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Abstract: With the opening of the Chinese electricity market, as a retailer that provides energy services
to consumers, the park-integrated energy system (PIES) not only serves as an effective way to earn
benefits and reduce carbon emissions but also impacts the energy consumption characteristics of
consumers. The PIES implements this function by adjusting the energy selling price in free energy
markets. The pricing mechanism model (P-M model) is established to obtain the energy selling price
in the planning and design stages. In this model, the impact of the demand response on the energy
configuration and the impact of the changes in energy configuration on the energy cost price are
both considered. Additionally, the optimal result ensures that both the consumers and the PIES
benefit simultaneously. The reactive demand response zone, which represents a consumer trap, is
found in numerical studies. The results indicate the following: (1) from the perspective of P-M model
optimization, the benefit exclusive point of the PIES is the optimal solution in the short term; (2) from
the perspective of the long-term benefit, the ultimate result in the relationship between the PIES and
consumers is that the PIES will share its profits with consumers; in other words, benefit sharing point
is the optimal solution for the long term.

Keywords: park integrated energy system; pricing mechanism model; transfer ratio; planning and
design; demand side

1. Introduction

1.1. State of the Art

The energy demand of a city is variable at different times during the day with trends remaining
polarized. The peak energy demand required by cities becomes increasingly larger with social
development and economic growth [1]. In order to meet the growing peak energy demand, the
traditional approach is to increase the configuration capacity of the energy production system and
transmission system continuously through methods such as using a standby diesel generator and
upgrading the transmission system [2]. However, the annual working hours of additional energy
production equipment are usually very low, and its initial investment and maintenance costs are
not reduced in comparison. In particular, this traditional mode increases the rate of equipment
deterioration due to frequent idling and start—stop cycles. This leads to a sharp rise in the energy
production costs during the peak demand stage and an increase in carbon emissions [3]. In previous
studies, three main strategies for reducing peak demand or load have been applied, namely, ESS
(energy storage system), EV (electric vehicle), and DR (demand response) [4].
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First, ESS is mainly used to transfer electrical or cooling or heating load for large industrial
consumers, civil buildings, and power grids. The main tasks involved in employing ESS include
the optimization of operation strategies, capacity determination, economic analysis, and renewable
energy consumption. ESS is also used to reconstruct the output curve of island grids [5] or distributed
microgrids [6] with high renewable energy penetration. In [7], the BESS (battery energy storage system)
is used to reduce the electricity production cost by decreasing the peak load. However, [8] indicates that
no BESS is economical without subsides, based on the current battery price. In addition, cooling and
heating ESS are usually applied to adjust the electricity demand of consumers by reducing the electrical
consumption of cooling and heating during the peak hours [9]. Second, as the EV battery remains idle
during much of the day, EV can release the remaining power to the grid during the peak load hours
and absorb the surplus electricity from the grid during the valley load hours [10]. Nonetheless, the
implementation of this mode is still difficult under current technical conditions, because it is available
when the EV is only parked in certain areas. Third, DR is mainly used to encourage consumers to adjust
their power demand through the real-time electricity price, time-of-use electricity price, incentives,
and penalties, in order to achieve load leveling [11]. Limitedly, DR can only adjust the controllable
load but not the uncontrollable load.

