

 applsci-10-01566

applsci-10-01566

Appl. Sci. 2020, 10(5), 1566; doi:10.3390/app10051566

Article

Detecting Mixed-Type Intrusion in High Adaptability Using Artificial Immune System and Parallelized Automata

Fu-I Chou 1, Wen-Hsien Ho 2,3[image: Orcid], Yenming J. Chen 4,*[image: Orcid], Jinn-Tsong Tsai 5,*[image: Orcid] and Chia-Wen Chang 4

1

Department of Automation Engineering, National Formosa University, Yunlin 632, Taiwan

2

Department of Healthcare Administration and Medical Informatics, Kaohsiung Medical University, Kaohsiung 807, Taiwan

3

Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan

4

Department of Logistics Management, National Kaohsiung University of Science and Technology, Kaohsiung 824, Taiwan

5

Department of Computer Science, National Pingtung University, Pingtung 900, Taiwan

*

Correspondence: yjjchen@nkust.edu.tw (Y.J.C.); jttsai@mail.nptu.edu.tw (J.-T.T.)

Received: 28 December 2019 / Accepted: 17 February 2020 / Published: 25 February 2020

Abstract

:

This study applies artificial immune system and parallelized finite-state machines to construct an intrusion detection algorithm for spotting hidden threats in massive number of packets. Existing intrusion detections are mostly not focused on adaptability for mixed and changing attacks, which results in low detection rate in new and mixed-type attacks. Using the characteristics of artificial immune and state transition can address the attacks in evolutionary patterns and track the anomalies in nonconsecutive packets. The proposed immune algorithm in this study is highly efficient based on a selection step in multi-island migration. Result shows that the algorithm can effectively detect mixed-type attacks and obtains an overall accuracy of 95.9% in testing data.

Keywords:

intrusion detection system (IDS); artificial immune system (AIS); finite-state machine (FSM)

1. Introduction

Intrusion detection systems (IDSs) aim to identify and isolate all types of intrusion inside a computer or communication system [1]. Anomaly and misuse detections are popular in the field of detection. Existing systems result in high false alarm in multiple anomalies interlaced together. Despite the sophisticated algorithms in the history of development, an effective method discovering mixed-type attacks is still needed for security administrators.

Mixed-type attacks refer to the attacking pattern in which the suspicious packets are interlaced with normal or abnormal packets. Hackers often attack by sending abnormal packets, and some attacks can be identified by a single packet [1]. However, attackers might use useless or massive normal packets in a mixed mode in order to cheat autodetection algorithms [1]. Thus, a simple analysis of a single packet will fail to define the attack, and subsequent packet contents have to be analyzed through a specialized method [2]. In this study, we are no longer restricted to one single packet or analytical moment, we use finite-state machines (FSMs) to associate non-single packet attacks to internal tracking states. A state in the FSM can signal an attack. We apply parallelized FSMs to capture multiple suspicious attacks on the same time. Subsequently, an artificial immune system (AIS) is used to learn the condition of state transition from packet information and generate a complete state transition diagram.

The immune algorithm or AIS is derived from imitating biological immune process with unique learning and memory features and superior identification capability in system activity log for detecting unknown attack modes [3,4]. When a virus enters an organism, the immune system will perform a chain of reactions to kill the foreign enemy. AIS possesses specificity, discreteness, adaptability, and learning and memory functions; hence, it can detect more new attacks than conventional methods and retain effective protection [5,6,7,8]. AIS is widely applied in various knowledge disciplines, particularly in the information technology sector. However, most previous applications in intrusion detection are restricted in static model analysis and lack adaptability to external environments. Although recent deep learning in neural networks produce excellent results in IDS [9], insufficient works concentrate on unknown types of attack. Immune system can well adapt to unknown attacks through its massive learning and adaptive capability [10,11]. Additionally, an FSM is a mathematical model of computation with finite number of states at any given time, initial state, and input triggering state transition with a predefined transition probability [3,12]. The advantage of this model is to keep tracking events effectively in a directed graph. Therefore, this model can be used to discern multiple attacks among massive mixed packets.

2. Literature Review

Software and hardware devices should be able to detect network behavior and provide relevant information to IDS. These data reports about computer network systems contain audit records in the operating system and header files for network packets [13,14].

IDS is normally divided into anomaly, misuse, and hybrid detections [1,15]. Anomaly detection alerts anything that deviates from normal actions, whereas misuse detection matches activities with registered abnormal patterns. Hybrid detection is the mixed of the two detections, producing a complementary role to perform improved tasks [2,16].

Bharati and Kumar [3] used statistical methods on an audit log as a data source. They also used normal packet data as a benchmark to establish a baseline and then compared it with the test material. If the baseline establishes standard values, then anything deviates from the baseline is considered abnormal. This method calculates the time to process large amounts of data; however, setting a baseline that can be effectively distinguished is difficult. Al-Khaleefa et al. [17] simulated the operation of the human brain, trained the weights of intermediate nodes with infinite term memory, and classified the packets into normal or abnormal patterns. This method is complex and time-consuming; security administrators cannot obtain clear information of the attacks through the trained weightings of nodes.

Bradley and Tyrrel [12] applied immune algorithm and a single FSM to monitor an electronic hardware system for potential operation failures. Bharati and Kumar [3] integrated state transition models and statistical methods into rule-based analysis methods and established nominal behavior based on frequent system calls, resource use cases, and file access pattern. Rule-based methods compare test data and identify abnormal access or use of resources. However, such methods cannot recognize new attacks. Fu et al. [18] classified the test data and then used string matching and FSM in constructing a high-speed IoT network IDS to improve the efficiency and increase the speed and quantity of network packet inspection. However, the inspection is limited to a single package, and the correlation between the envelopes cannot be considered fully. Hwang et al. [19] analyzed network audit logs to detect abnormal behavior using a data mining approach, such as a combination of associate rules and frequent episode.

