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Abstract: There has been increasing interest in the analysis and mining of Heterogeneous Information
Networks (HINs) and the classification of their components in recent years. However, there are
multiple challenges associated with distinguishing different types of objects in HINs in real-world
applications. In this paper, a novel framework is proposed for the weighted Meta graph-based
Classification of Heterogeneous Information Networks (MCHIN) to address these challenges.
The proposed framework has several appealing properties. In contrast to other proposed approaches,
MCHIN can fully compute the weights of different meta graphs and mine the latent structural features
of different nodes by using these weighted meta graphs. Moreover, MCHIN significantly enlarges
the training sets by introducing the concept of Extension Meta Graphs in HINs. The extension meta
graphs are used to augment the semantic relationship among the source objects. Finally, based on
the ranking distribution of objects, MCHIN groups the objects into pre-specified classes. We verify
the performance of MCHIN on three real-world datasets. As is shown and discussed in the results
section, the proposed framework can effectively outperform the baselines algorithms.

Keywords: heterogeneous information networks; classification; meta graph; meta path

1. Introduction

In the real world, there exist lots of various entities, and together with their inter-relationships,
they can be represented as information networks [1], such as Bibliographic Information Networks [2],
Wikipedia [3], and Facebook. Existing studies [4–9] mainly focus on representing and analyzing
such systems using homogeneous information networks, which composed of one type of nodes
and edges. For example, Figure 1a illustrates a co-author homogeneous network consisting of
“authors” as nodes and “publishing” relationships as links. However, the real-world systems are
usually complex, mixed-type, and heterogeneous which can be more realistically represented by
heterogeneous information networks. For example, there are different kinds of objects such as accounts,
blogs, and friends, and different types of links such as publishing, forwarding and commenting
between different pairs of objects in social networks. As an example, Figure 1b shows a bibliographic
information network composed of multi-typed objects. There are authors (A), conferences (C),
and papers (P) as nodes, and different relationships such as “publishing” and “writing” between
different pairs of nodes.

One of the widely studied problems in Heterogeneous Information Networks (HINs) is
classification considered as a semi-supervised learning approach, in which the labels of objects are
predicted based on the structural properties or relationships between nodes. The classification can be
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applied in different setting of applications of of HINs such as similarity search [1] and recommendation
systems [10,11].

(a) Co-author Homogeneous Network (b) Bibliographic Heterogeneous Network

Figure 1. Co-authorship homogeneous network and bibliographic heterogeneous network. In the
co-authorship homogeneous network (a), there is only one type of objects: authors, and single
relationship: co-authorship; Bibliographic heterogeneous network (b), on the other hand, contains three
types of objects: authors, papers and conferences. The red lines represent the publishing relationship,
and the black lines express the writing relationships between authors and papers.

One of the most popular concepts used to study HINs is meta path. The meta path can better
preserve the relationship information between different types of entities in HINs in comparison to
other broadly used concepts such as random walks. However, due to the inherent limitation of meta
paths such as their length [1], they can only carry limited semantics. Another problem is that typical
meta path generation approaches can produce many short paths or even isolated nodes which make
processing and learning even less efficient [12]. To tackle the weaknesses of meta paths, in reference
[13], the concept of meta graphs is proposed, which contain different meta paths together and are
shown to be significantly more useful in various tasks. Different meta graphs contribute differently to
specific classification problems. However, to the best of our knowledge, none of the existing methods
has demonstrated different semantics among meta graphs. Here, we compute the weights of different
meta graphs by a priori knowledge.

On one hand, using labeled or annotated data can remarkably improve the classification
performance, and on the other hand, acquiring labeled data or manual annotation of the available data
is difficult and expensive. In this paper, we extend the labeled objects based on extending meta graphs
and iteratively enlarge the training dataset. Finally, we use MCHIN to calculate the relatedness of
multi-typed objects and group the objects into pre-specified classes by using the ranking distribution
of objects. The contributions of this study are summarized as follows:

• We identify more objects for the training sets by the Extension Meta Graphs in HINs, which can
effectively utilize a priori knowledge and improve the performance of classification.

• We introduce MCHIN which incorporates extension meta graphs’ semantics and relevance
measurement on objects and assigns categorical labels to each object by a ranking
distribution function.