All three strategies can yield positive results of peak demand transfer, which involve reducing the
power generation costs of energy producers (e.g., large coal-fired power plants, large-scale renewable
energy plants), postponing the system update time of the T&D (transmission and distribution) grid,
increasing the economic efficiency of the energy retailer, and reducing the electricity bills of consumers.
In practice, the peak load can be satisfied by installing ESS without increasing the installed capacity
of generation equipment on the supply side. On the demand side, the three strategies are used
to reduce the peak energy demand or smooth the load curve. There are usually several ways to
promote the effective implementation of the above three strategies on the demand side: namely,
using time-of-use pricing, real-time electricity plans, incentive schemes, and event-driven programs.
In previous studies, the methods of electricity pricing mainly included game theory pricing and bilevel
approaches. The former is governed by the relationship between electricity suppliers and consumers,
with consideration of the DR. For the latter, the price is the link between the upper-level problem
(function of the large power grid) and the lower-level problem (function of the park-integrated energy
system (PIES) operator), which means that the price is often the decision variable in the upper-level
problem and the parameter in the lower-level problem [12]. Ref. [13] established a pricing model
between a large number of consumers that have self-generating equipment (PV (photovoltaic power
generation) or wind power) and public equipment, which purchases electricity from consumers,
based on the Stackelberg Game. The results indicate that using the new pricing model not only
improves the total utility [14] of consumers but also reduces the total electricity costs of public
equipment. In [15], the DR of consumers and the pricing method of the grid are considered as a bilevel
optimization problem, where the grid is the upper-level leader, and the consumer is the lower-level
passive receiver. Hessam Golmohamadi et al. [16] proposed a novel method to optimize the behavior
of household appliances towards retail electricity price. The Home Energy Management System
(HEMS) determines the operational strategies of appliances according to retail price based on a heuristic
Forward-Backward Algorithm (F-BA). The results show that the method can relieve congestion in
weak lines. Dan Wang et al. [17] constructed the electricity-heat coordinated retail market framework
to achieve the coordinated settlement of electric and heating load, managing the distributed energy
generation and consumption through coordinated control method. The results show that the method
can optimize the resource allocation of demand-side energy stations and the energy use of customers
by economic means. For the grid price, there are many electricity price forecasting models. Jianzhou
Wang et al. [18] developed a novel outlier-robust hybrid model for forecasting grid prices considering
the negative impact of outliers on power price modeling, which combines a basic forecasting engine
called the outlier-robust extreme learning machine model and three new algorithms. The experimental
verification shows that the hybrid model is superior to other models and can provide a reliable electricity
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price prediction method for power market management. Jinliang Zhang et al. [19] established a new
adaptive hybrid model based on variational mode decomposition (VMD), self-adaptive particle swarm
optimization (SAPSO), seasonal autoregressive integrated moving average (SARIMA), and deep
belief network (DBN) for short-term power price forecasting. The results indicate that the model
can significantly improve the accuracy and stability of the prediction. In addition, there are some
electricity price model studies in macro level. Bruno Bernal et al. [20] established an unrestricted
vector autoregressive model to study the impact of fossil fuel prices on different electricity prices in
Mexico. The research analyzes the influencing factors of electricity price from a macro perspective,
and the results show that fossil fuel prices have a significant positive impact on electricity prices, and
alternative electricity price can increase the robustness of the analysis. However, none of the current
studies quantifies the initial investment reduction and the energy efficiency improvement which is
caused by the reduction in the configuration capacity due to load leveling and peak shaving.

1.2. Contents and Contribution of This Paper

A large power grid has been adopted in time-of-use pricing programs to adjust the urban
electricity demand in China. With the gradual opening of the electricity market [21], a second electricity
supply role appears between the large power grid and the consumers, namely, the integrated energy
service providers, which can provide cooling, heating, and power for designated areas. Generally,
the integrated energy service provider appears in the form of a PIES. The location and function of
the PIES in the urban energy system are illustrated in Figure 1. As can be seen from Figure 1, the
main function of PIES is to supply cooling, heating, and electricity to consumers in specific regions
by considering the local energy resources, time-of-use electricity prices of the large power grid, and
various energy conversion equipment comprehensively. Particularly, the PIES can formulate the selling
price of cooling, heating, and electricity under the supervision of the relevant departments. In addition,
it is difficult to consider the energy demand characteristics of different parks when time-of-use tariffs
are formulated for the large power grid, which leaves some margin for the PIES. From the perspective
of the PIES, earning greater profits is the goal. In terms of consumers, paying smaller electricity bills is
the only criterion for selecting the electricity supplier, as power can be purchased from the large power
grid or the PIES. Therefore, how to formulate the energy selling price of the PIES is the focus of this
study, in order for consumers to spend less money while the PIES obtains more benefits. Through
the analysis in Section 1.1, it can be concluded that changes in the selling price of electricity cause
changes in demand, which in turn leads to fluctuations in the configuration capacity. Furthermore, this
fluctuation leads to changes in the cost of energy production, which ultimately leads to changes in the
selling price. The challenge in solving this problem is the consideration of this coupling cycle in the
selling pricing of the PIES.

This study attempts to address this challenge through the following methods. Using the established
energy cost price sub-model (C-P sub-model), the production costs of cooling, heating, and electricity
are obtained under different peak load transfer quantities. Then, the function relationship between the
energy cost price and load transfer quantities is determined by regression analysis. On this basis, the
time-sharing price is obtained by using an established selling price sub-model (S-P sub-model) that is
beneficial to the PIES and consumers.

The rest of this paper is organized as follows. Section 2 clarifies the research problem and provides
the relevant assumptions. Section 3 describes the modeling process of the C-P sub-model and S-P
sub-model. On this basis, the characteristics of the changes in the cost price and selling price are
analyzed. Section 4 unfolds the numerical study based on the specific price pattern and demand
function. Finally, Section 5 presents the conclusion of this study.
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Figure 1. Location and function of a park-integrated energy system (PIES) in an urban energy system.

