xmax (k) =

{
min

[
xt

max (k) , xs
max (k)

]
, k 6 k f in

xt
max (k) , k f in < k 6 kend

(14)
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where xt
min and xt

max are constraints determined by the gap on the target lane, while xs
min and xs

max are
their counterparts on the current lane. Calculation method is the same for xt

min, xt
max and xs

min, xs
max,

so we use xg
min, xg

max to refer to either of them:

xg
min (k) = xR (k) + st

R (k) + sa
R (k)

xg
max (k) = xF (k)− st

F (k)− sa
F (k)

(15)

where xR is the head position sequence of following vehicle and xF is the tail position sequence of
leading vehicle. An illustration of the longitudinal constraint sequence during the lane change is
shown in Figure 5.

Figure 5. Illustration of the constraint sequence for current or target vehicle gap. The black car symbol
represents the leading vehicle, whose tail position with respect to time is described by curve xF.
The difference xF − xg

max can be divided into two parts: st
F + d0, which remains relatively constant,

and sa
F, which starts from 0 and increases over time. A similar process is applied to the following

vehicle, which is colored in gray.

st
R and st

F are safety margins related to vehicle speed, which are calculated by

st
R(k) = vR(k) tg + dx + L

st
F(k) = min [vxmax, vF(k)] tg + dx + L

(16)

where vR and vF are the speeds of following and leading vehicle; tg is a desired time gap for two
vehicles; dx is the minimal safe distance between VH and other vehicle; and L is the length of vehicle.
Here, setting tg too small (resulting in small safety margin and loose constraint) may cause frequent
trajectory invalidation due to even minor unexpected traffic vehicle movement, while doing the
contrary raises the size requirement for valid gaps, thereby wasting potential LC opportunities.
We thus introduce additional safety margins sa

R and sa
F, which start small, then monotonically increases

towards the end of the planning horizon, corresponding to the rise of traffic vehicles movement
uncertainty with respect to time. For simplicity, we define the new time-variant safety margin as

sa
F(k) = (k− 1)KF

sa
R(k) = (k− 1)KR

(17)

With this simple linear relationship, we can conveniently use parameters KF and KR to adjust the
size of sa

R and sa
F. A larger KF and KR sets larger safety margins around traffic vehicles, which brings

a higher success rate for the lane change, but also more conservative trajectory planning. Conversely,
a smaller KF and KR can bring more aggressive trajectory planning.
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Since the limitation of the vehicle ability to brake in a high velocity, the maximum speed at the
end of lane change should be controlled to avoid planning failure. Here we set an upper limit for the
longitudinal velocity at the finished time instance k f in as

vxH(k f in) 6 vF(k f in) +
√

2 |axmin|∆x f in (18)

where
∆x f in = xmax(k f in)− xH(k f in) (19)

With this limitation, the end velocity of VH can be controlled to satisfy the deceleration capacity,
and the planned trajectory can stay out of the safety margin of front vehicles.

2.2.3. Supplementary Lateral Constraints

The lateral constraints for lane change control is derived from the boundaries of lane width.
In this part, the calculate of the position constraints used in lateral trajectory planning is investigated.
Similar to those used for longitudinal trajectory planning, position constraint sequences ymin and ymax

for lateral movement are given by

ymin (k) =

{
min

[
yt

min (k) , ys
min (k)

]
, k 6 k f in

yt
min (k) , k f in < k 6 kend

ymax (k) =

{
max

[
yt

max (k) , ys
max (k)

]
, k 6 k f in

yt
max (k) , k f in < k 6 kend

(20)

The definitions of lateral constraints yt
max, yt

min and ys
max, ys

min are designed to keep VH within the
lane boundaries. A unified formula for these parameters are expressed by

yg
min (k) = yl −

wl
2

+
wc

2

yg
max (k) = yl +

wl
2
− wc

2

(21)

where yl is the lateral position of the target lane centerline, and wc is the width of host vehicle, wl is
the width of lane.