• We apply our proposed model on three real-world datasets and conduct a comprehensive analysis
of the proposed model to gain more insights. The results show the effectiveness of MCHIN in the
classification task in comparison to other state-of-the-art methods.

This paper is an extension of our previous conference paper “CHIN: Classification with
META-PATH in Heterogeneous Information Networks [9]”. We have significantly improved our
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previous work and presented new meta graphs based classification of heterogeneous information
networks algorithms. The main differences of our previous paper are shown as follows.

• We present a new model based on meta graphs, and compute the weights of different meta graphs.
• We introduce a novel extension rule to extend HINs, which is the first time to be proposed in

our manuscript.
• We propose a novel framework MCHIN, which integrates the extend meta graphs and the

weighted meta graphs to update the information of objects. Moreover, we provide the description
of MCHIN algorithm.

• The datasets are different in the two papers. What is more, we use three datasets in our paper.
• We add Deepwalk, HIN2Vec, and SDNE as baselines in our experiments. We also introduce

detailed information about baselines. We add the weights of different meta graphs. Besides,
we experiment and theoretically analyze the reason why meta graphs are more effective than
meta paths.

2. Related Work

Numerous research studies have been conducted on the classification of networks.
The heterogeneous information networks have two main advantages over their homogeneous
counterparts—they make it possible to model different types of objects and relationships, and they
preserve more complex topological structures with richer semantics information [14].

Classification of homogeneous information networks There has been substantial attentions
given to the classification of network data or objects recently. Most of the previous studies focus
on the networks’ structure, and others use unlabeled objects for classification [15–17]. Collective
classification [18] is one of the most popular classification methods in mining networks. These methods
classify objects by their features and the structure of the network in the homogeneous information
networks. Zhou et al. [19] proposed the Learning with Local and Global Consistency (LLGC) algorithm.
They design a function integrating sufficiently smooth coefficients to learn the general classification
from the labeled data. The weighted-vote relational neighbor classifier (wvRN) [15,20] is another
widespread classification algorithm proposed for mining network data. The wvRN label objects by
considering a link selection mechanism.

Classification of heterogeneous information networks One of the algorithms proposed for
mining HINs is GNetMine proposed by Ji et al. [21]. GNetMine is a transductive classification
model based on graph regularization. The GNetMine, designed for HINs, can only handle the data
with a common topic. Wan et al. [16] consider the class-level meta paths to construct more accurate
classifiers and obtain the train labels to improve the active learning in HINs. RankClass algorithm,
proposed by Ji et al. [17], is a more effective classification method that utilizes both classification and
ranking operation. The values of ranking are related with the classification in HINs. Deepwalk [22]
is another popular embedding model. The input to the Deepwalk is a series of objects produced by
random walks in a language model-SkipGram, and the output would be the representation of features’
objects. However, Deepwalk can only apply the short random walks to obtain the semantic among
the objects.

3. Problem Formalization

The related concepts and definitions are introduced as follow.
We define a HIN as a graph denoted by G = (V, E, A, R), where V and E represent the set of

nodes and edges of the graph respectively, A and R represent the set of types of nodes and edges,
respectively. Definition 1 represents network’s meta-level structure, as shown in Figures 2a and 3a.

Definition 1. Network schema [2,23]. The network schema is defined as TG = (A,R). TG is a meta template for
network G = (V, E, A, R) with the object type mapping φ : V → A and the link type mapping ψ : E→ R.
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Figure 2. Network Schema and Meta Graphs of DBLP (Digitall Bibliography & Library Project) Dataset.

Figure 3. Network Schema and Meta Graphs of Yelp Dataset.

In homogeneous networks, different paths connect two objects of the same type. However,
in heterogeneous information networks, different paths can connect objects of different types.
These connecting paths imply different semantics. Formally, we call these paths as meta paths.

Definition 2. Meta path [1]. A meta path P is a composite relation A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1,

which represents a composite relation R = R1 ◦ R2 ◦ · · · ◦ Rl , between object types A1, A2, . . . , Al+1, where ◦
denotes the composition operator on relations.