2. Several Assumptions

The energy configuration (types, capacities, and strategies of equipment) of the PIES is often
determined at the design stage of the project [22]. Therefore, the C-P sub-model must be established
during the planning and design phases in order to quantify the changes in the configuration.
Furthermore, the purposes of this study are the following: (1) consider the impact of DR on the PIES
configuration in the planning and design stages and (2) develop a more reasonable pricing scheme to
facilitate the successful negotiation of energy supply contracts with the consumers. The following
assumptions are considered in this study before modeling:

1.  The daily energy demand is divided into two segments, namely, the peak segment and the valley
segment, according to the energy demand characteristics of the PIES

2. The amount of peak load transfer represents the energy demand transferred from the peak
segment to the valley segment

3. The PIES considers cooling storage to produce cooling with the lowest cost

4. The cooling and heating required by the consumers originate only from the PIES.

3. P-M Model

The pricing mechanism model (P-M) model consists of two sub-models: the C-P sub-model
and the S-P sub-model. The first step in establishing the P-M model is to calculate the cost price of
cooling, heating, and electricity in the PIES. On this basis, the S-P sub-model is established considering
the profits of PIES and the benefits to consumers, comprehensively. When the energy demand of
consumers is fixed (without the demand change caused by DR), the unit energy production cost, which
is obtained by calculating the energy configuration of the PIES in the case of the annual minimum cost,
is the lowest cost price. Hence, the C-P sub-model of cooling, heating, and electricity can be obtained
by the extension of optimal configuration model. The basic modeling principle of the C-P sub-model in
this study is to convert the complex modeling and solving process into a computed quantity. In other
words, each moment is considered as a basic model unit, and the iterative calculation of the basic
model is performed over the entire year.
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3.1. C-P Sub-Model

3.1.1. Construction of C-P Sub-Model

The cost price of cooling, heating, and electricity equals the total cost divided by the total energy
at time ¢, as shown in Equation (1), where fval¢, f val’, and f valf represent the total costs of cooling,
heating, and electricity, respectively. Qf can be obtained by summing the output of all the cooling
devices at time ¢, as well as Qi’ and Qf for the heating and electrical devices, respectively, as shown in
Equation (2).
foalf P _ fvalf foalf
QG <

Q=) @, Q=) Q. Q=) o)
i j k

Parameter foal; comprises the operating costs, initial investment, and maintenance costs of all
power generation equipment, as shown in Equation (3).

Cc __
Pr; =

Pri = )

Qix Qix
fualy = Zk(P”t,k* 77'; TaxlVix 28760, T Mk @)
k =1 =<k

The large power grid, which supplies electricity to the PIES in the time-of-use mode, is treated
as power generation equipment in this study. For the operating costs, Pr; ) represents the price of
fossil energy consumed by each power generation device at time ¢, and Pr; ; = 0 represents renewable
energy power generation. Meanwhile, 7} represents the efficiency of power generation equipment k,
which varies with the part load ratio. The initial investment of every device is apportioned at each
moment throughout the life cycle according to the time-by-time output, where a is the coefficient of
the uniform annual value; IV is the initial investment of power generation device k, which can be
calculated by the maximum capacity of device k for the entire year; and ZST7:68 Qi,k represents the total
output of all power generation equipment over the entire year. M, ; represents the maintenance costs,
which can be obtained by ref. [23]. Different from the micro-grid, the process of cooling and heating
production consumes the internal electricity of park Pr{. Pr{, calculated by Equation (1), is different
from the electricity price of the large power grid. In addition, Pr;; and Pr; ; represent the price of fossil
energy consumed by each cooling and heating device at time t, respectively. Therefore, fval{ and f vali’
are expressed as Equations (4) and (5), where COP; and copt represent the efficiencies of cooling
device i and heating device j, respectively, which vary with the part load ratio.

c Q?,i e Q(tj,i in
foal; = Z Pryj*» —= + Pri» COP +axlV;* P g + My (4)
i L i =1 =7,
h kj t,j t,j
f’()ﬂlt = Z[Prtlj*? +PI’?* Coph +ﬂ*IV]‘*Wh +Mt,]] (5)
j j ] =1 T,j

The objective function is the minimum total cost at time ¢, as shown in Equation (6). This is
a multivariable constrained nonlinear programming problem that can be solved by FMINCON in
Matlab2018b. The constraints include those on supply and demand balance, energy conversion
efficiency, equipment, renewable energy, and other nonlinear constraints [23,24], as shown in
Equation (7).
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min(foal; + foalf + fvali’) 6)

A-Q<b
Aeq'Q = beg
Ib<Q<ub

c(Q)<0
Ceq(Q) =0

Qo

where Q is the column vector of Q¢ ;/j/x; A-Q < b is the linear inequality constraint, which mainly
includes coupling constraints between energy networks, such as the lithium bromide cooling constraint
between the micro-cooling network and the micro-grid, and the lithium bromide heating constraint
between the micro-heating network and the micro-grid; Ae;-Q = by is the linear equality constraint,
which mainly includes energy conservation constraints; Ib < Q < ub is the upper and lower limit
constraint, which mainly includes the output upper limit constraint of each equipment (natural resource
constraint), such as the maximum installed capacity of photovoltaic power generation; c¢(Q) < 0is a
nonlinear inequality constraint; c.;(Q) = 0 is a nonlinear equality constraint; and Q) is the initial value.

