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Abstract: Product design is a complicated activity that is highly reliant on individual impressions,
feelings and emotions. Back-propagated neural networks have already been applied in Kansei
engineering to solve difficult design problems. However, artificial neural networks (ANNs) have
a slow rate of convergence, and find it difficult to devise a suitable network structure and find the
global optimal solution. This study developed an ANN-based predictive model enhanced with
a genetic algorithm (GA) optimization technique to search for close-to-optimal sports shoe color
schemes for a given product image. The design factors of the sports shoe were set as the network
inputs, and the Kansei objective value was the output of the GA-based ANN model. The results
show that a model built with three hidden layers (28 × 38 × 19) could predict the object value reliably.
The R2 of the preference objective was equal to 0.834, suggesting that the developed model is a
feasible and efficient tool for predicting the objective value of product images. This study also found
that the prediction accuracy for shoes with two colors was higher than that for shoes with only one
color. In addition, the prediction accuracy for shoes with a relatively familiar shape was also higher.
However, the prediction of color preferences is relatively difficult, because the respondents had
different individual color preferences. Exploring the sensitivity and importance of the visual factors
(form, color, texture) for various image words is a worthy topic for future research in this field.
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1. Introduction

Within the current highly competitive marketplace, how to induce emotional resonance is crucial
to a successful product design. A product’s appearance is evaluated according to its overall image.
A product with a favorable appearance requires the selection of the optimal combination of various
design factors, such as form, color, texture, interface and line elements. The form of a product is defined
by the relationships between a product’s style, expression and function; modifying or emphasizing a
product’s volume or shape can attract the attention of consumers [1]. Additionally, an effective method
is required to help designers present their design concept and elicit responses from consumers [2,3].

Color has a strong effect on us, beginning in childhood, and it can have highly emotional and
symbolic associations when used in fashion, and even when used to emphasize form. Some studies
have demonstrated that product color has a greater effect on the consumer perception of a product
than the product form [4]. Color planning has been extensively studied, and has been adopted
in product design [5–8]. For consumers evaluating an overall product image, color and form are
mutually dependent.
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If designers could follow a design guideline or a reliable information system to match a product
with a color (or colors), based on the information from a large-scale survey, then they could achieve
close to an optimal color design for customized product design services.

Sports shoes are a classic example of the mass customization of popular products. Recent studies
have investigated variations in the manufacture of shoes. For instance, Huang proposed a size
recommendation framework based on both 3D (foot and last) features and user preferences and
provided a predictive model of the comfort levels for particular parts of the foot on the basis of the
given size recommendation [9]. Lee and Wang classified the foot shapes of Taiwanese people using 3D
foot scanning data; they asserted that women have a longer ball of foot length than do men (0.2% FL),
and that when comparing feet of the same length, men have a longer breadth, girth and height, but
a shorter toe height than do women [10]. Alcantara et al. used principal component analysis and
factor analysis to determine consumer preferences and perceptions of casual footwear [11]. Chang et al.
applied fuzzy set concepts to build a jogging shoe prototype expert system [12]. Sudta et al. combined
a decision tree model, a k-nearest neighbor (KNN) model, and a neural network (NN) model, to present
a prototype web application for providing suggestions for children’s shoes [13]. Taken together, these
findings provide useful information for shoe development.

In the author’s previous study, partial least squares (PLS) and neural networks were introduced
to explore shoe form design factors and consumers’ image perceptions [14]. In a subsequent study,
the author used Kansei engineering steps, semantic differential rating, and statistical tools, to investigate
the consumer psychology, perception and aesthetics in relation to sports shoe colors [15].

To follow up, this study presents an in-depth hybrid neurogenetic optimization methodology
based on ANNs and GAs to build a product color design prediction framework for shoe designers, by
integrating customers’ feelings regarding form and color in shoe samples. The NN is used to learn
the experimental values obtained from experimental samples using Kansei engineering. Sports shoe
design factors are used as the input parameters of the NN.

The nonlinear relationship between consumers’ perceptions of a shoe’s image and its color
scheme is determined by the NN, whereas the GA is employed to search the optimized NN’s
architectural parameters.

2. Literature Review

2.1. Kansei Engineering

Kansei engineering was developed by Nagamachi in the 1970s [16]. It uses a questionnaire to
link a customer’s feelings about a product with image words, and transform consumer emotions into
actual design elements. The Kansei concept has been used widely in subsequent decades, and in the
design of product form and color [17–19].