Meta paths can express semantics between different objects. Obviously, different meta paths
demonstrate different semantic meanings. In Figure 1b, meta path APA (Author-Paper-Author)
shows that authors are co-writing a paper and the links between authors and papers denote
co-author relationships.

Definition 3. Classification in HINs. Given a class C = {c1, c2, · · · , c|c|} and object set V =

{v1, v2, · · · , v|v|} in a HIN, where |c| and |v| denote the cardinality of these sets, respectively, then classification
of HINs aims to map the object set V into the class set C through f : V → C.
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Definition 4. Meta graph [24]. A meta graph is denoted by S = (A, L, nt, ns ), where A ⊆ V is a subset of
nodes and L ⊆ E is a subset of edges. The meta graph S is a directed acyclic graph (DAG), and nt, ns are a
single source and target node, respectively.

Figure 2b shows the meta graphs of Figure 1b. In Figure 4a, we can consider three meta paths
“APA, APAPA, APVPA” and a meta graph “APA

⋃
AP(A; V)PA”. Tables 1 and 2 show respectively

the connecting author neighbors of A1 based on these meta paths and meta graph.

(a) HIN

(b) Extension Meta Graph in HIN

Figure 4. Extraction of Extension Meta Graph in HIN. (a) HIN; (b) Extension Meta Graph in HIN.

Table 1. The neighbors of A1 based on three meta paths.

Object Meta Paths Neighbors

A1

APA A2
APAPA A4, A5
APVPA A3, A5

Table 2. The neighbors of A1 based on the meta graph.

Object Meta Graph Neighbors

A1 APA
⋃

AP(A; V)PA A2, A3, A4, A5

Definition 5. Meta graph matrix. A meta graph matrix M for a meta graph S = (A1 A2 · · · Al+1) is defined
as M1l+1 = WA1 A2 ×WA2 A3 × . . .×WAl Al+1 , where WAi Aj is the adjacency matrix created for objects of type
Ai and Aj. M[xi, yj] represents the number of graphs between objects xi ∈ Al and yj ∈ Al+1 following meta
graph S, and M[xi, yj] = M[yj, xi].

Obviously, meta graphs are composed of various meta paths in this paper. We take Figure 2b as
the running example to better comprehend the computation of meta graph matrix. For meta graph D1,
it is computed as MD1 = WAP ·WPA; the computing matrix of meta graph D2 is computed as MD2 =

WAP · {(WPT ·WTP)� (WPA ·WAP)� (WPC ·WCP)} ·WPA, where “� ” represents Hadamard product.
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4. The MCHIN Algorithm

4.1. Extension of Heterogeneous Information Networks Based on Meta Graph

There are numerous influence relations between objects in heterogeneous information networks.
Meta graphs involve a series of types of objects expressing binary relations defined on HINs to further
enrich the relationships. However, we use the structure and semantics of objects in meta graphs to
extract more information and improve the performance of the classification. Hence, we extend meta
graphs to the extension meta graphs to capture more object correlations. The extension rules are as
follows: (1) both objects are from the same type; (2) they are also given the same label. If the objects
satisfy both of the rules, we link them with an edge. For convenience, the extension meta graphs can
be expressed in the notation Ã for short.

To illustrate, consider the bibliographic heterogeneous network shown in Figure 4a.
Here, four objects P1, P2, P4, A1 are already labeled (with three spades and a star). Without any
extension, we can only relate A2 to A1 by APA (connecting A1, P1, and A2). Now from the Extension
Meta Graph AP̃A, we can capture the relationship between A1 and A3, A4 and A5. According to meta
graph D2 in Figure 2, we can also link P1 and P4 by meta path APAPA in D2 (connecting A1, P1, A2,
P4, and A5) . In this way, We extract more information from HIN by the extension meta graphs.

4.2. Measuring the Similarity between Different Types of Objects

The relationships among different types of objects following the meta graphs are important in
classification in HINs. Therefore, it is necessary to compute the similarity between the source and
target objects following meta graphs in HINs. We introduce the details of similarity calculation as
follows. Given a meta graph S = (A1 A2 · · · Al+1) with weight θs, where A1 and Al+1 are different
types of source object and target object, respectively, we want to calculate the relationship Rel between
a1i ∈ A1 and a(l+1)j ∈ Al+1:

Rel(a1ib(l+1)j | S) =
w(a1i, a(l+1)j)θs

θs ∑j w(a1i, a(l+1)j) + θs ∑i w(a1i, a(l+1)j)
, (1)

where w(a1i, a(l+1)j) is the value of weighted matrix M[a1i, a(l+1)j]. In fact, w(a1i, a(l+1)j) is initially the
number of meta graphs that connect a1i to a(l+1)j.