3. Model Analysis

3.1. Description of Simple Attack

This study uses the evolutionary mechanism of artificial immunology to estimate the transition probability of finite automata, as shown in Figure 1, i.e., FSM is to distinguish attacks and AIS is to learn the transition probability in detecting suspects. The probabilities are coded into the antibodies of AIS and the coding scheme of antibodies is based on the operation of automata. The number of possible attack states, which are an arbitrary number representing the limiting capacity of the learning system, is preset to meet the requirement of the experiment. An orthogonal matrix is used for the experimental design to reduce the number of trials for fine tuning the parameters for antibody optimization. The process is shown in Figure 1. The completed IDS will classify data packets into normal, known attack, undetermined (no fit to the output of the classifier), and conflict (fit all types) packets. The system performance is accessed to reflect its capability and stability.

3.2. Mixed-Type Attacks

The intrusion attack contains a chain of associated programs, and multiple packets form a complete attack process, which may be mixed with some normal packets in nonlinear time. For example, two warezmaster attacks [1] (Table 1) separated by one normal packet (Figure 2). This mixing packet could fool some detection algorithms. In the experiment, the correlation of non-consecutive attacks is captured by FSM, describing the attack process with a chain of state transition.

In the state transition diagram designed for attack incidents (Figure 2), suppose that the state transition probability can be represented by a function containing three parameters, i.e., P(Si|Sj) = f(X, Y, Z), where X, Y, and Z denotes service, flag, and source_bytes, respectively. When the system begins to receive packet, it is at the initial state S0 with normal packets or not conforming to the first state transition function of attack. Given as an example, when the 76,632 nd packet is received, the parameters of the packet are service = ftp, flag = SF, and src bytes = 72. Then, the state transfers to M1. When two cases exist, normal packets are initially received continuously; then, they are kept under state M1 over a certain time t (we use number of packets in this study), wherein time t can be set by users with experience. The attacker might stop further attacks of network activities for certain reasons, or the network packet is lost. Hence, in order to limit the size of memory consumption, the FSM resource will be released, if no additional intrusive packets are received, and the system returns to state S0 for further detection. In the illustration, we manually set that the receiving packet has parameters of service = ftp data, flag = SF, and src bytes > 8334. Then, the state transfers to A1. After being calculated by the output function, the warezmaster attack can be determined.

3.3. Build Intrusion Detection Model Using FSM

In this study, a system model is constructed using FSM. As shown in Figure 3, there are three kinds of states, which are initial, possible attacks, and attack states. Lines in the graph represent state transitions. The red lines denote the attacks can be simply determined by a single packet. The black lines denote that a malicious attack cannot be determined by a single packet, and will be decided only after sufficient information is arrived. Therefore, we use intermediate states (M1–M5) to denote the status that the next states will be determined by other packets. The automata start from an initial state S0, transits to a suspected state M1–M5 (The number of states depends on the system resources), and finally reaches attack states (A1: normal, A2: attack). S0 can reach any suspected and attack state (antibodies 1–7), whereas each suspected state can conclude an attack state, for a total of 17 antibodies (Table 2).

The detection of suspicious attacks over an intermediate state is shown in Figure 4. The dash lines in the FSMs present possible future actions, which are not a part of standard notation and are only for explanatory purpose. When one possible attack state is detected, the system will request to start another state machine to detect multiple attacks simultaneously.

When the state machine detects suspicious packets compliant with M2, the system goes to a suspicious attack state and continues subsequent detection while verifying whether an attack is occurring.

When the state machine is in a suspicious attack state, it will count its life time t (number of packets) simultaneously. In this manner, system load can be reduced, and actuating excessive or overdue state machines can be avoided. If no associated packets in time t can prove the occurrence of an attack, then this state machine is abandoned to secure system resource operation.

The process is as follows.

	(a)

	
Start detection.

	(b)

	
When a suspicious attack is detected, a state machine tracking M2 will be spawned to detect the potential attacks by keeping monitoring the possibility of consecutive anomaly.

	(c)

	
Upon detecting of another potential attack, a new state machine M3 will be spawned to keep tracking the consecutive suspicious pattern.

	(d)

	
M2 will be abandoned after examining t packets to avoid system overload.

The study extracts 41 features from the provided packets information, including categorical and quantity values. We code the categorical features into antibody with Arabic numbers (Table 3), whereas the quantity values are converted to fuzzy numbers [20] (Figure 5).

Assume that the content of a certain packet is V1 = 1, V2 = H, V3 = http, and V4 = icmp. Then, the encoding for the categorical features is as Figure 6: The state transitions are assigned to antibodies according to the arrangement in Table 3. Antibodies 1–7 represent the transitions starting from state S0, whereas antibodies 8–17 represent the rest transitions that end to attack states A1–A2.

Our algorithm is expressed as Figure 7. The affinity, as in Equation (1), is calculated as the fitness of antibody to pathogen. For example, two antibodies have affinity values 3 and 4 with respect to a probable attack A as shown in Table 4 ([21]). The unit of evolution is antibody set. Therefore, the actual affinity in (1) will add up all antibodies in an antibody set. The algorithm will keep high-affinity antibody sets in the memory.

 Affinity = ∑ i = 1 M sum (notXOR (A t t a c k (i) , A n t i b o d y (i)))

(1)

M: length of the antibody.