Numerous quantitative analysis tools are used in Kansei engineering; these include multiple
regression analysis [20], quantification theory type 1 [21], fuzzy theory logic [22], rough set theory [23],
procrustes analysis [24], genetic algorithms (GAs) [25] and neural networks (NNs) [26]. However,
modeling using ANNs causes some difficulties for the construction of reliable Kansei predictive
models regarding the number of hidden layers and the learning parameter settings. To overcome these
limitations, ANNs can be merged or hybridized with other techniques, such as fuzzy logic, wavelet
transformation, partial least squares (PLS), rough sets and GAs [27].

Among these, GA solves the optimization problem by mimicking processes in biological evolution;
GAs are also cost-effective and less time consuming than other approaches. GA thus provides a
versatile problem-solving mechanism for searching, adaptation and learning in a variety of application
fields, and especially for those problems that are solved unsatisfactorily by heuristic methods.
Therefore, a Gam that is assisted by NN can be an effective tool for predicting and optimizing complex
process parameters.
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2.2. ANNs

Neural network technology was developed by Gallant in 1993 [28,29]. The main features of an
ANN are that it can mimic the self-learning and organization ability of the human brain, it is capable of
handling incomplete data, and can solve complex and ill-defined problems. The basic computational
units of the neural network are referred to as nodes, and nodes are connected in three layers: the
input, output and hidden layers. The hidden layer extracts important features contained in the input
data [28]. In Kansei engineering, ANNs have been used to determine relationships between product
design attributes, such as size, shape and color, and also identify brand and consumer emotional
responses in order to make Kansei predictions.

A few studies have illustrated the use of ANNs in the product design field. Tsai, Hsiao and Hung
proposed a conceptual design method that used fuzzy ANN-based algorithms, integrating product
form and color to predict consumers’ evaluation of the product’s image [30]. Recent study regarding
sports-shoe appearances was published by the author of this study, PLS partial least squares and ANN
were used to developing a NN-based Kansei prediction system [31]. Lai used ANNs to determine
the optimal combination of product form and product color [32]. An ANN model was also used to
examine the complex relationship between web page design elements and users’ feelings, ultimately
building a web page design support database [33]. Tang et al. established an ANN model to relate the
design parameters of a new product to its perceptual value, and used a mobile phone design as a case
study [34].

Once trained, an ANN can perform predictions and generalizations at high speeds, and the
root-mean-square error (RMSE) is used to analyze model prediction accuracies [35]. Compared with
linear modeling techniques, such as multilinear regression and PLS, ANNs are superior as a modeling
technique for molecular descriptor data sets showing nonlinear conjunction, and thus for both data
fitting and prediction strengths [36]. Among the different learning algorithms, backpropagation uses
the concept from the method of steepest descent, a gradient method, to minimize the error function; this
makes backpropagation the most common way of training ANNs. The industrial design applications
of ANNs typically focus on feature selection, classification and product image prediction. They can
manage large-scale investigations of nonlinear data, such as product design attributes or consumer
emotional responses to provide consumer Kansei reaction predictions, sort and categorize product
attributes, and perform grouping and regression [37].

However, ANNs have a number of shortcomings, such as their low learning rate [38] and difficulty
determining the structure of hidden layers when devising a suitable network structure [39]. It is also
not easy to achieve the global optimal solution [40], initialize the network’s weights, or explain the
training results.

2.3. GA

A GA is a stochastic search algorithm and optimization technique based on the concept of natural
selection and the genetic evolution of biological species; it is also cost-effective and less time-consuming
than other techniques. GAs search from a population of solutions rather than randomly from a single
point. The GA optimization process can be terminated by defining some stopping criteria, such as the
maximum number of generations, or the desired fitness being met. There are three basic operators in a
GA: selection, crossover and mutation. Briefly, the algorithm starts by generating a random population
of chromosomes, which are the candidate solutions to the given problem. Then, it evaluates the fitness
function of each chromosome, which determines its probability in the selection stage. The crossover
operation is applied to a pair of selected chromosomes, by combining them in order to generate a
new, better, superior offspring [41]. Lampinen developed a GA approach for preliminary cam design
and subsequent shape optimization [42]. Beale constructed a data mining model that used a GA to
measure the correlation between web pages and user interests [43]. The inverse procedure is performed
to generate a second offspring [44]. In recent years, GAs have been applied to solve optimization
problems in numerous fields [45,46], including in design.
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For instance, Beale constructed a data mining database that uses GAs to measure the correlation
between web pages and user interests, Hsiao demonstrated the effectiveness of GAs for assessing
coffee maker design feasibility [46], and Wang employed the interactive GAs and the fuzzy kano model
to explore the emotional needs of users for electric bicycle design.