4.3. Weight Learning of Meta Graph

To obtain the weight θp of each meta graph s, we construct the objective function O via a priori
knowledge in HINs. The objective functionO aims to maximize similarity with the same labels’ objects,
and minimize the similarity with the different labels’ objects:

O = max
θ

∑
xi ,xj∈L

(sign(xi, xj)∑
s

Rels(xi, xj))
2 − λ‖θ‖2

2, (2)

where λ denotes the regularization parameter, ‖ · ‖ is defined as `2 norm. Rels is the similarity of
objects following meta graph s. The definition of function sign() is:

Sign(xi, xj) =

{
1 if xi and xj share the same label

−1 otherwise
(3)

We calculate the partial derivatives θs of Equation (2), and obtain the solution of the loss function.

θs =
1

2λ ∑
xi ,xj∈L

(Sign(xi, xj) · Rels(xi, xj)) (4)
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4.4. The Framework of MCHIN

In a HIN, let Mij be an ni × nj adjacent matrix of meta graph sij with weight θr. Mij,pq is the value
of pth row and qth column in matrix Mij. And Mij,pq is also the weight of edges between objects xip
and xjq. We consider undirected graphs taht satisfy Mij = MT

ji .

Mij,pq =

{
1 if xip and xjq are adjacent

0 otherwise

In a HIN, if objects have edges, then these objects have similar qualities such as the similarity
rank scores. In the DBLP dataset, the higher of conferences’ rank scores, the corresponding papers’
rank scores would be higher. Therefore, we update each rank score of objects iteratively by the
corresponding linked neighbors. The initial ranking distribution P(xip|Ai, k)0 of objects is defined as a
uniform distribution according to the labeled class k.

P(xip|Ai, k)0 =

{
0 otherwise
1
lik

if xip belongs to k-th class,

where lik denotes the number of Ai objects with k-th class.
Similar to References [21] and [25], linked objects are inclined to have similar labels according to

the consistency assumption. In order to retain the consistency of pre-assigned labels, we add the priori
knowledge to the objective function obj:

obj(P(xip|Ai, k)) .
= λij

ni

∑
p=1

nj

∑
q=1

θr Mij,pq(P(xip|Ai, k)− P(xjq|Aj, k))2

+αi

ni

∑
p=1

(P(xip|Ai, k)− P(xip|Ai, k)0)2.

(5)

The first part of the function is the sum of the ranking distribution of objects with their neighbors,
and the second part guarantees the consistency with the initial labels. When we minimize obj,
it converges to the closed solution according to [16].

P(xip|Ai, k)t .
=

λijθr Mij,pqP(xjq|Ai, k)t−1 + αiP(xip|Ai, k)0

λij + αi
. (6)

We iteratively normalize the P(xip|Ai, k)t as follows:
ni
∑

p=1
P(xip|Ai, k)t = 1, ∀i = 1, . . . , m,

k = 1, . . . , K.
The description of MCHIN’s Algorithm 1 is as follows.
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Algorithm 1: The algorithm of MCHIN
Input: HIN G = (V, E, A, R), meta graph s, meta graph matrix M
Output: Weights of meta graphs θs, the probability of each object belong to each class k
begin Extend the HIN following meta graph s based on extension rules, obtain extend meta
graphs s̃;

Initialize the objects’ ranking distribution within each class k;
while (not converge) do

Compute similarity of source objects and target objects following the extend meta graphs s̃,
obtain Rels̃ with Equation (1);

Compute the weight θs̃ according to Equation (4);
Update the the ranking distribution within each class k with Equation (6);

end
end;
Compute each object’s posterior probability ;
final ;
return Weights of meta graphs θs, the objects labeled k probability;

5. Experiments

To verify our model MCHIN in HINs, we chose three datasets—the DBLP “four-area” dataset
(https://dblp.uni-trier.de) extracted from the bibliography database, Yelp (https://www.yelp.com/
dataset/challenge) extracted from businesses website and IMDB dataset from the IMDB movie website
(https://www.imdb.com/).