3.4. Antibody Generation and Migration

As the antibody design, each learning unit, i.e., an antibody set, contains 17 antibodies, based on current illustrative design. If intermediate states have 10, the antibody set will contain 22 antibodies. Affinity is calculated according to various antibody sets. For example, in Figure 8, n antibody combinations exist, or an initial random population generates n recombinations at a time. Every antibody set contains 17 antibodies, each antibody training according to different data without interference. Affinity is calculated on the basis of all antibody sets. Thus, 17 antibodies are arranged in serial sequence.

The study adopts multiple random populations at one time (Figure 9) to simulate island genetic algorithm (IGA) migration, in which each population will evolve independently in their resident island [22]. IGA involves parallel involution in each island of population to avoid stuck into local optimum and provide opportunities to seek the best solution. The island structure is shown in Figure 9. Many studies indicated that IGA outpaces conventional genetic algorithm ([22]). The best solution is rendered by keeping migration with good antibody sets in different islands to exchange and substitute with part of antibody sets in other populations over time, as shown by the arrows in Figure 7. The migration will be selected according to a predefined probability (migration rate). The size of slowly evolved population decreases, and the decreased numbers are passed to population with better parameters to increase the number of populations with better evolution parameters and find the best solution effectively.

After completion of the system state machine modeling, an affinity test of packet against each antibody is performed. If a packet’s antibody affinity is greater than a pre-calculated lower bound, this packet will be preliminarily determined to be a suspicious attack. However, the final conclusion should be obtained after acquiring the affinities of this packet with other antibodies.

4. Results

4.1. Experimental Design

To compare the performance our algorithm to existing studies, we follow the choice of the most the adopted dataset in the Third International Knowledge Discovery and Data Mining Tools Competition, [23]. The data used in the experiment were randomly divided into training and testing sets. The data contained 41 features in three categories, namely TCP header, content, traffic features. The KDDCup packet of the data is shown in Table 5.

Among the 23 types of attack in KDDCup data, this study screened nine types of common attacks plus one normal activity for training data, and each type contained 10,000 randomly selected packets. For testing, five additional types of attack were selected from the KDDCup data as testing data. The novel data were used as proof for the stability and adaptability of our method.

The algorithm initially used the parameter setting in Table 6 and created 50 populations with 100 k antibodies in each population. After the evolution, the convergence result is shown in Figure 10. The changes of the best affinity in selected five populations among the 1500 generations are shown by the different colors in Figure 10a (the thick red line is the best affinity for all populations). Evidently, affinity has gradually converged after 1000th generations. The best affinity changes of antibodies are shown in Figure 10b. The affinity changes among the populations are shown in Figure 10c. The evolution before 500th generations is fast, and the rate becomes moderate after 500. Slowly converged population may also produce the best affinity antibody due to the IGA migration mechanism with antibody exchange. After 1000 generations, the affinity between populations become indifferent.

4.2. Optimization of Metaparameters

The lower bound of affinity matching must be calculated for each antibody to perform anomaly matching. Only those packets that the affinity is greater than the lower bound will be treated as an attack.

Two types of antibody are taken as examples in Figure 11. In Figure 11a, whether the antibody belongs to a normal packet is identified. In Figure 11b, whether the antibody is attacking packet is detected. The red lines are the lower bounds of antibodies. When the affinity between the packet and antibody is greater than that of the lower bound (or the affinity lies on the right of the red line), the antibody manifests a receiving state. If the packet is only received by the antibody of a normal packet, as detected, then this packet can be determined to be a normal packet; otherwise, if the packet is only received by the antibody of an attack packet, as detected, then it is determined to be an attacking packet. If the packet is rejected simultaneously by normal and attacking antibodies, then it is an unknown packet. If the packet is received by more than two types of antibody, then it is a conflict packet. The details are illustrated in Table 7.

To find most fit lower bound of each antibody (i.e., the best position of the red line in Figure 8), each type of experimental factor is classified as three levels of 0.5, 1.0, and 1.5 standard deviations. Five antibodies in the center state adopt one level, whereas the other 12 antibodies have different levels. Hence, a total of 13 experimental factors exist, with 313 = 1,594,323 combinations in total. This study adopted the Taguchi method with an orthogonally designed array to reduce the number of tests in obtaining the desired result and determining the best level of each experimental factor [24]. The experiment needs 13 best levels in total. Thus, L27(313) orthogonal array was adopted.

The calculation of the lower bound is shown in Equation (2). In each set, the lower bound of each antibody was calculated according to different level combinations and then compared with the training data to obtain the value of D of each set (Equation (3)). Finally, the best parameter of each antibody was calculated from D. Only 27 tests in the experiment could have the best factor and level combination, according to the signal-to-noise ratio (S/N) expressed in Equation (4).

 L b o u n d i = μ i − P i × σ i

(2)

Lboundi: lower bound of ith antibody

μi: mean similarity of ith antibody and training data

σi: standard deviation of similarity of ith antibody and training data

Pi: experimental factor of ith antibody.

D = (number of unknown packets + number of controversial packets)

(3)

 S N = − 10 l o g [1 n ∑ i = 1 n y i 2]

(4)

After IDS modeling and level optimization in Equation (4) of each antibody, comparison of model and test data is conducted. In the experiment, the chosen ten types of attack in original training data (left half of Table 8), then screen them through secondary stage identification, leave attacks of normal packet and single packet to detect (right half of Table 8), and verify identification capability of direct detection and secondary detection; it can be known from table that the accuracy of this model in judging compound packet (packet including first and second identifications) (0.984) is very similar to that of single packet (0.989), therefore it can be concluded that this model can effectively detect compound attack packet, and regardless of single packet or compound packet attacks, high accuracy and precision can be obtained.

