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Abstract: This study applies artificial immune system and parallelized finite-state machines to
construct an intrusion detection algorithm for spotting hidden threats in massive number of packets.
Existing intrusion detections are mostly not focused on adaptability for mixed and changing attacks,
which results in low detection rate in new and mixed-type attacks. Using the characteristics of
artificial immune and state transition can address the attacks in evolutionary patterns and track
the anomalies in nonconsecutive packets. The proposed immune algorithm in this study is highly
efficient based on a selection step in multi-island migration. Result shows that the algorithm can
effectively detect mixed-type attacks and obtains an overall accuracy of 95.9% in testing data.

Keywords: intrusion detection system (IDS); artificial immune system (AIS); finite-state machine
(FSM)

1. Introduction

Intrusion detection systems (IDSs) aim to identify and isolate all types of intrusion inside a
computer or communication system [1]. Anomaly and misuse detections are popular in the field
of detection. Existing systems result in high false alarm in multiple anomalies interlaced together.
Despite the sophisticated algorithms in the history of development, an effective method discovering
mixed-type attacks is still needed for security administrators.

Mixed-type attacks refer to the attacking pattern in which the suspicious packets are interlaced
with normal or abnormal packets. Hackers often attack by sending abnormal packets, and some attacks
can be identified by a single packet [1]. However, attackers might use useless or massive normal
packets in a mixed mode in order to cheat autodetection algorithms [1]. Thus, a simple analysis of
a single packet will fail to define the attack, and subsequent packet contents have to be analyzed
through a specialized method [2]. In this study, we are no longer restricted to one single packet
or analytical moment, we use finite-state machines (FSMs) to associate non-single packet attacks to
internal tracking states. A state in the FSM can signal an attack. We apply parallelized FSMs to capture
multiple suspicious attacks on the same time. Subsequently, an artificial immune system (AIS) is
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used to learn the condition of state transition from packet information and generate a complete state
transition diagram.

The immune algorithm or AIS is derived from imitating biological immune process with unique
learning and memory features and superior identification capability in system activity log for detecting
unknown attack modes [3,4]. When a virus enters an organism, the immune system will perform a
chain of reactions to kill the foreign enemy. AIS possesses specificity, discreteness, adaptability, and
learning and memory functions; hence, it can detect more new attacks than conventional methods and
retain effective protection [5–8]. AIS is widely applied in various knowledge disciplines, particularly
in the information technology sector. However, most previous applications in intrusion detection are
restricted in static model analysis and lack adaptability to external environments. Although recent
deep learning in neural networks produce excellent results in IDS [9], insufficient works concentrate
on unknown types of attack. Immune system can well adapt to unknown attacks through its massive
learning and adaptive capability [10,11]. Additionally, an FSM is a mathematical model of computation
with finite number of states at any given time, initial state, and input triggering state transition with
a predefined transition probability [3,12]. The advantage of this model is to keep tracking events
effectively in a directed graph. Therefore, this model can be used to discern multiple attacks among
massive mixed packets.

2. Literature Review

Software and hardware devices should be able to detect network behavior and provide relevant
information to IDS. These data reports about computer network systems contain audit records in the
operating system and header files for network packets [13,14].

IDS is normally divided into anomaly, misuse, and hybrid detections [1,15]. Anomaly detection
alerts anything that deviates from normal actions, whereas misuse detection matches activities with
registered abnormal patterns. Hybrid detection is the mixed of the two detections, producing a
complementary role to perform improved tasks [2,16].

Bharati and Kumar [3] used statistical methods on an audit log as a data source. They also used
normal packet data as a benchmark to establish a baseline and then compared it with the test material.
If the baseline establishes standard values, then anything deviates from the baseline is considered
abnormal. This method calculates the time to process large amounts of data; however, setting a baseline
that can be effectively distinguished is difficult. Al-Khaleefa et al. [17] simulated the operation of the
human brain, trained the weights of intermediate nodes with infinite term memory, and classified the
packets into normal or abnormal patterns. This method is complex and time-consuming; security
administrators cannot obtain clear information of the attacks through the trained weightings of nodes.