5.1. Description of Datasets

5.1.1. DBLP Dataset

The DBLP dataset is a real-world computer science bibliography dataset. We model the
DBLP dataset as a HIN in this experiment. There are four types of objects in DBLP, Author (A),
Conference (C), Paper (P) and Keywords (K). Among different objects, there are various relationships,
“writing” relationships between authors and papers, “publishing” relationships between conferences
and papers, and “containing” relationships between keywords and papers. DBLP dataset contains
four main conferences—Information Retrieval, Database, Artificial Intelligence, and Data Mining.
The four conferences can be considered as the a priori knowledge. DBLP dataset involves 14,376 papers,
20 conferences, 14,475 authors, and 8920 keywords. There are 170,794 links in DBLP. The ground truth
is 4057 authors and all 20 conferences. We choose the set S = (APA, AP{A; C; T}PA) as the meta
graphs in our experiments. For the classification, the authors are labeled.

5.1.2. YELP Dataset

Yelp is a website in which the users can find and evaluate different businesses. We extract a
subnetwork that contains 4 types of objects—5000 restaurants (R), 257,953 Users (U), 10 Categories
(C) (“American, Mexican, Italian, Chinese, Japanese, Thai, Indian, Canadian, Middle Eastern and
Greek”), Reviews (E). Edges exist between restaurants and categories by the relation of “belong to”,
and categories are also the labels of businesses. The users are linked via “friendship” relationship.
The classification task is to classify the restaurants by categories. In Figure 3, the meta graphs set is
S = (RCR, RUR, RU{E; R}UR).

https://dblp.uni-trier.de
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
https://www.imdb.com/
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5.1.3. IMDB Dataset

We obtain the IMDB dataset from the movie website. IMDB movie network contains movies
(M), actors (A), and directors (D). These three different types of objects form two main types of
links: actors perform in movies (A-M) and directors direct movies (D-M). The movies genre is a
priori knowledge. We divide the movies into three types of movies: drama, comedy, and actions in
total. According to the semantic relationships between objects, we choose two proper meta graphs:
S = (M{A; D}M, MA{D; M}AM) in IMDB dataset in our experiment.

5.2. Baselines

To evaluate the effectiveness of our model MCHIN, we compare our model with five algorithms
as follows:

• Deepwalk [22] adopts uniform random walks to represent network embedding for homogeneous
networks. It conducted the SkipGram method to express nodes’ features. Deepwalk can be
applied to homogeneous information networks.

• HIN2Vec [26] is applied to HINs by representing the meta paths. HIN2Vec designs a neural
network model and utilizes meta paths to perform classification task.

• SDNE [27] is a deep neural network based on a non-linear model. It joints the first-order and
second-order proximity to present networks’ structure.

• MCHIN-ori is MCHIN that does not contain extension meta graphs. The original MCHIN
(MCHIN-ori) is used to evaluate the effectiveness of the extension meta graphs.

The introduction of LLGC, wvRN and RanClass can be found in related work. LLGC, Deepwalk
and wvRN are all popular and widely used baseline methods. But all of the three models can only be
applied to homogeneous information networks. In order to utilize these methods, we use different
meta paths to transform HINs to homogeneous information networks.

5.3. Results and Analysis

5.3.1. Classification of Nodes

In our experiments, we use classical method-accuracy to verify the effectiveness of MCHIN.
We perform experiments on three real-world datasets—DBLP, Yelp, and IMDb. For more convincing
results, we randomly select 3%, 5%, 7%, 10% labeled objects as the priori knowledge and classify the
rest of the data in the DBLP dataset. Because Yelp dataset is very sparser than DBLP, we randomly
select the proportion of labeled objects as x%(where x = 10, 30, 50 and 70). In the IMDB dataset,
we choose the ratio of labeled objects x%(where x = 10, 30, 50 and 70) similar to the Yelp dataset.