2.4. Hybrid GA-Based ANN

ANNs have many advantages in a variety of practical fields and applications; however, a slow
rate of convergence and difficulty finding the global optimal solution are the major drawbacks of
implementing ANNs. A GA assisted by an ANN can be an effective method of predicting and
optimizing any complex process parameters for increasing the success of ANN modeling [47].

The main advantage of GAs is their ability to avoid becoming trapped in a local optimum [48,49].
GAs contribute to ANN model performance through the network weight initialization. Because ANN
training algorithms are based upon local search procedures, they are prone to local minima problems.
To avoid this, initial network weights that lead to a global minimum should be introduced, and in a
hybrid, GA-based ANN model, the network connection weights and biases are not randomly generated
but optimized using the GA [50]. While searching for the global solution, the GA is proposed to
function on the trained neural network; the random nature of the GA helps the model to get away
from local optima and avoid overfitting. Therefore, the combination of ANN and GA can be used for
an integrated process of modeling and optimization.

The hybrid GA-based ANN technique was recently applied in the field of design. Hsiao used a
fuzzy ANN to establish the relationships between input form design parameters and adjectival image
description; they then use a GA to search for a near-optimal design that satisfies the designer’s required
product image. Tang et al. proposed a parametric approach that uses a three-layered ANN model,
incorporated with a GA and the technique of generalized superellipse fitting for product aesthetic
design [51]. Ming-Chyuan Lin et al. propose an integrated ANN, GA and the Taguchi quality design
process to aid the search for the optimal solution with the most precise design parameters in order to
improve product development [52]. The actual processes used to develop a hybrid GA-based model
and GA optimization settings are discussed later in this paper.

3. Implementation Methods

3.1. Selection of Representative Form Types and Color Schemes to Build the Experimental Sample Images

When viewing and evaluating a product, consumers are affected by the interaction between
the overall shape and color. Therefore, shape change was incorporated as a factor in this study that
approximated actual product presentation and evaluation conditions to build a Kansei-based sport
shoe color design prediction model. First, four types of currently-available sports shoes were selected
from the current market based on their functionality and features: basketball, jogging, running and
casual shoes. The final type of shoe was selected from the three-dimensional (3D) model resource,
and was unmodified by product design considerations (a 3D model of an ordinary sports shoe that
had not been produced through product design and aesthetic evaluation). These five form types were
the experimental form factors in this study. Once the form of the five experimental shoe types was
confirmed, each type was given two color schemes, with the shoe body in the main color and the
outsole in the secondary color. Thus, a total of ten experimental color schemes were produced (Table 1).
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Table 1. Color schemes of the experimental designs.

Shoe Name Form Type Color Scheme 1 Color Scheme 2

Basketball shoes
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3.2. Linguistic Variable Selection for Affective Responses

To define consumers’ affective responses for the Kansei factor space, the semantic space was used
to explore flow using the following steps. First, 100 antonymic pairs of Kansei expressive adjectives
(in Chinese), that could be used to describe the sports shoes, were selected. Words that had identical or
similar meanings, or that were semantically misleading, were excluded, with only 20 pairs of adjectives
retained. Subsequently, 15 graduate students and four product designers were recruited to examine the
10 representative 3D-rendered images of sport shoes, looking at them in a random order. A seven-stage
semantic differential (SD) questionnaire was designed and completed by the students. The collected
data were summed and averaged, and the results were processed using factor analysis to determine
the adjectives most representative of the sports shoes’ color schemes. Finally, cluster analysis was
employed to select three adjective pairs from the SD questionnaire data: elegant–artless, rare–common
and like–dislike.