Bradley and Tyrrel [12] applied immune algorithm and a single FSM to monitor an electronic
hardware system for potential operation failures. Bharati and Kumar [3] integrated state transition
models and statistical methods into rule-based analysis methods and established nominal behavior
based on frequent system calls, resource use cases, and file access pattern. Rule-based methods
compare test data and identify abnormal access or use of resources. However, such methods cannot
recognize new attacks. Fu et al. [18] classified the test data and then used string matching and FSM
in constructing a high-speed IoT network IDS to improve the efficiency and increase the speed and
quantity of network packet inspection. However, the inspection is limited to a single package, and the
correlation between the envelopes cannot be considered fully. Hwang et al. [19] analyzed network audit
logs to detect abnormal behavior using a data mining approach, such as a combination of associate
rules and frequent episode.
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3. Model Analysis

3.1. Description of Simple Attack

This study uses the evolutionary mechanism of artificial immunology to estimate the transition
probability of finite automata, as shown in Figure 1, i.e., FSM is to distinguish attacks and AIS is to
learn the transition probability in detecting suspects. The probabilities are coded into the antibodies
of AIS and the coding scheme of antibodies is based on the operation of automata. The number
of possible attack states, which are an arbitrary number representing the limiting capacity of the
learning system, is preset to meet the requirement of the experiment. An orthogonal matrix is used for
the experimental design to reduce the number of trials for fine tuning the parameters for antibody
optimization. The process is shown in Figure 1. The completed IDS will classify data packets into
normal, known attack, undetermined (no fit to the output of the classifier), and conflict (fit all types)
packets. The system performance is accessed to reflect its capability and stability.
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Figure 1. Procedures for the intrusion detection experiment. A dataset is divided to training and testing
sets. The training set is used to adjust transition probabilities of FSMs via AIS according to known
attack types. The testing set is used to calculate classification accuracy of trained FSMs by pretending
that the attack types were unknown.

3.2. Mixed-Type Attacks

The intrusion attack contains a chain of associated programs, and multiple packets form a complete
attack process, which may be mixed with some normal packets in nonlinear time. For example, two
warezmaster attacks [1] (Table 1) separated by one normal packet (Figure 2). This mixing packet
could fool some detection algorithms. In the experiment, the correlation of non-consecutive attacks is
captured by FSM, describing the attack process with a chain of state transition.
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Table 1. A sample of data log in which a warezmaster attack was interlaced by a normal packet.

Packet Duration Protocol Type Service Flag Src Bytes Dst Bytes Land Wrong Fragment Urgent Hot Label

76,627 0 tcp http SF 210 542 0 0 0 0 normal
76,628 1 tcp Smtp SF 965 328 0 0 0 0 normal
76,629 0 tcp Smtp SF 1191 368 0 0 0 0 normal
76,630 1 tcp Smtp SF 1291 325 0 0 0 0 normal
76,631 0 tcp Smtp SF 14,081 337 0 0 0 0 normal
76,632 12 tcp ftp SF 72 300 0 0 0 1 warezmaster
76,633 0 tcp http SF 185 635 0 0 0 0 normal

76,634 0 tcp FTP
data SF 8334 0 0 0 0 0 warezmaster

76,635 1 tcp smtp SF 1640 344 0 0 0 0 normal
76,636 0 tcp http SF 307 354 0 0 0 0 normal
76,637 0 tcp http SF 219 5014 0 0 0 0 normal
76,638 0 tcp http SF 212 3902 0 0 0 0 normal
76,639 0 tcp http SF 347 5320 0 0 0 0 normal
76,640 0 tcp http SF 327 365 0 0 0 0 normal
76,641 0 tcp http SF 296 7129 0 0 0 0 normal
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Figure 2. An illustration explaining the mechanism of state transition for detecting warezmaster among
irrelevant packets. At beginning, a suspicious attack is detected, f(service = ftp, flag = SF, source bytes
< 72), but the attack activity cannot be certain completely. Therefore, state M1 is entered and the next
state will be determined by further information. If sufficient evidence is observed, f(service = ftp data,
flag = SF, source bytes > 8334), state A1 is entered and the attack is captured completely.