4.3. Experimental Results

After training, five additional types of attack in the original data were regarded as new attacks for the testing phase, with a total of 548 cases in total. The experimental results are shown in Table 8, Table 9 and Table 10. As shown in Table 8 and Table 9, the performance of single-type and mixed-type attacks is superior. By adding new and unknown patterns of attacks, the performance remains good, as shown in Table 10. For the detection results of unknown or conflict, we treat them as attacks to avoid miss capturing.

The overall detection accuracy was 95.9%. This study produced sufficient recall rate in terms of single and mixed-type intrusive packets. Although our algorithm has different goal to the KDD (Knowledge Discovery and Datamining) competition, we are still interested in a comparison to single-type attacks. The winner of KDD cup and a recent research had an overall accuracy of 92.7% and 96.5%, respectively [25] compared with the rate of 95.9% in this study. For the massive unknown variants from intrusion hackers, a small difference in the accuracy number may not be meaningful in performance comparison. For other performance metrics, we have a lower recall rate but have high precision, i.e., we have less type I error. Type I error implies labeling malicious packets to normal packets. Detection problems always face the trade-off between false alarming and miss capturing. We think a good security administrator cannot easily allow suspicious activities to exist under security supervision. Therefore, the decision trade-off will toward to high precision, instead of high recall. Thus, the proposed algorithm contributes to attack detection in presenting mixed-type and new attacks.

5. Conclusions

This study is the first to define multiple possible states using FSM theory and the evolution property of AIS to establish the transition function between varied states. Then, this study conducts a non-consecutive packet analysis, which cannot be found in a single packet. Furthermore, the detection of new intrusion is not a superficial direct analysis; rather, this study uses an intermediate state to extract new attacks similar to known attacks and has an identification capability for new intrusions, attaining stability of intrusion detection algorithm. This study attributes unidentifiable and controversial packets to one type, providing reference in analysis for administrators of user organizations, and the high stability relieves administrators of labor load caused by excessive erroneous messages.

Author Contributions

Conceptualization, Y.J.C. and J.-T.T.; Methodology, Y.J.C.; Software, Y.J.C.; Validation, Y.J.C. and F.-I.C.; Formal Analysis, Y.J.C.; Investigation, Y.J.C. and W.-H.H.; Resources, C.-W.C.; Data Curation, C.-W.C.; Writing-Original Draft Preparation, Y.J.C.; Writing-Review & Editing, W.-H.H.; Visualization, Y.J.C.; Supervision, Y.J.C.; Project Administration, Y.J.C. and J.-T.T.; Funding Acquisition, F.-I.C. All authors have read and agreed to the published version of the manuscript.

Funding

This research was funded by the Ministry of Science and Technology in Taiwan grant numbers MOST 107-2410-H-992-014-MY2, MOST 108-2221-E-037-007 and MOST 108-2218-E-992-304, and in part by the “Intelligent Manufacturing Research Center” (iMRC) from the Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan.

Conflicts of Interest

The authors have no conflicts of interest to declare.

References

	

Bragg, R.; Strassberg, K.; Rhodes-Ousley, M. Network Security: The Complete Reference. McGraw-Hill/Osborne: New York, NY, USA, 2004; p. 854. [Google Scholar]

	

Chan, A.; Ng, W.; Yeung, D.; Tsang, C. Refinement of rule-based intrusion detection system for denial of service attacks by support vector machine. In Proceedings of the 2004 International Conference on Machine Learning and Cybernetics, Shanghai, China, 26–29 August 2004; Volume 7, pp. 4252–4256. [Google Scholar]

	

Bharati, T.S.; Kumar, R. Intrusion detection system for manet using machine learning and state transition analysis. Int. J. Comput. Eng. Technol. 2015, 6, 2. [Google Scholar]

	

Hao, Y.; Sheng, Y.; Wang, J. A graph representation learning algorithm for low-order proximity feature extraction to enhance unsupervised ids preprocessing. Appl. Sci. 2019, 9, 4473. [Google Scholar] [CrossRef]

	

Kim, J.; Bentley, P. Towards an artificial immune system for network intrusion detection: An investigation of clonal selection with a negative selection operator. In Proceedings of the 2001 Congress on Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 2, pp. 1244–1252. [Google Scholar]

	

Dozier, G.; Brown, D.; Hurley, J.; Cain, K. Vulnerability analysis of AIS-based intrusion detection systems via genetic and particle swarm red teams. Congr. Evol. Comput. 2004, 1, 111–116. [Google Scholar]

	

Zhang, Y.; Wang, L.; Sun, W.; Green, R.C.; Alam, M. Artificial immune system based intrusion detection in a distributed hierarchical network architecture of smart grid. In Proceedings of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011; pp. 1–8. [Google Scholar]

	

Aljawarneh, S.; Aldwairi, M.; Yassein, M.B. Anomaly-based intrusion detection system through feature selection analysis and building hybrid efficient model. J. Comput. Sci. 2018, 25, 152–160. [Google Scholar] [CrossRef]

	

Asghar, M.Z.; Abbas, M.; Zeeshan, K.; Kotilainen, P.; H¨am¨al¨ainen, T. Assessment of deep learning methodology for self-organizing 5g networks. Appl. Sci. 2019, 9, 2975. [Google Scholar] [CrossRef]

	

Chen, M.H.; Chang, P.C.; Wu, J.L. A population-based incremental learning approach with artificial immune system for network intrusion detection. Eng. Appl. Artif. Intell. 2016, 51, 171–181. [Google Scholar] [CrossRef]

	

Saurabh, P.; Verma, B. An efficient proactive artificial immune system based anomaly detection and prevention system. Expert Syst. Appl. 2016, 60, 311–320. [Google Scholar] [CrossRef]

	