Through solving the optimization model above, the cost prices of cooling, heating, and electricity
at time ¢ can be obtained by inputting the power price of the large power grid, the gas price, and the
basic parameters of all energy production and conversion equipment.

const.

@)

3.1.2. Algorithm of C-P Sub-Model

However, obtaining the energy cost price information at time f only is not sufficient. It is necessary
to calculate the hourly energy cost price of the PIES through a loop iteration over the entire year.
In addjition, the control index of the loop iteration is expressed in Equation (8), where s represents the

tora TEPTESENS the total cost during the entire year.

number of iteration steps, and fval
S _ s—1
Oe — fvaltotﬂl fvaltotal (8)
T foals—!
total

On this basis, Algorithm (1) can be used to perform the loop iteration of the C-P sub-model over the
entire year, as illustrated in Figure 2. For starting time t =1, max(Qt,l- /j /k) = 2?7:6? |QU- /j /kl = Qvi/j/ks
and Equation (6) is called to calculate Qy,;/j/x. Whent = 2, max(Qt,,- /j /k) = Qui/jsk 0or Q2,i/j/ks
28760|Q1,i /j /k‘ = Qu,i/j/k + Q2,i/j/k, and Equation (6) is called to calculate Q,/;/k. Similarly, when
t =t+1, Qti1,i/j/k can be calculated until t = 8760. When the second loop starts, namely ¢ = 1
again, Equation (8) is the determinator of iterative convergence. The iterative process continues until
o5 < 0.04.

The C-P sub-model and loop iterative method are applied in practical engineering, and the annual
hourly cost price of PIES is captured under different load profiles, which provides support for the
construction of the S-P sub-model.
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Figure 2. Flow chart of Algorithm (1).

3.2. S-P Sub-Model

3.2.1. Construction of S-P Sub-Model

How is the selling price used to trade with consumers determined from the hourly cost price of
cooling, heating, and electricity? The easiest method is to set the energy selling price as a constant over
the entire year. Then, the selling price can be calculated by a given annual profit rate and obtained cost
price. The annual profit rate of the PIES, p’, can be calculated by Equation (9) [25].

o LT(Qs(Pr = Pro) 4 Q5(Pre — Prf) + Q(Pr — 1))

foio( foalf + foal; + fvali‘)

where Pr¢, Pr, and Pr" represent the selling prices of electricity, cooling, and heating, respectively.
Under the assumption mentioned above, when the selling prices of cooling, heating, and electricity
vary independently, the linear relationship of annual profit rate with energy selling price can be
obtained by using Equation (9). Furthermore, Pr¢, P, and Pr"* are determined by black calculation.
From the perspective of cooling and heating, owing to the large delay in the supply and delivery
of cooling and heating [26], it is meaningless to adjust the selling price of cooling and heating on an
hourly basis. Therefore, in this study, the same cooling or heating selling price throughout the year is
adopted. From the perspective of electricity, the pricing mode with the same electricity price through
the entire year will increase the polarization of the load. This is because compared with the time-of-use
pricing mode of the large power grid, the lower-priced electricity supplied by the PIES during the
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hours of peak demand leads to higher electricity consumption, and the higher-priced electricity during
the hours of valley demand leads to less electricity consumption. Evidently, the static pricing mode is
very inappropriate for the PIES. The time-of-use pricing mode and real-time pricing mode, which are
advantageous for load leveling, should be adopted.

For consumers, there are two electricity suppliers: the large power grid and the PIES, as shown
in Figure 1. The consumers, having no generation capability, need to purchase all their required
energy from the PIES or the large power grid or other suppliers. However, there are no municipal
heating networks and other cooling suppliers in the hot summer and cold winter zones in China.
Hence, the consumers can only obtain cooling and heating from the PIES. From the perspective of
economic efficiency, the consumers will choose the lowest electricity supplier. This study assumes that
a consumer cannot select two electricity suppliers simultaneously and can switch, at most, once a day.
Hence, the constraint when consumers select PIES as the electricity supplier is shown in Equation (10),
where Q¢ is the amount of electricity from the PIES consumed by the consumers at time t; Pr;” is the
selling price of electricity at time t; Qf ¢ is the amount of electricity from the large power grid consumed
by the consumers at time ¢; and Pr’f ¢ is the time-of-use electricity price of the large power grid.