In the state transition diagram designed for attack incidents (Figure 2), suppose that
the state transition probability can be represented by a function containing three parameters,
i.e., P(Si|Sj) = f(X, Y, Z), where X, Y, and Z denotes service, flag, and source_bytes, respectively.
When the system begins to receive packet, it is at the initial state S0 with normal packets or not
conforming to the first state transition function of attack. Given as an example, when the 76,632 nd
packet is received, the parameters of the packet are service = ftp, flag = SF, and src bytes = 72. Then,
the state transfers to M1. When two cases exist, normal packets are initially received continuously;
then, they are kept under state M1 over a certain time t (we use number of packets in this study),
wherein time t can be set by users with experience. The attacker might stop further attacks of network
activities for certain reasons, or the network packet is lost. Hence, in order to limit the size of memory
consumption, the FSM resource will be released, if no additional intrusive packets are received, and the
system returns to state S0 for further detection. In the illustration, we manually set that the receiving
packet has parameters of service = ftp data, flag = SF, and src bytes > 8334. Then, the state transfers to
A1. After being calculated by the output function, the warezmaster attack can be determined.
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3.3. Build Intrusion Detection Model Using FSM

In this study, a system model is constructed using FSM. As shown in Figure 3, there are three
kinds of states, which are initial, possible attacks, and attack states. Lines in the graph represent state
transitions. The red lines denote the attacks can be simply determined by a single packet. The black
lines denote that a malicious attack cannot be determined by a single packet, and will be decided only
after sufficient information is arrived. Therefore, we use intermediate states (M1–M5) to denote the
status that the next states will be determined by other packets. The automata start from an initial state
S0, transits to a suspected state M1–M5 (The number of states depends on the system resources), and
finally reaches attack states (A1: normal, A2: attack). S0 can reach any suspected and attack state
(antibodies 1–7), whereas each suspected state can conclude an attack state, for a total of 17 antibodies
(Table 2).
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Figure 3. State and state transitions for the FSM of intrusion detection. Some attacks are easy to be
captured, and, therefore, the red lines represent direct transitions to final results. Some attacks are
elaborate. We have to wait for subsequent information to make the final decision. Each internal state
M1–M5 corresponds to one suspicious attack. The number of states depends on the system resources.

Table 2. Assignment of state transition to antibodies.

Current State S0

Next state M1 M2 M3 M4 M5 A1 A2
Antibody# 1 2 3 4 5 6 7

Current State M1 M2 M3 M4 M5
Next state A1 A2 A1 A2 A1 A2 A1 A2 A1 A2
Antibody# 8 9 10 11 12 13 14 15 16 17
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The detection of suspicious attacks over an intermediate state is shown in Figure 4. The dash lines
in the FSMs present possible future actions, which are not a part of standard notation and are only
for explanatory purpose. When one possible attack state is detected, the system will request to start
another state machine to detect multiple attacks simultaneously.Appl. Sci. 2020, 10, 1566 6 of 17 
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Figure 4. (a) An FSM tracking M1–M3 is initialized; (b), (c) new FSMs spawned when other intermediate
attack types are encountered; (d) the FSM tracking M2 is abandoned after packet count t.

When the state machine detects suspicious packets compliant with M2, the system goes to
a suspicious attack state and continues subsequent detection while verifying whether an attack
is occurring.

When the state machine is in a suspicious attack state, it will count its life time t (number of
packets) simultaneously. In this manner, system load can be reduced, and actuating excessive or
overdue state machines can be avoided. If no associated packets in time t can prove the occurrence of
an attack, then this state machine is abandoned to secure system resource operation.

The process is as follows.

(a) Start detection.
(b) When a suspicious attack is detected, a state machine tracking M2 will be spawned to detect the

potential attacks by keeping monitoring the possibility of consecutive anomaly.
(c) Upon detecting of another potential attack, a new state machine M3 will be spawned to keep

tracking the consecutive suspicious pattern.
(d) M2 will be abandoned after examining t packets to avoid system overload.

The study extracts 41 features from the provided packets information, including categorical and
quantity values. We code the categorical features into antibody with Arabic numbers (Table 3), whereas
the quantity values are converted to fuzzy numbers [20] (Figure 5).