Bradley, D.; Tyrrell, A. Immunotronics-novel finite-state-machine architectures with built-in self-test using self-nonself differentiation. IEEE Trans. Evol. Comput. 2002, 6, 227–238. [Google Scholar] [CrossRef]

	

Sultan, Z. Multiple simultaneous threat detection in Unix environment. Int. J. Comput. Sci. Netw. Secur. 2009, 9, 65–75. [Google Scholar]

	

Shin, Y. A vm-based detection framework against remote code execution attacks for closed source network devices. Appl. Sci. 2019, 9, 1294. [Google Scholar] [CrossRef]

	

Liu, H.; Lang, B. Machine learning and deep learning methods for intrusion detection systems: A survey. Appl. Sci. 2019, 9, 4396. [Google Scholar] [CrossRef]

	

Kabir, E.; Hu, J.; Wang, H.; Zhuo, G. A novel statistical technique for intrusion detection systems. Future Gener. Comput. Syst. 2018, 79, 303–318. [Google Scholar] [CrossRef]

	

Al-Khaleefa, A.S.; Ahmad, M.R.; Isa, A.A.M.; Esa, M.R.M.; Al-Saffar, A.; Hassan, M.H. Feature adaptive and cyclic dynamic learning based on infinite term memory extreme learning machine. Appl. Sci. 2019, 9, 895. [Google Scholar] [CrossRef]

	

Fu, Y.; Yan, Z.; Cao, J.; Kon’e, O.; Cao, X. An automata based intrusion detection method for internet of things. Mob. Inf. Syst. 2017. [Google Scholar] [CrossRef]

	

Hwang, K.; Cai, M.; Chen, Y.; Qin, M. Hybrid intrusion detection with weighted signature generation over anomalous internet episodes. IEEE Trans. Dependable Secur. Comput. 2007, 4, 41–55. [Google Scholar] [CrossRef]

	

Wang, C.-N.; Huang, Y.-F.; Chai, Y.-C.; van Thanh, N. A multi-criteria decision making (MCDM) for renewable energy plants location selection in Vietnam under a fuzzy environment. Appl. Sci. 2018, 8, 2069. [Google Scholar] [CrossRef]

	

Stibor, T.; Timmis, J.; Eckert, C. On the appropriateness of negative selection defined over Hamming shape-space as a network intrusion detection system. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, 2–5 September 2005; Volume 2, pp. 995–1002. [Google Scholar]

	

Ho, W.-H.; Chiu, Y.H.; Chen, Y.J. Multi-Objective Pareto Adaptive Algorithm for Capacitated Lot-Sizing Problems in Glass Lens Production. Appl. Math. Model. 2018, 53, 731–738. [Google Scholar] [CrossRef]

	

KDD1999. Available online: http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html (accessed on 28 Fabruary 2020).

	

Lan, T.-S.; Chuang, K.-C.; Chen, Y.-M. Optimization of machining parameters using fuzzy Taguchi method for reducing tool wear. Appl. Sci. 2018, 8, 1011. [Google Scholar] [CrossRef]

	

Behdad, M.; Barone, L.; French, T.; Bennamoun, M. On XCSR for electronic fraud detection. Evol. Intell. 2012, 5, 139–150. [Google Scholar] [CrossRef]

[image: Applsci 10 01566 g001 550]

Figure 1. Procedures for the intrusion detection experiment. A dataset is divided to training and testing sets. The training set is used to adjust transition probabilities of FSMs via AIS according to known attack types. The testing set is used to calculate classification accuracy of trained FSMs by pretending that the attack types were unknown.

Figure 1. Procedures for the intrusion detection experiment. A dataset is divided to training and testing sets. The training set is used to adjust transition probabilities of FSMs via AIS according to known attack types. The testing set is used to calculate classification accuracy of trained FSMs by pretending that the attack types were unknown.

[image: Applsci 10 01566 g001]

[image: Applsci 10 01566 g002 550]

Figure 2. An illustration explaining the mechanism of state transition for detecting warezmaster among irrelevant packets. At beginning, a suspicious attack is detected, f(service = ftp, flag = SF, source bytes < 72), but the attack activity cannot be certain completely. Therefore, state M1 is entered and the next state will be determined by further information. If sufficient evidence is observed, f(service = ftp data, flag = SF, source bytes > 8334), state A1 is entered and the attack is captured completely.

Figure 2. An illustration explaining the mechanism of state transition for detecting warezmaster among irrelevant packets. At beginning, a suspicious attack is detected, f(service = ftp, flag = SF, source bytes < 72), but the attack activity cannot be certain completely. Therefore, state M1 is entered and the next state will be determined by further information. If sufficient evidence is observed, f(service = ftp data, flag = SF, source bytes > 8334), state A1 is entered and the attack is captured completely.

[image: Applsci 10 01566 g002]

[image: Applsci 10 01566 g003 550]

Figure 3. State and state transitions for the FSM of intrusion detection. Some attacks are easy to be captured, and, therefore, the red lines represent direct transitions to final results. Some attacks are elaborate. We have to wait for subsequent information to make the final decision. Each internal state M1–M5 corresponds to one suspicious attack. The number of states depends on the system resources.

Figure 3. State and state transitions for the FSM of intrusion detection. Some attacks are easy to be captured, and, therefore, the red lines represent direct transitions to final results. Some attacks are elaborate. We have to wait for subsequent information to make the final decision. Each internal state M1–M5 corresponds to one suspicious attack. The number of states depends on the system resources.

[image: Applsci 10 01566 g003]

[image: Applsci 10 01566 g004 550]

Figure 4. (a) An FSM tracking M1–M3 is initialized; (b), (c) new FSMs spawned when other intermediate attack types are encountered; (d) the FSM tracking M2 is abandoned after packet count t.