24 24
D (QPr) < ) (P (10)
t=1 t=1

In general, the buying price set by the large power grid is considerably lower than its selling price
without subsides [27]. Hence, the feed-in tariff scheme of the PIES is unreasonable when the renewable
energy penetration is not high. In addition, when the electrical load reaches its peak, the electricity
cost price also reaches its peak. From an economical perspective, Pr;* needs to be formulated for the
following reasons: (1) decrease the electricity consumption at the peak; (2) increase the electricity
consumption at the valley; (3) promote the profitability of the PIES; and (4) reduce the electricity bill of
the consumers. In this study, the total daily electricity consumption of PIES is kept unchanged after
Prf’S is formulated [28]. The reduction in the electricity bill of consumers is used as the constraint,
as shown in Equation (10). Hence, the objective function is the maximum benefit for the PIES, as shown

in Equation (11), where Pr{ represents the cost price of electricity at time .

24

= max[)_ (Q§(Pr” - Pr5))] (11)

t=1

In Equation (11), as Pr;* increases during the peak demand phase, and Pr;* decreases during
the valley demand phase, the load curve of consumers tends to level according to the Cross-Price
Elasticity of Demand theory [29]. Hence, the functional relationship between the demand and price at
each moment is presented in Equation (12). Equation (12) is subjected to Equation (13), where Q
represents the total daily electricity demand.

e
total

Q¢ = f(PE°, Pry,...,PrY) (12)
24

fotul = Z(Qi) (13)
t=1

Substituting Equation (12) into Equation (11) yields 7w = max[ g(Pri’S, Pry,..., Pr;i)], because Pr¢
is a function of Qf according to the C-P sub-model in Section 3.1.1. In summary, 7 represents the
maximum benefit to the PIES considering the comprehensive effects of demand and configuration
changing in the planning and design stages.
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3.2.2. Price Pattern and Demand Function

The energy market composed of PIES, the large power grid, and consumers can be described by a
typical Price Leadership Model [30]. However, as the time-of-use electricity price of the large power
grid does not change with the energy transaction in the actual PIES project, Equation (11) can describe
the market behavior under this mode fully, instead of the Price Leadership Model.

In actual engineering, Equation (12) is difficult to calculate because the real-time electricity price
changes hourly. Additionally, the existing literature shows that the participation of consumers in
real-time electricity price is very low [31]. Hence, it is impractical to implement real-time electricity
pricing in the PIES. The time-of-use electricity price uses a static price scheme based on a predefined
selling price, which usually maintains the same daily electricity price throughout the week, the month,
the season, or the entire year [32]. The advantages of time-of-use pricing scheme include the following:
(1) it is easy to follow; (2) it has a stable daily participating ratio; and (3) it can effectively shift the
peak loads to valley loads [33]. Additionally, from Section 2, as the load and electricity cost price are
divided into a peak segment and valley segment, a two-stage time-of-use electricity price is adopted to
determine the electricity selling price of the PIES. The reasons for adopting the two-stage time-of-use
electricity price will be also described in Section 4.1. Ref. [34] provides the cross-price function of the
demand, as shown in Equation (14). Meanwhile, instead of Equation (12), Equation (14) is substituted
into Equation (11).

Q% = a+ Bo(Pr5) + ByPrs
0.2 < Pry <0.782 (14)
02<Pr, <15

where Qy is the valley electricity consumption; Pr;, represents the valley selling price; Prj, represents the
peak selling price; and «, By, ¥, and Bp are the preference parameters [35]. In Equation (14), the demand
function is derived by seeking the extremum of the utility function [14]. The relationships between Q,
and Pr;, (Pry) are illustrated in Figure 3. From Equation (14) and Figure 3, Q5 is proportional to Pr;, and
decreases as Pr;, increases. According to Equation (13), the electricity consumption at peak Q}, can be
calculated as follows:

Q; - iotal - Q?J (15)

On this basis, Equation (11) is transformed into Equation (16).

= max[Qf)Prf, + Q;Pr; - fgtalprfwemge] (16)
where Prg,;q0, represents the average electricity cost price, which can be calculated by C-P sub-model.
In general, Prg 44, is a variable that changes as the configuration capacity and TR change. The TR is
the ratio of the shifted load to the total peak load, which can be calculated by Equation (17), where Qf,’
is the total peak electricity consumption in peak before the load shift.

Q-
TR = —— 17
& (17)

At this point, the S-P sub-model is completed.
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Figure 3. Effect of the change in the valley and peak selling price on the electricity demand.

3.2.3. Algorithm of S-P Sub-Model

The types of energy that the PIES trades with consumers include cooling, heating, and electricity.
The selling prices of cooling and heating can be obtained by Equation (9). Hence, this section focuses
on solving and discussing the optimized results of the electricity price in the P-M model. Algorithm 2
can be used to solve the P-M model, and the flowchart of Algorithm 2 is shown in Figure 4. In Figure 4,
Prf}lO and Pr;’O represent the valley electricity selling price and peak electricity selling price, respectively
when 7 is maximum.