Appl. Sci. 2020, 10, 1566 6 of 17 

 

Figure 4. (a) An FSM tracking M1–M3 is initialized; (b), (c) new FSMs spawned when other 

intermediate attack types are encountered; (d) the FSM tracking M2 is abandoned after packet count 

t. 

When the state machine detects suspicious packets compliant with M2, the system goes to a 

suspicious attack state and continues subsequent detection while verifying whether an attack is 

occurring. 

When the state machine is in a suspicious attack state, it will count its life time t (number of 

packets) simultaneously. In this manner, system load can be reduced, and actuating excessive or 

overdue state machines can be avoided. If no associated packets in time t can prove the occurrence 

of an attack, then this state machine is abandoned to secure system resource operation. 

The process is as follows. 

(a) Start detection. 

(b) When a suspicious attack is detected, a state machine tracking M2 will be spawned to detect the 

potential attacks by keeping monitoring the possibility of consecutive anomaly. 

(c) Upon detecting of another potential attack, a new state machine M3 will be spawned to keep 

tracking the consecutive suspicious pattern. 

(d) M2 will be abandoned after examining t packets to avoid system overload. 

The study extracts 41 features from the provided packets information, including categorical and 

quantity values. We code the categorical features into antibody with Arabic numbers (Table 3), 

whereas the quantity values are converted to fuzzy numbers [20] (Figure 5). 

 

Figure 5. Quantity features need to be quantized before coded to AIS antibodies. We use histogram 

to help fuzzy quantizing the quantity values to four categories. 

 

Table 3. Coding scheme for assigning values to categorical features. 

Figure 5. Quantity features need to be quantized before coded to AIS antibodies. We use histogram to
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Table 3. Coding scheme for assigning values to categorical features.

Feature

V1 V2 V3 V4
0: 1 L: 3 ftp: 6 tcp: 9
1: 2 M: 4 telnet: 7 udp: 10

H: 5 http: 8 icmp: 11

Assume that the content of a certain packet is V1 = 1, V2 = H, V3 = http, and V4 = icmp. Then,
the encoding for the categorical features is as Figure 6: The state transitions are assigned to antibodies
according to the arrangement in Table 3. Antibodies 1–7 represent the transitions starting from state S0,
whereas antibodies 8–17 represent the rest transitions that end to attack states A1–A2.
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Figure 6. The encoding scheme for the features in an antibody.

Our algorithm is expressed as Figure 7. The affinity, as in Equation (1), is calculated as the fitness
of antibody to pathogen. For example, two antibodies have affinity values 3 and 4 with respect to a
probable attack A as shown in Table 4 ([21]). The unit of evolution is antibody set. Therefore, the
actual affinity in (1) will add up all antibodies in an antibody set. The algorithm will keep high-affinity
antibody sets in the memory.

Affinity =
M∑

i = 1

sum(notXOR(Attack(i), Antibody(i))) (1)

M: length of the antibody.

Table 4. An example for calculating the affinities of two antibodies with respect to attack A.

Antibody Codes The Affinity of Antibody to Attack A

Attack A 1 0 1 0 1 0
Antibody 1 0 0 1 1 0 0 3
Antibody 2 1 1 0 0 1 0 4
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3.4. Antibody Generation and Migration

As the antibody design, each learning unit, i.e., an antibody set, contains 17 antibodies, based
on current illustrative design. If intermediate states have 10, the antibody set will contain 22
antibodies. Affinity is calculated according to various antibody sets. For example, in Figure 8,
n antibody combinations exist, or an initial random population generates n recombinations at a time.
Every antibody set contains 17 antibodies, each antibody training according to different data without
interference. Affinity is calculated on the basis of all antibody sets. Thus, 17 antibodies are arranged in
serial sequence.
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Figure 8. Allocation of antibodies for the transition functions of an FSM (an antibody set presents an
FSM; a population will evolve to select a best antibody set).