3.3. Definition of Experimental Color Index for Sports Shoes

The Practical Color Coordinate System (PCCS) was developed by the Japan Color Research
Institute in 1964, and is based on psychological elements. The PCCS-based 24-color color wheel is
displayed in Table 2. The main feature of the PCCS is its hue–tone system; thus, the PCCS has the
advantage of treating color as an image by using its tone. The classification system is relatively similar
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to the expression and description of colors in everyday life. Therefore, in the PCCS, tones are named
according to investigation results, so that colors with the same hue can be distinguished by their
tones. For example, in color names such as vivid red, light purple, soft orange and pale green, red,
purple, orange and green are hues, whereas vivid, light, soft and pale denote tones. The 12 color tones
are vivid (v), bright (b), strong (s), deep (dp), light (lt), soft (sf), dull (d), dark (dk), pale (p), light
grayish (ltg), grayish (g) and dark grayish (dkg). The PCCS comprises red, yellow, green and blue,
which are referred to as the four primary psychological colors, and are at the center of the color circle.
In opposition to the four hues, four complementary psychological colors are identified, totaling eight
main colors. Among the aforementioned eight hues, four hues are inserted at regular intervals to
produce 12 hues. In addition to the 24 colors, ten gradient colors, plus black and white, two colors that
are commonly seen in sports shoe design, are added to make a total of 36 colors. These colors were
adopted as the main source of color changes for the experimental colors applied to sports shoe types in
this study (Table 3).

Table 2. Structure of 24-color Practical Color Coordinate System (PCCS) color wheel.

PCCS-based 24-color color wheel
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2:R red 4R 14:BG blue green 5BG

3:yR yellowish
red 7R 15:BG bluie green 10BG
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5:0 orange 4YR 17:B Blue 10B
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Table 3. The 36 experimental color scheme designs.

NO Sample R.G.B NO Sample R.G.B NO Gradient Color

1
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3.4. Semantic Meaning Questionnaires to Determine Affective Responses

Once the five prototype sports shoe models had been chosen, each model was assigned two types
of color scheme (Table 4). In addition, 36 representative color samples (Table 3) were used. A total of
360 3D-rendered sports shoe images were created, a selection of which are displayed in Table 4.

A total of 250 people participated in this study; 125 were men, and the remainder were women.
All participants were college students and had no particular brand association. The questionnaires
experiment used a cloud database, and was conducted by having the participants view the rendered
sports shoe sample images. The images were shown in a random order on a fixed questionnaire
interface (Figure 1). During the survey, the participants were instructed to make judgments based on
their perceptions of the product in the image. The participants were required to rate the three rating
pairs: Adj1 (elegant–artless), Adj2 (rare–common), and Adj3 (like–dislike) by using a scale from −10 to
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10 (10 indicated the extremely positive impression of a sample, whereas −10 indicated an extremely
negative impression). The evaluation data collected from the questionnaire were the input variables in
the subsequent model construction, which is presented in the following section.

Table 4. Design factors and design factor levels for product forms of sports shoes.

Design Factors Design Factor Levels

X1: Form type (Data type: discrete)

X11 Basketball shoes
X12 Jogging Shoes
X13 Running Shoes
X14 Casual Shoes
X15 Other type

X2: Number of colors (Data type: continuous) X21 Single Color
X22 Two Colors

X3: Direction of color gradient X31 Horizontal Gradient
X32 Vertical Gradient

X4: Sole color X41 White
X42 Black

X5: Experimental color index
Body color Color index

X51, . . . , X526 26 Experimental color index

X6 Red (R) X7 Green (G) X8 Blue (B)
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4. Results and Discussion

4.1. Definition of Design Factors for Modeling

The images of the representative sports shoes in this study had two types of design factor—form
factors and color factors—which were also divided into sublevels (Table 5). For example, the number
of colors X2 was subdivided into two feature levels: single color (X21) and two colors (X22). The sole
color X4 was also subdivided into two feature levels: white (X41) and black (X42). The body color
index was represented by X51–X526. In the data type and data values, the form presented must be
observed to facilitate the numerical data format and conversion. Table 6 displays the coding format
used for ANN training, and the average Kansei evaluation ratings of 12 selected sports shoe samples,
presented in a matrix.
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Table 5. Kansei evaluation matrix for 12 selected sports shoe samples.

Model
X1 X2 X3 X4

X5 X6 X7
Adj. 1 Adj. 2 Adj. 3

X11 X12 X13 X14 X15 X21 X22 X31 X32 X41 X42 Ave. StdDev Ave. StdDev Ave. StdDev

typa_g01 1 0 0 0 0 0 1 1 0 0 1 255 251 0 0.14 3.11 0.75 2.96 1.81 3.03
Typa01 1 0 0 0 0 1 0 0 0 0 1 230 0 18 −0.83 3.13 1.10 2.26 0.52 3.18

typb_g01 1 0 0 0 0 0 1 1 0 1 0 255 251 0 −1.00 3.05 0.00 2.83 1.22 3.21
typb01 1 0 0 0 0 1 0 0 0 1 0 230 0 18 −1.46 2.44 −0.21 2.15 0.00 2.45