Input Qf, Pry = Py =0.2,
Ty = Pry, =Py, =0

Calculate Qf,;q;

Pr{ = Prg 4+ 0.001;
Pr¢ =02

y

Output Ty, Priy,,
Pry,

Compute Qy, Qp using Eq. (14) and (15);
Compute PTyerqge Using Eq. (18) and (17)

Compute m using Eq. (16)

No
Pr¢ = Pr +0.001 0

1 Yes

Let my = m; Pry}, = Pry/;
e e
Prp'a = Prp

Figure 4. Flow chart of Algorithm (2).
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In summary, the selling price of cooling, heating, and electricity in the PIES can be formulated
by solving the P-M model composed of the C-P sub-model and the S-P sub-model, considering the
comprehensive effects of demand and configuration changing in the planning and design stages. In the
following, a numerical study of the above P-M model is presented.

4. Numerical Study

4.1. Essential Information and Preliminary Calculation

In this study, a real PIES located in Shanghai, China, has been selected as a case study to verify
the P-M model developed in this study. The energy production equipment of PIES mainly includes
absorption refrigeration units, gas generators, photovoltaics, photothermal, heat pumps, boilers,
chillers, energy storage equipment, wind power, and so on. The total area of energy supplying is
960,000 square meters, including an office building area of 479,000 square meters, commercial building
area of 383,000 square meters, and hotel building area of 98,000 square meters. The hourly load of
cooling, heating, and electricity in the typical day are illustrated in Figure 5. Meanwhile, there is no
effect of DR, i.e., TR = 0. In addition, owing to the delayed effect of cooling and heating transport,
achieving the DR of cooling and heating is very difficult. Hence, the TR only refers to the electrical
shifted load caused by the DR.

—a— Electricity

100,000 @ Heating
—4— Cooling
N
v
s s s N
80,000 - )/ N\
Z 60,000
=
<
=}
=
40,000 -

20,000

Time (h)

Figure 5. Load of cooling, heating, and electricity when TR = 0.

The annual hourly load, the basic data, and the constraints of the above-mentioned energy
production equipment are input into the C-P sub-model. Then, the loop iterative method (Algorithm (1))
is applied in the case, and the annual hourly cost price of PIES is captured, which are shown in Figure 6.
The curve of o, varies with the iteration steps in the solution process, as shown in Figure 7, which
illustrates that the iteration process converges quickly. From Figure 7, the total cost of the PIES first
increases; then, it decreases, and it finally stabilizes at the final cost. Figure 6 shows that the average
cost price of cooling is the lowest, and the fluctuation in the cost price is smoothest. The fluctuation in
the electricity cost price in winter and summer are similar, and the former is slightly higher than the
latter. The heating cost price in zone D is lower than the price at other times during the winter heating
period. The reason is that the CHP is chosen to supply electricity to the PIES because the electricity
price of the large power grid is at a peak in zone D and can provide free heating through the additional
waste heat. The heating cost price of zone F is higher because of the gas boiler. Since the cost price
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of zone G and zone E differs greatly in the electricity cost price curve, the daily electricity cost price
is divided into a peak segment (G) and a valley segment (E) in the following studies, as shown in

Section 2.

1.2+
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Figure 6. Cost of cooling, heating, and electricity when the ratio of the shifted load to the total peak

load (TR) = 0.
54
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Figure 7. Curve of o varying with iteration steps in the solution process.
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When the DR occurs, i.e., TR # 0, the cost price of cooling, heating, and electricity should be
recalculated by using the C-P sub-model and Algorithm (1) according to the load profile at this time.
The TR and new load peaks under 12 scenarios of load profiles are illustrated in Table 1.

Table 1. Twelve different scenarios of load profiles due to load shift.

Number 1 2 3 4 5 6
TR/% -5 0 5 10 12.5 15
Maximum load/kW 35,673 33,974 32,275 30,577 29,727 28,878
Number 7 8 9 10 11 12
TR/% 17.5 20 21.5 25 275 30
Maximum load/kW 28,028 27,353 28,813 32,221 34,655 37,089