The study adopts multiple random populations at one time (Figure 9) to simulate island genetic
algorithm (IGA) migration, in which each population will evolve independently in their resident
island [22]. IGA involves parallel involution in each island of population to avoid stuck into local
optimum and provide opportunities to seek the best solution. The island structure is shown in
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Figure 9. Many studies indicated that IGA outpaces conventional genetic algorithm ([22]). The best
solution is rendered by keeping migration with good antibody sets in different islands to exchange
and substitute with part of antibody sets in other populations over time, as shown by the arrows in
Figure 7. The migration will be selected according to a predefined probability (migration rate). The size
of slowly evolved population decreases, and the decreased numbers are passed to population with
better parameters to increase the number of populations with better evolution parameters and find the
best solution effectively.

After completion of the system state machine modeling, an affinity test of packet against each
antibody is performed. If a packet’s antibody affinity is greater than a pre-calculated lower bound,
this packet will be preliminarily determined to be a suspicious attack. However, the final conclusion
should be obtained after acquiring the affinities of this packet with other antibodies.Appl. Sci. 2020, 10, 1566 10 of 17 
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Figure 9. The antibody sets migration between populations of islands. The best solution is rendered by
keeping migration with good antibody sets in different islands to exchange and substitute with part of
antibody sets in other populations over time. The migration will be selected according to a predefined
probability (migration rate).

4. Results

4.1. Experimental Design

To compare the performance our algorithm to existing studies, we follow the choice of the
most the adopted dataset in the Third International Knowledge Discovery and Data Mining Tools
Competition, [23]. The data used in the experiment were randomly divided into training and testing
sets. The data contained 41 features in three categories, namely TCP header, content, traffic features.
The KDDCup packet of the data is shown in Table 5.

Among the 23 types of attack in KDDCup data, this study screened nine types of common attacks
plus one normal activity for training data, and each type contained 10,000 randomly selected packets.
For testing, five additional types of attack were selected from the KDDCup data as testing data.
The novel data were used as proof for the stability and adaptability of our method.

The algorithm initially used the parameter setting in Table 6 and created 50 populations with
100 k antibodies in each population. After the evolution, the convergence result is shown in Figure 10.
The changes of the best affinity in selected five populations among the 1500 generations are shown by the
different colors in Figure 10a (the thick red line is the best affinity for all populations). Evidently, affinity
has gradually converged after 1000th generations. The best affinity changes of antibodies are shown in
Figure 10b. The affinity changes among the populations are shown in Figure 10c. The evolution before
500th generations is fast, and the rate becomes moderate after 500. Slowly converged population may
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also produce the best affinity antibody due to the IGA migration mechanism with antibody exchange.
After 1000 generations, the affinity between populations become indifferent.Appl. Sci. 2020, 10, 1566 11 of 17 
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Figure 10. The convergence of the IGA evolution. (a) The changes of the best affinity in selected
five populations among the 1500 generations are shown by the different colors (the thick red line
is the best affinity for all populations). Evidently, affinity has gradually converged after 1000th
generations. (b) The best affinity changes of antibodies are displayed in 3D heat map. (c) The affinity
changes among the populations before 500th generations are fast, and the rate becomes moderate
after 500. Slowly converged population may also produce the best affinity antibody due to the IGA
migration mechanism with antibody exchange. After 1000 generations, the affinity between populations
become indifferent.
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Table 5. KDDCup data log.

Duration Protocol Type Service Flag Src Bytes Dst Bytes Land Wrong Fragment Urgent Hot Label

0 udp private SF 105 146 0 0 0 0 normal

0 udp private SF 105 146 0 0 0 0 normal

0 udp private SF 105 146 0 0 0 0 normal

0 udp private SF 105 146 0 0 0 0 snmpgetattack

0 udp private SF 105 146 0 0 0 0 snmpgetattack

0 udp private SF 105 146 0 0 0 0 snmpgetattack

0 udp domain SF 29 0 0 0 0 0 normal

0 tcp private SF 105 146 0 0 0 0 normal

0 udp private SF 105 146 0 0 0 0 snmpgetattack

0 tcp http SF 223 185 0 0 0 0 normal

0 udp private SF 105 146 0 0 0 0 snmpgetattack

0 tcp http SF 230 260 0 0 0 0 normal

Data source (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html).