Figure 4. (a) An FSM tracking M1–M3 is initialized; (b), (c) new FSMs spawned when other intermediate attack types are encountered; (d) the FSM tracking M2 is abandoned after packet count t.

[image: Applsci 10 01566 g004]

[image: Applsci 10 01566 g005 550]

Figure 5. Quantity features need to be quantized before coded to AIS antibodies. We use histogram to help fuzzy quantizing the quantity values to four categories.

Figure 5. Quantity features need to be quantized before coded to AIS antibodies. We use histogram to help fuzzy quantizing the quantity values to four categories.

[image: Applsci 10 01566 g005]

[image: Applsci 10 01566 g006 550]

Figure 6. The encoding scheme for the features in an antibody.

Figure 6. The encoding scheme for the features in an antibody.

[image: Applsci 10 01566 g006]

[image: Applsci 10 01566 g007 550]

Figure 7. The computation flow of our AIS training algorithm.

Figure 7. The computation flow of our AIS training algorithm.

[image: Applsci 10 01566 g007]

[image: Applsci 10 01566 g008 550]

Figure 8. Allocation of antibodies for the transition functions of an FSM (an antibody set presents an FSM; a population will evolve to select a best antibody set).

Figure 8. Allocation of antibodies for the transition functions of an FSM (an antibody set presents an FSM; a population will evolve to select a best antibody set).

[image: Applsci 10 01566 g008]

[image: Applsci 10 01566 g009 550]

Figure 9. The antibody sets migration between populations of islands. The best solution is rendered by keeping migration with good antibody sets in different islands to exchange and substitute with part of antibody sets in other populations over time. The migration will be selected according to a predefined probability (migration rate).

Figure 9. The antibody sets migration between populations of islands. The best solution is rendered by keeping migration with good antibody sets in different islands to exchange and substitute with part of antibody sets in other populations over time. The migration will be selected according to a predefined probability (migration rate).

[image: Applsci 10 01566 g009]

[image: Applsci 10 01566 g010 550]

Figure 10. The convergence of the IGA evolution. (a) The changes of the best affinity in selected five populations among the 1500 generations are shown by the different colors (the thick red line is the best affinity for all populations). Evidently, affinity has gradually converged after 1000th generations. (b) The best affinity changes of antibodies are displayed in 3D heat map. (c) The affinity changes among the populations before 500th generations are fast, and the rate becomes moderate after 500. Slowly converged population may also produce the best affinity antibody due to the IGA migration mechanism with antibody exchange. After 1000 generations, the affinity between populations become indifferent.

Figure 10. The convergence of the IGA evolution. (a) The changes of the best affinity in selected five populations among the 1500 generations are shown by the different colors (the thick red line is the best affinity for all populations). Evidently, affinity has gradually converged after 1000th generations. (b) The best affinity changes of antibodies are displayed in 3D heat map. (c) The affinity changes among the populations before 500th generations are fast, and the rate becomes moderate after 500. Slowly converged population may also produce the best affinity antibody due to the IGA migration mechanism with antibody exchange. After 1000 generations, the affinity between populations become indifferent.

[image: Applsci 10 01566 g010]

[image: Applsci 10 01566 g011 550]

Figure 11. Attack judgment for antibody affinity. The red lines are the lower bounds of antibodies. (a). When the affinity between the packet and antibody is greater than that of the lower bound 1 (B) and less than that of the lower bound 2 (C), the packet can be determined to be a normal packet. (b) If a packet is (A) and (D) on the same time, it is an attack packet.

Figure 11. Attack judgment for antibody affinity. The red lines are the lower bounds of antibodies. (a). When the affinity between the packet and antibody is greater than that of the lower bound 1 (B) and less than that of the lower bound 2 (C), the packet can be determined to be a normal packet. (b) If a packet is (A) and (D) on the same time, it is an attack packet.

[image: Applsci 10 01566 g011]

[image: Table]

Table 1. A sample of data log in which a warezmaster attack was interlaced by a normal packet.

Table 1. A sample of data log in which a warezmaster attack was interlaced by a normal packet.

	Packet
	Duration
	Protocol Type
	Service
	Flag
	Src Bytes
	Dst Bytes
	Land
	Wrong Fragment
	Urgent
	Hot
	Label

	76,627
	0
	tcp
	http
	SF
	210
	542
	0
	0
	0
	0
	normal

	76,628
	1
	tcp
	Smtp
	SF
	965
	328
	0
	0
	0
	0
	normal

	76,629
	0
	tcp
	Smtp
	SF
	1191
	368
	0
	0
	0
	0
	normal

	76,630
	1
	tcp
	Smtp
	SF
	1291
	325
	0
	0
	0
	0
	normal

	76,631
	0
	tcp
	Smtp
	SF
	14,081
	337
	0
	0
	0
	0
	normal

	76,632
	12
	tcp
	ftp
	SF
	72
	300
	0
	0
	0
	1
	warezmaster

	76,633
	0
	tcp
	http
	SF
	185
	635
	0
	0
	0
	0
	normal

	76,634
	0
	tcp
	FTP data
	SF
	8334
	0
	0
	0
	0
	0
	warezmaster

	76,635
	1
	tcp
	smtp
	SF
	1640
	344
	0
	0
	0
	0
	normal

	76,636
	0
	tcp
	http
	SF
	307
	354
	0
	0
	0
	0
	normal

	76,637
	0
	tcp
	http
	SF
	219
	5014
	0
	0
	0
	0
	normal

	76,638
	0
	tcp
	http
	SF
	212
	3902
	0
	0
	0
	0
	normal

	76,639
	0
	tcp
	http
	SF
	347
	5320
	0
	0
	0
	0
	normal

	76,640
	0
	tcp
	http
	SF
	327
	365
	0
	0
	0
	0
	normal

	76,641
	0
	tcp
	http
	SF
	296
	7129
	0
	0
	0
	0
	normal

[image: Table]

Table 2. Assignment of state transition to antibodies.