typc_g01 0 1 0 0 0 0 1 1 0 1 0 255 251 0 −2.48 2.53 −0.10 2.86 −0.48 3.36
typc01 0 1 0 0 0 1 0 0 0 1 0 230 0 18 −1.11 2.13 0.61 1.81 −0.25 2.46

typd_g01 0 1 0 0 0 0 1 1 0 0 1 255 251 0 −0.90 3.23 −0.53 2.42 0.47 2.89
typd01 0 1 0 0 0 1 0 0 0 0 1 230 0 18 −1.39 3.32 −0.19 2.99 −0.55 3.77

type_g01 0 0 1 0 0 0 1 1 0 1 0 255 251 0 −1.58 2.98 −1.00 2.89 0.58 3.30
type01 0 0 1 0 0 1 0 0 0 1 0 230 0 18 −2.03 2.80 −0.76 2.72 −0.07 3.23

typf_g01 0 0 1 0 0 0 1 1 0 0 1 255 251 0 −1.92 2.71 −0.81 2.42 0.81 3.45
typf01 0 0 1 0 0 1 0 0 0 0 1 230 0 18 −1.29 2.31 −1.07 2.05 −0.39 2.45

Table 6. Genetic algorithm (GA) structural parameters.

Population size 100
Maximum number of generations 100

Termination criterion Meet the maximum number of generations (100) or tolerance (10−6)
Selection function Roulette wheel

Crossover function Discrete method
(0.65 probability of crossover)

Mutation function Real valued (0.05 probability of mutation)

4.2. Description of the ANN Model

Figure 2 illustrates the framework of the ANN model determined in this study. The framework
is divided into input, hidden and output layers. The default type of transfer function is selected for
hidden and output layers in MATLAB. The hyperbolic tangent sigmoid transfer function (tansig) for
the hidden layer, and the log-sigmoid transfer function (logsig) for output layer. Backpropagation is
used to train the ANN. The input layer is where the sports shoe design factors are input, and can be
further divided into discrete and continuous factor types. The discrete factors can be further classified
as form or color factors (Table 5). The hidden layer mainly serves to increase the complexity of the
ANN and represents the interaction between inputs. The hidden layer is a structure describing the
complex interactions among various variables in the ANN structure. The number of neurons and
hidden layers cannot be known in advance. This study determined an appropriate number of hidden
layers through trial and error. The output layer expressed the scores which the respondents gave for
the perceived adjective-based scale anchors. ANN can be simulated using these data to establish a
nonlinear relationship between shoe design factors and Kansei adjectives.

First, a 10 × 10 ANN structure was used to build the correlations between shoe design factors and
adjectives in this experiment. Because the ANN structure could not be easily determined, and there
were no specific sets of rules to follow, trial and error was used to decide the structure. Figure 3 plots
the preliminary training results for the three sets of adjectives, where the horizontal axis indicates
the experimental value, and the vertical axis indicates the predicted value. The R2 for Adjs.1–3
were 0.536, 0.555 and 0.757, respectively. The results indicated, that except for Adj3 (like–dislike),
which obtained relatively satisfactory prediction results through training, the other two adjective pairs
[i.e., Adj1 (elegant–artless) and Adj2 (rare–common)], did not achieve satisfactory prediction results
through training. Therefore, this study inferred that building an ANN framework with complicated
relationships for the experimental factors might be relatively difficult. Using trial and error was not
effective enough to rapidly identify valid model-building parameters and generate accurate predictions.
Therefore, the GA was employed to find the optimal structure and build a more accurate ANN model.
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4.3. GA Optimization Search Mechanism

This section details the use of the GA for the sports shoe color scheme optimization. The main
components of the GA algorithm are chromosomes, population, generation and fitness value. In this
study, the largest output value (adjective score) is used as the target to be obtained using genetic rules,
whereas the chromosome represents the input variables, which are the shoes’ design factors (binary
data). The initial chromosomes in the first generation were generated at random. The fitness value
was calculated, and the smaller the fitness value, the better the fit. The algorithm converges toward
the optimal image as the RMSE decreases. In the next generation, new chromosomes are determined
using reproduction, crossover and mutation operations. The new fitness was then calculated, and the
favorable chromosomes were retained. The calculations proceeded until the maximum number of
generations, or the tolerance in the difference between the old and new chromosomes, was reached,
indicating the best chromosome. In this study, the MATLAB Toolbox settings were 100 generations,
and a tolerance of 10−6. The detailed GA structural parameters are listed in Table 6.