The average daily electricity cost prices (Pryerqq,) are illustrated in Figure 6 under the 12 different
load profiles. As shown in Figure 8, the configuration ratio is the ratio of the maximum installed
capacity at a certain TR to the maximum installed capacity at TR = 0. Some interesting rules have
been discovered by processing the solution results of the 12 different load profiles, as follows. First,
from the perspective of the initial investment, as the TR increases, the configuration ratio drops from
point B to point A and then rises to point C. At point A, the PIES has the smallest installed capacity.
The installed capacity at point C is higher than the installed capacity before the load shifted, which
means that the excessive load shift generates a new peak in electrical demand, as shown in Figure 9.
From Figure 9, when TR = 30%, the peak load is shifted to 22:00 from 19:00, and the new peak is
3115 kW larger than the old peak. The emergence of the new peak means that the load shift does not
reduce the initial investment. Therefore, in Figure 8, the load shift scenario above the black dotted
line (original configuration line) does not produce a positive effect for the initial investment reduction.
Second, from the perspective of operating costs, on the one hand, with the reduction in the PIES
installed capacity, the energy conversion efficiency increases for a partial load. Therefore, the cost price
of electricity decreases at this time. On the other hand, the load shift transfers the electricity from the
peak electricity price period of the large power grid to the valley electricity price period. This means
that the valley electricity consumption increases as TR increases, which causes a reduction in the daily
average cost of electricity in the PIES. Comprehensively considering initial investments and operating
costs, the average cost price drops rapidly before point A’, and then the falling speed is reduced after
point A’, as shown in Figure 8. The changing process in the average electricity cost price Pry,e,q, can
be fitted to Equation (18), where TR is the ratio of the shifted load from G zone to E zone (Figure 6) to
the total peak load. In particular, the necessary condition of Equation (18) is that the PIES is rationally
configured under different load profiles. In fact, in the solution process, the C-P sub-model, which is a
sub-module of the P-M model, should be re-optimized in each call. Algorithm (3) can be used to solve
the P-M model, and the flowchart of Algorithm (3) is shown in Figure 10. However, because the C-P
sub-model involves a large amount of calculation and long calculation time, a regression equation is
used to simplify the solution process. This is to say, Equation (18) is substituted into Equation (16).

pr = 5.57TR> - 3.098TR? — 0.1133TR + 0.8633 R? = 0.991 (18)

average
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Figure 8. Electricity cost price curves for the 12 different load profiles.
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The average daily cost prices of cooling and heating are shown in Figure 11. The shift in demand
of cooling and heating is ignored in this study, and TR refers to the proportion of power demand
shift illustrated in Figure 11. It can be seen from Figure 11 that as the TR increases, the change in the
average cooling cost price is just miniscule, but the heating cost price gradually increases. The increase
in the heating cost price is caused by the following progressive relationship: (1) a load shift causes
the increase in valley electricity consumption; (2) consequently, the installed capacity and operating
hours of CHP (combined heating and power) are reduced; (3) this leads to a reduction in the free
heating provided by the CHP; (4) eventually, the heating cost price increases. Since the proportion of
free cooling provided by the CHP to the total cooling is low, the change in the cooling cost price is
small. However, the maximum increase in the heating cost price is only 0.04 yuan/kWh. Therefore, the
changes in the cooling and heating cost price caused by the electricity DR are ignored in this study.
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4.2. Results and Discussion

Using Algorithm (2), the following results can be calculated under a series of valley electricity
selling prices Prs: (1) the maximum profit of PIES; (2) the optimal peak electricity selling price; (3) the
maximum profit of consumers; and (4) the optimal TR. In Figure 11, the left area of the dotted line
lis the benefit-sharing zone, which means that the total profit generated by changing the peak and
valley electricity selling price is shared by consumers and PIES. In the benefit-sharing zone, as the
valley electricity selling price increases, the peak electricity selling price increases gradually in order to
make the PIES gain the maximum profit, while the consumers profits decrease slowly. Additionally,
from Figure 12, the total profit is constant in the benefit-sharing zone. The reason is that the left area of
the dotted line [ has no load shifted, as shown in Figure 13. In the benefit-sharing zone of Figure 12,
point B is the optimal solution of the P-M model; that is, the daily profit of PIES is 337,861 yuan, the
peak selling price is 0.842 yuan/kWh, the valley selling price is 0.56 yuan/kWh, and the consumers’
electricity bill reduction is 63,421 yuan. In order to reflect the effectiveness of the proposed pricing
model, the economic benefits are calculated without considering the impact of demand shift on the
capacity of the PIES in the planning and design stage, based on the existing typical price leadership
model. The results show that using the proposed model can reduce the initial investment of PIES by
10.69 million yuan and increase the total daily profit by 21,967 yuan, including PIES and consumers.
Furthermore, from Figure 12, the right area of the dotted line [ is the benefit-exclusive zone, which
means that the total profit is taken by the PIES, and the consumers do not need to pay extra for the
electricity compared with that associated with using the large power grid. The benefit-exclusive
zone in Figure 12 corresponds to the load-shifted zone in Figure 13. In the benefit-exclusive zone, in
order to reduce electricity bills, the consumers will adjust their energy habits (by DR) according to
the time-of-use scheme formulated by the PIES. In fact, this adjustment (by DR) will neither reduce
electricity bills nor increase electricity bills, as shown in Figure 12. Therefore, the adjustment of
consumers in the benefit exclusive zone is meaningless for consumers, which is called the reactive
demand response (RDR) in this paper. However, for the PIES, the RDR brings some profit growth, as
shown in Figure 12. From the perspective of the total benefit for consumers and the PIES, the total
profit in the RDR zone is lower than the total profit in the the benefit-sharing zone. In addition, if the
valley price resides in the RDR zone for a long time, the consumers will find this trap based on actual
experience and, thus, refuse to respond to the time-of-use scheme of PIES. Hence, the TR will drop to
zero; that is, it will return to the no-load-shifted zone (benefit sharing zone), as shown in Figure 13.
In summary, from the perspective of the long-term benefit, the PIES sharing its profits with consumers
(the benefit sharing zone) is the ultimate choice for PIES and consumers; that is, point B is the optimal
solution for the long-term situation.