Based on the characteristics of vehicle tire dynamic, the constraint of lateral acceleration is related
to that of longitudinal acceleration. If we define the limitation of acceleration adyn from the tire friction
dynamic, ayH should conform to the following constraint:

|ayH(k)| 6
√

adyn
2 − axH(k)

2 (22)

2.3. Trajectory Re-Planning

For each time instance during the lane change process, the algorithm will check the predicted
movement of traffic vehicles until the end of planning horizon. The constraints of traffic gap are then
updated to validate the current trajectory. If the planned trajectory exceeds the new gap constraint at
any point, a trajectory re-planning needs to be conducted. During the re-planning control, the algorithm
evaluates the original and target gap, then attempts to generate a new trajectory by the quadratic
programming function. By utilizing the proposed longitudinal and lateral constraints, the time
variant safety margin can limit the driving parameters in a safe range, and make sure the re-planning
trajectory be collision-free. Since the safety margins sa

F and sa
R start from zero for each recalculation,

constraints automatically become looser with each time step, so frequent re-planning due to minor
constraint violation can be avoided.
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After the trajectory re-planning, the host vehicle have two kinds control results: continue the
lane change, or abandon the maneuver and return to the original lane. Both of two control results
will be conducted by the replanned trajectory. As an effort to avoid abrupt changes in acceleration,
we limit the changing rate of both longitudinal and lateral acceleration during the replanning control.
The constraint is designed as

jmin −Mj1 6
aH(k + 1)− aH(k)

ts
6 jmax + Mj2 (23)

where aH refers to either axH or ayH , and the same applies to jmin, jmax, Mj1 and Mj2. The definitions
of these parameters are similar to the Equation (12).

3. Experimental Verification

To verify the performance of the proposed lane change algorithm, this section presents numerical
calculation results in a simulation environment. Firstly, in Section 3.1, a simulated traffic flow with each
vehicle having random initial position, time varying speed and acceleration is designed for the lane
change maneuver. This is used to test the reliability and effectiveness of the algorithm with random
traffic situation. Secondly, in Section 3.2, three kinds of specified traffic environment with unexpected
road events are employed to test the robustness of proposed method. For simplicity, all traffic vehicles
are set with the same size. Table 2 shows the predefined parameters used in the simulations.

Table 2. Predefined Simulation Parameters.

Symbol Value Symbol Value Symbol Value

t1 0.5 s t2 1.0 s adyn 9 m/s2

q1x 1 q2x 10 q3x 1
q1y 1 q2y 10 q3y 1
tg 0.5 s qεx 50 qεy 50
KF 2 KR 2 wl 3.5 m
w1 1 w2 5 w3 0.1
p1 −1.414 p2 1 β −1

3.1. Simulation with Random Traffic

In order to achieve a dynamic traffic environment for the experiment, a microscopic road traffic
simulation is designed. Here Intelligent Driver Model in [22] is employed to generate the traffic flow
with vehicle cruise control. The proposed lane change maneuver algorithm is evaluated in a four-lane
highway test scene.

At the start of simulation, traffic vehicles are created within certain range from an arbitrary point
on the road. Each vehicle is given a random initial speed and target speed by using normal distribution
N
(
µv, σv

2), and an upper and lower limitation is set to avoid the unrealistic speeds. For The distances
between traffic vehicles are initialized with logarithmic normal distribution N

(
µt, σt

2). The fitting
functions and their parameters µv, σv, µt and σt are determined using real road traffic records in [23].
Based on the Intelligent Driver Model, the desired acceleration of traffic vehicles is calculated by their
current speed and target speed. The initialized vehicle which has closest longitudinal distance to the
origin is selected as the host vehicle VH .

The lane change simulation is evaluated on the 100 versions of the traffic scenarios. Each traffic
scenario is simulated with one minute. The random vehicle states in each traffic scenario are generated
with the same set of seeds, so the simulation scenarios for different methods can be consistent with
each other.

There are two kinds of continuous trajectory planning methods. One is time-based re-planning
method (TBRP) which take re-planning algorithm with a constant time interval. A balance should be
found between the algorithm complexity and efficiency. Another one is condition-based re-planning
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(CBRP) method which take re-planning algorithm by a predefined trigger mechanism. This method has
less amount of calculation than TBRP, but the final performance needs a good design of control logic.

To verify the effect of the proposed condition-based re-planning (CBRP) algorithm, a time-based
re-planning (TBRP) method is compared in the simulation. TBRP represents conventional methods
for path planning, which take re-planning algorithm with a constant time interval. This method has
good effectiveness and robustness, but the computation complexity is a challenge for the real-time
implementation. The CBRP method takes re-planning algorithm by a predefined trigger mechanism.
This method has less amount of calculation than TBRP, but the final performance needs a good design
of control logic. In order to show the improvement, the comparative indices of the lane change control
is defined as: Numbers of LC, Numbers of RP (re-planning), Average LC Time, Average Acceleration,
Average Speed and Total Computing Time. Here the computing time is achieved by the simulation
time in MATLAB environment.