In our work, λij indicates the selection of the important types of links during the ranking process.
As discussed in Reference [17], we set αi = 0.1, λij = 0.2. They are good enough to verify the validity
of MCHIN.

The results are shown in Tables 3–5, and the highest performance is in bold. In DBLP, clearly,
when the proportion of labeled nodes are only 3%, the accuracy of MCHIN can be up to 87.6%.
That outperforms Deepwalk more than 18%, and better than the best baselines models by 7%.
By increasing the proportion of labeled objects, the performance of the proposed MCHIN has been far
ahead than other comparison methods. The accuracy of MCHIN can achieve 90.5% by labeling 10%
of the objects. In fact, our proposed model MCHIN is significantly more effective than MCHIN-ori
especially when there is a lower number of labels, as MCHIN uses extension meta graphs.
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Table 3. Classification of nodes on DBLP dataset. The highest performance is in bold.

Dataset % Labeled-Nodes 3% 5% 7% 10%

DBLP

LLGC 0.798 0.816 0.835 0.849
wvRN 0.754 0.76 0.772 0.783
RankClass 0.744 0.816 0.828 0.846
Deepwalk 0.694 0.719 0.756 0.831
HIN2Vec 0.786 0.817 0.845 0.863
SDNE 0.802 0.824 0.851 0.872
MCHIN-ori 0.862 0.869 0.887 0.902
MCHIN 0.876 0.881 0.898 0.905

Table 4. Classification of nodes on Yelp dataset. The highest performance is in bold.

Dataset % Labeled-Nodes 30% 50% 70% 90%

Yelp

LLGC 0.312 0.35 0.36 0.379
wvRN 0.296 0.354 0.359 0.365
RankClass 0.324 0.36 0.362 0.383
Deepwalk 0.349 0.368 0.367 0.389
HIN2Vec 0.360 0.382 0.396 0.411
SDNE 0.374 0.389 0.396 0.415
MCHIN-ori 0.363 0.403 0.409 0.416
MCHIN 0.382 0.408 0.414 0.428

Table 5. Classification of nodes on IMDb dataset. The highest performance is in bold.

Dataset % Labeled-Nodes 30% 50% 70% 90%

IMDB

LLGC 0.341 0.356 0.435 0.449
wvRN 0.554 0.566 0.582 0.613
RankClass 0.544 0.566 0.628 0.646
Deepwalk 0.576 0.581 0.596 0.601
HIN2Vec 0.616 0.630 0.641 0.687
SDNE 0.354 0.368 0.376 0.451
MCHIN-ori 0.662 0.669 0.727 0.732
MCHIN 0.686 0.701 0.728 0.745

In Table 4, our method consistently outperforms the other baselines on the Yelp dataset as
well. The results of LLGC, wvRN, RankClass and Deepwalk methods are quite similar to each other.
The reasons are two-folds: (1) the four baseline methods are generally applied to homogeneous
information networks. They lose the quality semantics and the useful complex information when they
are applied to HINs. (2) None of the baseline approaches consider extra-label information through
different types of models in HINs. When extending the meta graphs, MCHIN augments the prior label
sets. This improves the performance 1% more than the MCHIN-ori method on average.

From Table 5, we can see that the effectiveness of MCHIN is higher than the best performance
obtained by the baseline methods from 3% to 8% when the labeled objects change from 30% to 90%.
The LLGC, wvRN, Deepwalk, and SDNE are generally used in homogeneous information networks,
none of them can capture the rich semantic information in HINs. As the results of LLGC, wvRN,
Deepwalk and SDNE methods show, they are significantly lower than others. Both of RanlClass and
HIN2Vec algorithms are applied in the HINs, they can gain more semantic information in different
relationships. Using meta paths in HIN2Vec effectively improve accuracy. However, the performance
of MCHIN-ori is still up to 8% more than HIN2Vec because of adding meta graphs when the labeled
objects are 70%. Furthermore, when we extend the meta graphs, the accuracy increases by 3% when
the labeled objects are 50%.
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5.3.2. Comparison of Algorithms Using Single Meta Path on DBLP

Meta graphs contain various meta paths, which represent different semantics in HINs. In order
to verify the impacts of meta graphs, it is essential to compare the meta element-meta paths in meta
graphs. Due to the space limitation, we only report the performance of meta graphs on the DBLP
dataset. In our paper, the performances of four meta paths: APA, APAPA, APTPA, APCPA, and the
meta graphs S = (APA, AP{A; C; T}PA) are compared for the DBLP dataset. Figure 5a–e show the
accuracy of authors based on the meta paths and meta graphs. We can see that our model MCHIN
outperforms all the baselines based on all the meta paths. The performance of MCHIN is still stable
under different ratios of training data. In all the methods, meta path APCPA performs the best among
APA and APAPA, as it can capture more semantic information in HINs.