Table 6. Parameter setting in the IGA AIS.

Populations 5

Population number 1 2 3 4 5

Antibody sets in a population 100 100 100 100 100

Migration interval 100

Random samples 200

Migration rate 0.1

Selection type Threshold selection

Selection pressure 1.7

Reproduction rate 0.1

Cross-over rate 0.3 0.4 0.5 0.6 0.7

Mutation rate 0.02 0.05 0.02 0.05 0.02

Stopping criteria Stopped at 1500th generation

Threshold = 1/selection pressure (SP); Antibody value = antibody affinity/max affinity in a population at a
generation; For example, a particular antibody will be selected if it must surpass the threshold (1/1.7 = 0.588);
antibody affinity = 1000; max affinity in a population at a generation = 3000; 1000/3000 = 0.3 < 0.588; thus, this
antibody will not be selected.

4.2. Optimization of Metaparameters

The lower bound of affinity matching must be calculated for each antibody to perform anomaly
matching. Only those packets that the affinity is greater than the lower bound will be treated as
an attack.

Two types of antibody are taken as examples in Figure 11. In Figure 11a, whether the antibody
belongs to a normal packet is identified. In Figure 11b, whether the antibody is attacking packet is
detected. The red lines are the lower bounds of antibodies. When the affinity between the packet and
antibody is greater than that of the lower bound (or the affinity lies on the right of the red line), the
antibody manifests a receiving state. If the packet is only received by the antibody of a normal packet,
as detected, then this packet can be determined to be a normal packet; otherwise, if the packet is only
received by the antibody of an attack packet, as detected, then it is determined to be an attacking
packet. If the packet is rejected simultaneously by normal and attacking antibodies, then it is an
unknown packet. If the packet is received by more than two types of antibody, then it is a conflict
packet. The details are illustrated in Table 7.

http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
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Table 7. Illustration of the determination ranges from Figure 9.

Antibodies to Be Normal Packets Antibodies to Be Attack Packets

Less than A Greater than B Less than C Greater than D Determination
yes yes Unknown Suspicious

yes Yes Conflict
yes yes Attack

yes yes Normal

To find most fit lower bound of each antibody (i.e., the best position of the red line in Figure 8),
each type of experimental factor is classified as three levels of 0.5, 1.0, and 1.5 standard deviations.
Five antibodies in the center state adopt one level, whereas the other 12 antibodies have different
levels. Hence, a total of 13 experimental factors exist, with 313 = 1,594,323 combinations in total.
This study adopted the Taguchi method with an orthogonally designed array to reduce the number of
tests in obtaining the desired result and determining the best level of each experimental factor [24].
The experiment needs 13 best levels in total. Thus, L27(313) orthogonal array was adopted.
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Figure 11. Attack judgment for antibody affinity. The red lines are the lower bounds of antibodies.
(a). When the affinity between the packet and antibody is greater than that of the lower bound 1 (B)
and less than that of the lower bound 2 (C), the packet can be determined to be a normal packet. (b) If a
packet is (A) and (D) on the same time, it is an attack packet.

The calculation of the lower bound is shown in Equation (2). In each set, the lower bound of
each antibody was calculated according to different level combinations and then compared with the
training data to obtain the value of D of each set (Equation (3)). Finally, the best parameter of each
antibody was calculated from D. Only 27 tests in the experiment could have the best factor and level
combination, according to the signal-to-noise ratio (S/N) expressed in Equation (4).

Lboundi = µi − Pi × σi (2)

Lboundi: lower bound of ith antibody
µi: mean similarity of ith antibody and training data
σi: standard deviation of similarity of ith antibody and training data
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Pi: experimental factor of ith antibody.

D = (number of unknown packets + number of controversial packets) (3)

S
N

= −10log

1n
n∑

i = 1

y2
i

 (4)

After IDS modeling and level optimization in Equation (4) of each antibody, comparison of model
and test data is conducted. In the experiment, the chosen ten types of attack in original training data
(left half of Table 8), then screen them through secondary stage identification, leave attacks of normal
packet and single packet to detect (right half of Table 8), and verify identification capability of direct
detection and secondary detection; it can be known from table that the accuracy of this model in
judging compound packet (packet including first and second identifications) (0.984) is very similar
to that of single packet (0.989), therefore it can be concluded that this model can effectively detect
compound attack packet, and regardless of single packet or compound packet attacks, high accuracy
and precision can be obtained.