The results of one hundred random traffic scenarios are presented in Table 3. Since the simulated
traffic flow is designed with varying vehicle speed, the target speed of each vehicle is randomly
selected within an interval of 15∼30 m/s, and updates independently per a random time interval
between 5 and 20 s. The host vehicle will control to take lane change maneuver, and its target speed
is set to 25 m/s. The performance of lane change maneuver is compared between TBRP and CBRP.
To show the influence of the time-variant safety margin, results of CBRP with a conservative (CBRP-C)
and aggressive (CBRP-A) settings are investigated. For CBRP-C, the gain coefficients of safety margin
are set as KF = KR = 1.0, while for CBRP-A, are set as KF = KR = 0.5.

Table 3. Result of Random Traffic Test I.

Method TBRP CBRP-C CBRP-A

Numbers of LC 280 277 283
Numbers of RP 86 20 43

Average LC Time (s) 1.85 1.48 1.40
Average Acceleration (m/s2) 1.9 1.6 1.7

Average Speed (m/s) 22.57 22.54 22.55
Total Computing Time (s) 16768 2736 2774

Compared to the results of TBRP, the lane change control of CBRP has lower numbers of RP,
and smaller average acceleration. This is because TBRP takes the trajectory planning with a constant
time interval without the consideration of previous planning results. And CBRP with the time-variant
safety margins takes real time planning by monitoring the validity of current trajectory. The robustness
of CBRP can reduce the rate of route re-planning and improve the driving comfort in the random traffic
flow. Furthermore, the algorithm of CBRP also achieves significant advantage of the computing time.
Between the two CBRP methods, CBRP-A has slightly higher numbers of RP and average acceleration
than those of CBRP-B. It means that the lane changing behavior can be customized with respect to
different habits of drivers.

3.2. Simulation with Specified Traffic

In this section, the proposed algorithm is verified by comparative analysis in the simulations.
We set up a typical traffic scenario with two lanes and four traffic vehicles, where the host vehicle VH
take a lane change maneuver. The traffic scenario is shown in Figure 6. To examine the robustness of the
proposed algorithm, three typical road events that could happen during a lane change are designed as:
unexpected braking of front vehicle in current lane, unexpected braking of front vehicle in target lane,
and unexpected acceleration of rear vehicle in target lane. For each scenario, simulations are conducted
by different path planning methods: LC with the proposed algorithm, LC without time-variant safety
margin, and LC without re-planning control. For comparison purposes, three methods are referred to
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A, B and C respectively. By comparative analysis, the proposed algorithm’s ability to take appropriate
approaches for different given situations is demonstrated.

Figure 6. The traffic scenario used for lane change simulation. VH is changing from L1 to L2. The traffic
vehicles in L1 and L2 are labeled VsF, VsR, VtF and VtR. dsR = dtF = 30 m, dsF = dtR = 20 m.
All vehicles have the same initial speed of 18 m/s.

3.2.1. Scenario I, Unexpected Braking in Current Lane

In this scenario, the front vehicle in current lane VsF take an emergency braking at the same time
of lane change. The deceleration of brake is selected as −2 m/s2, −3 m/s2 and −4 m/s2 respectively,
and the duration of brake is 3 s. Depending on the lane change algorithm, VH can choose to increase
speed with the potential danger of colliding with VsF or VtR, or abandon the current motion and return
to the original lane. Simulation results by using different methods A, B and C are compared in Table 4.
The check mark with a tick means a successful lane change, a circle means the vehicle abandons the
lane change maneuver, and a cross means a collision with other vehicles.

A detailed demonstration with −4 m/s2 emergency braking is shown in Figure 7. In the graphs
depicting the velocity and acceleration of host vehicle, the dark shades represent the areas within
strict parameter constraints, and the light shades represent those within loose constraints. It can be
observed that apart from the longitudinal velocity, other values rarely exceed the strict constraints
during simulation, and all values stay within the loose constraints. For the last graph, the upper
and lower boundaries of the shaded area obtained by the length of front vehicle and host vehicle,
which means any curve that come in contact with the shaded area indicate a collision.

From the results of simulation C in Figure 7, VH collides with VsF at t = 2.8 s. In the simulation A
and B, VH abandons the lane change maneuver and switches back to L1 with deceleration. Compared
with the results of B, the simulation A has smaller deceleration, faster response to unexpected event
and longer safe distance to front vehicle.