Table 2. Assignment of state transition to antibodies.

	
Current State

	
S0

	
Next state

	
M1

	
M2

	
M3

	
M4

	
M5

	
A1

	
A2

	

	
Antibody#

	
1

	
2

	
3

	
4

	
5

	
6

	
7

	

	
Current State

	
M1

	
M2

	
M3

	
M4

	
M5

	
Next state

	
A1

	
A2

	
A1

	
A2

	
A1

	
A2

	
A1

	
A2

	
A1

	
A2

	
Antibody#

	
8

	
9

	
10

	
11

	
12

	
13

	
14

	
15

	
16

	
17

[image: Table]

Table 3. Coding scheme for assigning values to categorical features.

Table 3. Coding scheme for assigning values to categorical features.

	
Feature

	
V1

	
V2

	
V3

	
V4

	
0: 1

	
L: 3

	
ftp: 6

	
tcp: 9

	
1: 2

	
M: 4

	
telnet: 7

	
udp: 10

	

	
H: 5

	
http: 8

	
icmp: 11

[image: Table]

Table 4. An example for calculating the affinities of two antibodies with respect to attack A.

Table 4. An example for calculating the affinities of two antibodies with respect to attack A.

	

	
Antibody Codes

	
The Affinity of Antibody to Attack A

	
Attack A

	
1

	
0

	
1

	
0

	
1

	
0

	

	
Antibody 1

	
0

	
0

	
1

	
1

	
0

	
0

	
3

	
Antibody 2

	
1

	
1

	
0

	
0

	
1

	
0

	
4

[image: Table]

Table 5. KDDCup data log.

Table 5. KDDCup data log.

	Duration
	Protocol Type
	Service
	Flag
	Src Bytes
	Dst Bytes
	Land
	Wrong Fragment
	Urgent
	Hot
	Label

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	normal

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	normal

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	normal

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	snmpgetattack

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	snmpgetattack

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	snmpgetattack

	0
	udp
	domain
	SF
	29
	0
	0
	0
	0
	0
	normal

	0
	tcp
	private
	SF
	105
	146
	0
	0
	0
	0
	normal

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	snmpgetattack

	0
	tcp
	http
	SF
	223
	185
	0
	0
	0
	0
	normal

	0
	udp
	private
	SF
	105
	146
	0
	0
	0
	0
	snmpgetattack

	0
	tcp
	http
	SF
	230
	260
	0
	0
	0
	0
	normal

Data source (http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html).

[image: Table]

Table 6. Parameter setting in the IGA AIS.

Table 6. Parameter setting in the IGA AIS.

	
Populations

	
5

	
Population number

	
1

	
2

	
3

	
4

	
5

	
Antibody sets in a population

	
100

	
100

	
100

	
100

	
100

	
Migration interval

	
100

	
Random samples

	
200

	
Migration rate

	
0.1

	
Selection type

	
Threshold selection

	
Selection pressure

	
1.7

	
Reproduction rate

	
0.1

	
Cross-over rate

	
0.3

	
0.4

	
0.5

	
0.6

	
0.7

	
Mutation rate

	
0.02

	
0.05

	
0.02

	
0.05

	
0.02

	
Stopping criteria

	
Stopped at 1500th generation

Threshold = 1/selection pressure (SP); Antibody value = antibody affinity/max affinity in a population at a generation; For example, a particular antibody will be selected if it must surpass the threshold (1/1.7 = 0.588); antibody affinity = 1000; max affinity in a population at a generation = 3000; 1000/3000 = 0.3 < 0.588; thus, this antibody will not be selected.

[image: Table]

Table 7. Illustration of the determination ranges from Figure 9.

Table 7. Illustration of the determination ranges from Figure 9.

	
Antibodies to Be Normal Packets

	
Antibodies to Be Attack Packets

	

	
Less than A

	
Greater than B

	
Less than C

	
Greater than D

	
Determination

	
yes

	

	
yes

	

	
Unknown

	
Suspicious

	

	
yes

	

	
Yes

	
Conflict

	
yes

	

	

	
yes

	
Attack

	

	
yes

	
yes

	

	
Normal

[image: Table]

Table 8. Detection performance for single-type attacks.

Table 8. Detection performance for single-type attacks.

	

	
Single-Type Attack (378,067 Records)

	

	

	
True condition

	

	

	
Normal

	
Attack

	
Predicted condition

	
Normal

	
93,394 (true positive)

	
0 (false positive)

	
Attack

	
1916 (false negative)

	
280,519 (true negative)

	
Indeterminant

	
Conflict

	
167

	
0

	
unknown

	
1895

	
176

tp = true positive; tn = true negative; fp = false positive; fn = false negative; Accuracy = (tp + tn)/total = (93394 + 280519)/378067 = 0.989; Recall rate = (tp)/(normal true conditions) = (93394)/(93394 + 1912 + 167 + 1895) = 0.959; Precision rate = (tp)/(normal predicted conditions) = 93394/(93394 + 0) = 1.

[image: Table]

Table 9. Detection performance for mixed-type attacks.

Table 9. Detection performance for mixed-type attacks.