Table 8. Detection performance for single-type attacks.

Single-Type Attack (378,067 Records)

True condition

Normal Attack

Predicted condition

Normal 93,394 (true positive) 0 (false positive)

Attack 1916 (false negative) 280,519 (true negative)

Indeterminant
Conflict 167 0

unknown 1895 176

tp = true positive; tn = true negative; fp = false positive; fn = false negative; Accuracy = (tp + tn)/total = (93394 +
280519)/378067 = 0.989; Recall rate = (tp)/(normal true conditions) = (93394)/(93394 + 1912 + 167 + 1895) = 0.959;
Precision rate = (tp)/(normal predicted conditions) = 93394/(93394 + 0) = 1.

4.3. Experimental Results

After training, five additional types of attack in the original data were regarded as new attacks
for the testing phase, with a total of 548 cases in total. The experimental results are shown in
Tables 8–10. As shown in Tables 8 and 9, the performance of single-type and mixed-type attacks
is superior. By adding new and unknown patterns of attacks, the performance remains good, as
shown in Table 10. For the detection results of unknown or conflict, we treat them as attacks to avoid
miss capturing.

Table 9. Detection performance for mixed-type attacks.

Mixed-Type Attack (491,438 Records)

True Condition

Normal Attack

Predicted condition

Normal 93,394 (true positive) 3456 (false positive)

Attack 1912 (false negative) 390,371 (true negative)

Indeterminant
Conflict 167 38

Unknown 1899 201

tp = true positive; tn = true negative; fp = false positive; fn = false negative; Accuracy = (tp + tn)/total = (93394 +
390371)/491438 = 0.984; Recall rate = (tp)/(normal true conditions) = (93394)/(93394 + 1912 + 167 + 1899) = 0.96;
Precision rate = (tp)/(normal predicted conditions) = 93394/(93394 + 3456) = 0.964.
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Table 10. Detection performance for new-type attacks, which are completely unseen for the system.

New-Type Attacks (548 Records) Plus Previous Mixed-Type Attacks (491,438)

True condition

Normal Attack New Attack

Predicted condition

Normal 81,300 2367 109

Attack 3623 390,265 318

Indeterminant
Conflict 376 423 40

Unknown 423 1011 81

Accuracy = 0.959; Recall rate = 0.835; Precision rate = 0.897.

The overall detection accuracy was 95.9%. This study produced sufficient recall rate in terms
of single and mixed-type intrusive packets. Although our algorithm has different goal to the KDD
(Knowledge Discovery and Datamining) competition, we are still interested in a comparison to
single-type attacks. The winner of KDD cup and a recent research had an overall accuracy of 92.7%
and 96.5%, respectively [25] compared with the rate of 95.9% in this study. For the massive unknown
variants from intrusion hackers, a small difference in the accuracy number may not be meaningful in
performance comparison. For other performance metrics, we have a lower recall rate but have high
precision, i.e., we have less type I error. Type I error implies labeling malicious packets to normal
packets. Detection problems always face the trade-off between false alarming and miss capturing.
We think a good security administrator cannot easily allow suspicious activities to exist under security
supervision. Therefore, the decision trade-off will toward to high precision, instead of high recall. Thus,
the proposed algorithm contributes to attack detection in presenting mixed-type and new attacks.

5. Conclusions

This study is the first to define multiple possible states using FSM theory and the evolution
property of AIS to establish the transition function between varied states. Then, this study conducts a
non-consecutive packet analysis, which cannot be found in a single packet. Furthermore, the detection
of new intrusion is not a superficial direct analysis; rather, this study uses an intermediate state to extract
new attacks similar to known attacks and has an identification capability for new intrusions, attaining
stability of intrusion detection algorithm. This study attributes unidentifiable and controversial packets
to one type, providing reference in analysis for administrators of user organizations, and the high
stability relieves administrators of labor load caused by excessive erroneous messages.
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