(a) Accuracy results based on the meta path APA (b) Accuracy results based on the meta path APAPA

(c) Accuracy results based on the meta path APTPA (d) Accuracy results based on the meta path APCPA

(e) Accuracy results based on the meta graph AP {A; C; T} PA

Figure 5. Results of accuracy of classification for author based on different meta paths and meta graph.
(a) Accuracy results based on the meta path APA; (b) Accuracy results based on the meta path APAPA;
(c) Accuracy results based on the meta path APTPA; (d) Accuracy results based on the meta path
APCPA; (e) Accuracy results based on the meta graph AP {A; C; T} PA.

We further compare the performance of MCHIN based on meta graphs S =

(APA, AP{A; C; T}PA) with all the four meta-paths. From Figure 5e, we can see that the meta
graph APA, AP{A; C; T}PA performs the best among the four meta paths. The single meta graph
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AP{A; C; T}PA outperforms other meta paths at least 1%. It shows that meta graphs can capture more
semantic information than meta paths.

5.3.3. Learning Weights of Meta Graphs In MCHIN

From our experiments and comparisons, we can see that different meta graphs express different
semantics. To utilize rich semantics of meta graphs, it is possible to weight meta graphs differently
and assign higher weights to meta graphs with higher impacts on accuracy.

Figure 6 shows the performance of MCHIN under meta paths and meta graphs on DBLP. The meta
graphs’ relative effectiveness is determined by MCHIN via its weight assignment mechanism. Table 6
denotes different weights of meta graphs computed by MCHIN. MCHIN has assigned the highest
weight to the meta graphs AP{A; C; T}PA, as AP{A; C; T}PA performs the best in the classification.
This matches with the intuition. On the other hand, the weight of APA is around 0.01∼0.15 due to its
poor ability to capture the main features for the classification task. The results of meta graphs’ weights
on the Yelp dataset are also shown in Table 6. Because the labels of the links between restaurants
are related to categories, our model assigns more weights 0.30∼0.40 to RCR than RUR. The meta
graph RU(E; R)UR achieves the highest weight among other meta graphs. In the IMDB dataset,
MA{D; M}AM has higher weight in average than M{A; T}M, as the MA{D; M}AM expresses more
semantic than M{A; T}M.

Figure 6. Accuracy comparison of MCHIN corresponding to different meta paths and meta graphs.

Table 6. Weights of meta graphs on DBLP, Yelp and IMDb dataset.

Dataset Meta Graphs Weights

DBLP APA 0.01∼0.15
AP(A;C;T)PA 0.85∼0.90

Yelp
RCR 0.30∼0.40
RUR 0.01∼0.10
RU(E;R)UR 0.80∼0.90

IMDB M(A;T)M 0.45∼0.55
MA(D;M)AM 0.70∼0.90
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6. Conclusions

In this paper, we studied the classification problem in HINs and proposed a new algorithm,
MCHIN, that iteratively classifies objects in HINs. The priori knowledge is used to extend the original
heterogeneous information networks, which can effectively capture the information hidden in semantic
and structure. It consequently provides a richer training set and improves classification performance.
The proposed framework explores the schema of the network to weight each meta graph, and integrate
the weighted meta graphs for more effective classification. MCHIN also calculates the similarity of
different objects to extract richer semantic information from the HINs. The performance results of
experimental analysis based on different real datasets validate the superiority of MCHIN in comparison
with other algorithms. In the future, we plan to apply our algorithm to other datasets. Another avenue
for future research is to generalize the proposed method to semi-supervised problems, such as the
multi-label classification problem in which an object in the network might have more than one label.
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