	

	
Mixed-Type Attack (491,438 Records)

	

	

	
True Condition

	

	

	
Normal

	
Attack

	
Predicted condition

	
Normal

	
93,394 (true positive)

	
3456 (false positive)

	
Attack

	
1912 (false negative)

	
390,371 (true negative)

	
Indeterminant

	
Conflict

	
167

	
38

	
Unknown

	
1899

	
201

tp = true positive; tn = true negative; fp = false positive; fn = false negative; Accuracy = (tp + tn)/total = (93394 + 390371)/491438 = 0.984; Recall rate = (tp)/(normal true conditions) = (93394)/(93394 + 1912 + 167 + 1899) = 0.96; Precision rate = (tp)/(normal predicted conditions) = 93394/(93394 + 3456) = 0.964.

[image: Table]

Table 10. Detection performance for new-type attacks, which are completely unseen for the system.

Table 10. Detection performance for new-type attacks, which are completely unseen for the system.

	

	
New-Type Attacks (548 Records) Plus Previous Mixed-Type Attacks (491,438)

	

	

	
True condition

	

	

	
Normal

	
Attack

	
New Attack

	
Predicted condition

	
Normal

	
81,300

	
2367

	
109

	
Attack

	
3623

	
390,265

	
318

	
Indeterminant

	
Conflict

	
376

	
423

	
40

	
Unknown

	
423

	
1011

	
81

Accuracy = 0.959; Recall rate = 0.835; Precision rate = 0.897.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

media/file13.jpg
FSM coding inan
antibody and antibody set

Initaize subpopulations

¥

Negative/positive selection

Calculate affnity

—

1. Retire antibodies in low
affinity i

[population ID, Antibody set] eproduction and

2. Keep [populationD, Antibody.
set] with high affinity (s %)

!

[population ID, Antibody set] selection

[

1. Antibody sets migration
among populations of islands
2, Reproduction

Calculate affnity

3. Cross-over
4. Highiinherent mutation

Terminate

media/file4.png
f(service = ftp, flag = SF,

f ice = ftp data, flag = SF,
source_bytes < 72) (service =ftp_data, flag

source_bytes >8334)

start state end state

media/file18.png
Sub population m

Sub population 1 Sub population 2
[Antibody Set|1 [Antibody Set|1
[Antibody Set]|2 [Antibody Set]2

[Antibody Set|1

[Antibody Set|2

[Antibody Set] ki \

/[Antibody Set] k>

[Antibody Set| km

\/

media/file21.jpg
(@) B
Individual of SO>AL
Normal packet

m
Lower bound 1 =, — P;*o,

(b) C| D,
Individual of SO>A2

Attack packet

K

Lower bound 2 =, ~ P,*,

media/file3.jpg
f(service - ftp, flag - SF,

f(service - ftp_data, flag - SF,
source_bytes <72)

source_bytes>8334)

start state end state

media/file22.png
(a) B

A Individual of SO2>Al
Normal packet
Hq
Lower bound 1 =, — P,;*c;
(b) C| D
Individual of SO>A2
Attack packet
——

Ho

Lower bound 2 =, — P,*o,

media/file19.jpg

media/file7.jpg

media/file10.png
NN

OO

U U OO
TN
t/ffl"lllg’lf’lflIII/’/’Iflflfltgll‘l’fld’tdlflﬂ‘f‘lt/"l”dr

S 8§88 8888°

'$40 J0 ‘0N

Cateqgory

media/file14.png
: FSM coding in an ; Initialize subpopulations
E antibody and antibody set i """" »
. Negative/positive selection |------- > Calculate affinity
T — o \A
I I
:) ,
i L. Retire antibodies in low . [population ID, Antibody set] reproduction and
u affinity _ ! memorize
' 2. Keep [population ID, Antibody
: set] with high affinity (s %) : v
I I
i E. S [population ID, Antibody set] selection
| :
| I
| I
r - \ 4

1. Antibody sets migration
among populations of 1slands
2. Reproduction

Calculate affinity

3. Cross-over

no

Criteria?

I
I
I
I
I
I
I
I
I
: 4. High/inherent mutation
I
|
I
I
I
I
I
I

Terminate

media/file11.jpg

media/file6.png

media/file15.jpg
‘Antibody Set T
Antibody Set2

Antibody Set

“Antibody T
Antibody 1

Antibody 1

“Antibody 2
Antibody 2

Antibody 2

“Antibody 17
Antibody 17

Antibody 17

nav.xhtml

 applsci-10-01566

 		
 applsci-10-01566

media/file16.png
Antibody Set 1
Antibody Set 2

Antibody Set n

Antibody 1
Antibody 1

Antibody 1

Antibody 2
Antibody 2

Antibody 2

Antibody 17
Antibody 17

Antibody 17

media/file2.png
Data classification
v
Normal/anomaly/susp
ected packets
v

media/file20.png
index of individual

Best ohj. vals per subpop

15

z -10 .

w

=

[u k]

=

o

2

(]

_1 I:II.'EI |
1] a00 1000 1400
generation
(a)
Chj. wals of all gen. (35% hest)

100

200

300

400

a00

1] a00 1000 14600
neneration

(b)

arder of subpops

2.9

rank of subpop
(R]

A00 1000 1500
generation

(c)

media/file5.jpg

media/file1.jpg
Data classification

1

Normal/anomaly/susp
ected packets

Parameter optimization

!

n prob

!

Caleulation accuracy

media/file12.png

media/file9.jpg

media/file0.png

media/file8.png
(b)

(a)

New FSM

FSM M2 15 deleted now

media/file17.jpg
Sub population 1 | Sub population2 Sub population m
[Antibody Set]1 [Antibody Set]1 [Antibody Set]1
[Antibody Set]2 [Antibody Setl2 [Antibody Setl2
(Antvody Sl | {Antbody St} Antbody et

AT