3.2.2. Scenario II, Unexpected Braking in Target Lane

In this scenario, the front vehicle in target lane VtF take an emergency brake at the start of lane
change. The deceleration of brake is selected as −4 m/s2, −5 m/s2 and −6 m/s2 respectively, and the
duration of brake is 3 s. Here, VH can choose to continue the lane change by reduce the speed, or change
back to the original traffic gap and wait for future opportunities. Simulation results are compared in
Table 4.

The results with −6 m/s2 emergency braking is shown in Figure 8. In the simulation C, the end
speed of VH after lane change is too fast, causing a collision with VtF at t = 5.15 s. In the simulation B,
VH attempts to return to original lane L1 after the unexpected event, but fails since it is too close to the
front vehicle VsF. So VH can only take a hard brake stop to avoid the accident. In the simulation A,
VH returns to L1 successfully with minimal speed change, and continue the lane change to the traffic
gap in the head of VtF.
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Figure 7. Simulation results for Scenario I. From top to bottom, the graphs of host vehicle VH

are: 2-D trajectory, longitudinal velocity, longitudinal acceleration, lateral position, lateral velocity,
lateral acceleration and the distance to the nearest front/rear vehicle.

Table 4. Experimental Results of Different Scenarios.

Traffic Scenario A B C

Scenario I, −2 m/s2 X X X
Scenario I, −3 m/s2 X ◦ ×
Scenario I, −4 m/s2 ◦ ◦ ×
Scenario II, −4 m/s2 X X X
Scenario II, −5 m/s2 ◦ ◦ ×
Scenario II, −6 m/s2 ◦ × ×
Scenario III, +2 m/s2 X X ×
Scenario III, +3 m/s2 ◦ ◦ ×
Scenario III, +4 m/s2 ◦ × ×
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Figure 8. Simulation results for Scenario II. From top to bottom, the graphs of host vehicle VH

are: 2-D trajectory, longitudinal velocity, longitudinal acceleration, lateral position, lateral velocity,
lateral acceleration and host vehicle’s distance to the nearest front/rear vehicle.

3.2.3. Scenario III, Unexpected Acceleration in Target Lane

In this scenario, the behind vehicle in target lane VtR take an emergency acceleration at the start
of lane change. The acceleration of vehicle is selected as +2 m/s2, +3 m/s2 and +4 m/s2 respectively,
and the duration of brake is 3 s. Here, VH can choose to increase the speed to finish the lane change,
or return back to the original lane. From the Table 4, simulation A achieved safer results than simulation
B and C.

From the detailed results with +4 m/s2 acceleration in Figure 9, both the simulation B and C
lead to a collision with VtR at t = 4.65 s. In the simulation A, due to stricter constraints used during
trajectory planning, VH abandons the lane change maneuver and return to L1 firstly, and then succeeds
in doing so before potentially being rear-ended by VtR. During the whole progress, the VH is controlled
with minimal speed change.
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Figure 9. Simulation results for Scenario III. From top to bottom, the graphs of host vehicle VH

are: 2-D trajectory, longitudinal velocity, longitudinal acceleration, lateral position, lateral velocity,
lateral acceleration and host vehicle’s distance to the nearest front/rear vehicle.

4. Conclusions

The research proposes a safety and comfort-oriented trajectory planning algorithm for
autonomous ground vehicles to perform lane changes on a straight driveway. The algorithms is
designed to solve the issues of mutual interactions between the host vehicle and the surrounding cars.
In this paper, a complete algorithm flow for lane change maneuver are considered with three parts:
gap evaluation, trajectory planning and trajectory correction. A Gray Prediction Model is employed
as the gap evaluation method to select an appropriate time instance for lane change. By using the
QP-based optimization algorithm, a continuous trajectory planning is designed to achieve both safe
and comfortable lane change maneuver. Moreover, a trajectory re-planning control algorithm with
condition-triggered safety margin function is proposed. The time-variant safety margins is designed
by the consideration of both the longitudinal and the lateral planning in a dynamic traffic. This method
can improve the success rate of lane change, and also reduce the computational complexity.

The effectiveness of the algorithms is verified in the simulations with random traffic and specified
traffic. By the comparative analysis of the experimental results, the proposed condition-based trajectory
re-planning method has a stronger robustness to deal with the unexpected road events, while not
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inducing too heavy calculated load. By the adjust of time-variant safety margin, the driving model
with comfortable or aggressive characteristic can be realized. This opens a potential research topic for
the autonomous driving with different individual driver behaviors in future work.
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