Additionally, from the perspective of P-M model optimization, point A in Figure 12 can be
considered as the optimal solution for the short-term scenario. At point A, it is possible to ensure
a reduction in the peak load and an increase in the valley load, simultaneously, corresponding to a
PIES daily profit of 357,725 yuan, a peak selling price of 1.034 yuan/kWh, a valley selling price of
0.78 yuan/kWh, and a TR of 6.668%. The shifted load of point A is illustrated in Figure 14, where no
new peak appears.
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Figure 14. Shifted load of point A compared with original load.
5. Conclusions

With the opening of the Chinese electricity market, the park-integrated energy system (PIES)
appeared as an energy service provider. Under this new energy market mode, some new problems
need to be addressed urgently: (1) How could we formulate the energy selling price so that the
consumers spend less money and the PIES obtains more benefits? (2) How could we quantify the
effects of DR on the PIES configuration? (3) How could we quantify the impact of the installed capacity
on the energy selling prices? To resolve these problems, a P-M model was proposed in the planning
and design stages of the PIES. The P-M model consisted of two sub-models: the C-P sub-model and the
S-P sub-model. In the C-P sub-model, DR and energy configuration (types, capacities, and strategies of
equipment) were both considered. Using the C-P sub-model, the cost price of cooling, heating, and
electricity were obtained under 12 different load profiles. Then, the function relationship between
the energy cost price and TR was established through regression analysis. In the S-P sub-model, two
pricing schemes were given. One is that prices remain constant throughout the entire year, which
is suitable for cooling and heating. The other is the two-stage time-of-use pricing scheme, which is
suitable for electricity. The hourly electrical price was obtained by using the S-P sub-model, which was
beneficial to both PIES and consumers.

In numerical studies, an RDR zone was found, where the DR of consumers did not bring a reduction
in the electricity bill, and from the perspective of the long-term benefit, the DR of consumers would
disappear. The results indicate that the PIES sharing its profits with consumers (in the benefit-sharing
zone) is the ultimate choice for PIES and consumers; that is, point B is the optimal solution for the
long-term situation. From the perspective of P-M model optimization, it can be considered that point
A is the optimal solution for the short-term scenario. This study can provide the owners of PIES with a
suggestion that win-win is the optimal choice in energy pricing and a method for determining the
optimal energy selling price. Furthermore, it would be compelling to focus on the free competitive
energy market involving multiple PIESs in future research. However, the biggest obstacle of model
application in the real world is that when the user group reaches a certain size and the information flow
is unobstructed between users, the users will only respond to the benefits exceeding a certain value.
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In addition, the limitations in practical applications also include the accurate prediction of demand
load and accurate quantification of demand response. However, these are not the focus of this study.
The paper only provides a pricing tool of cooling, heating, and electricity in PIES based on the existing
load forecasting and demand response research.
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Nomenclature

Abbreviation

PIES park integrated energy system DR demand response

ESS energy storage system EV electric vehicle

BESS battery energy storage system 1Y% photovoltaic power generation
T&D grid transmission and distribution grid CHP combined heating and power
TR transfer ratio RDR reactive demand response
cor coefficient of performance P-M pricing mechanism

C-P cost price S-P selling price

Subscripts

t time interval i ith cooling equipment

j jth heating equipment k kth power generation device
eq equation s iteration step

T time in the whole year v the valley

p the peak rg the large power grid
Superscripts

c cooling h heating

e electricity e, s electricity selling price
Variables

Pr price foal total cost

Q the output of equipment /load v initial investment

a uniform annual value coefficient M maintenance cost

A coefficient matrix b linear matrix

c(Q) nonlinear constraint b lower bound matrix

ub upper bound matrix Qo initial matrix

2 annual profit rate

Greek symbols

1 energy efficiency o control index

a, B,y preference parameters T maximum benefit of PIES
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