Appl. Sci. 2020, 10, 1560 11 of 19

4.4. Hybrid Learning of ANN

In the first step of the GA-based ANN learning, the questionnaire data underwent postprocessing,
and were formatted as the input and output data sets. The input nodes of the network were encoded
into chromosomes in terms of real number and binary coding with respect to their nature. During this
stage, the ANN initial weights were set using GA, and the minimum error was reached using a
backpropagation algorithm. This temporary network design was not necessarily expected to produce
favorable ANN model results, because its primary purpose was to find the minimum error of the
network with respect to the selected input variables. The next step was to determine the optimum
number of ANN hidden nodes, with the lower and upper boundaries fixed at 1 and 50, respectively.
During the next stage, the number of hidden layers was increased by 1, and the previous steps were
repeated. A new solution was obtained by the GA, and the NN used it to determine its fitness value,
and this fitness was compared with that of the previous model. These steps were repeated until the
minimum error was reached. The overall procedure is illustrated in Figure 4.Appl. Sci. 2019, 9, x FOR PEER REVIEW 12 of 20 
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After the most relevant inputs and an optimal number of hidden nodes were fixed, the GA was
used to initialize the weights of the network. At this stage, the GA selected initial weight vectors for
each individual in the population, which represented the ANN initial weights. The individual weights
were then trained using the Lavenberge–Marquardt algorithm, previously selected input variables,
and an optimal number of hidden nodes until convergence was obtained. The GA provided initial
values for the ANN that were near the global minimum. Therefore, the final solution was expected to
fall into or near the global minimum.

Table 7 presents the performance of different GA-based ANN models, which were assessed using
values of the mean squared error (MSE) and R2. The models were composed of different numbers of
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hidden nodes in different numbers of hidden layers. The model built with 28 × 38 × 19 hidden nodes
performed the best, and had an R2 of 0.843 and an MSE of 0.367 for Adj3 (like–dislike), which was
superior to the conventional ANN model. Increasing the number of hidden nodes and hidden layers
in conventional ANN does not typically improve the MSE and R2. Table 7 further reveals that the
training of the ANN was relatively satisfactory when three hidden layers were employed; however,
the training was less favorable and the training time was increased when four hidden layers were
employed. Thus, three were selected as the most appropriate number of hidden layers.

Table 7. Predictive performance of different GA-based ANN models.

Models
Hidden
Layers Hidden Nodes

MSE R2
Overal

R2Adj1 Adj2 Adj3 Adj1 Adj2 Adj3

ANN 2 10 × 10 0.549 0.308 0.536 0.536 0.555 0.757 0.627
ANN 2 50 × 50 0.524 0.259 0.469 0.550 0.619 0.782 0.662
ANN 2 100 × 50 0.690 0.340 0.552 0.441 0.496 0.755 0.569
ANN 2 50 ×100 0.828 0.417 0.967 0.34 0.4 0.61 0.357
ANN 3 50 × 50 × 50 0.480 0.312 0.531 0.61 0.51 0.72 0.624

GA-ANN 1 16 0.419 0.231 0.403 0.633 0.665 0.824 0.713
GA-ANN 2 35 × 5 0.393 0.222 0.417 0.652 0.683 0.829 0.724
GA-ANN 3 28 × 38 × 19 0.381 0.239 0.367 0.668 0.674 0.843 0.733
GA-ANN 4 30 × 46 × 30 × 46 0.360 0.209 0.472 0.699 0.703 0.806 0.720

Adj1 (elegant–artless); Adj2 (rare–common); Adj3 (like–dislike). Bold numbers indicates the optimal value.

5. Discussion

This section presents the results of the GA-ANN modeling using scatter plots. Figure 5 displays
the detailed results of models with 1–3 training layers. Figure 5a presents the training results of the
model with one hidden layer. The hidden layer contained 16 nodes. The R2 of the adjective sets were
0.633, 0.665 and 0.824; these results are superior to those obtained with an arbitrarily selected ANN
structure. Figure 5b reveals that when the model comprised two hidden layers and 35 × 5 nodes, the R2

of the adjective sets were 0.652, 0.683 and 0.829, respectively, whereas when the model comprised
three hidden layers and 28 × 38 × 19 nodes, the R2 of the adjective sets were 0.668, 0.674 and 0.843
(Figure 5c). The data distribution was relatively highly concentrated, suggesting that the GA-ANN
under these conditions is the optimal model. In particular, the highest correct prediction rate was
found for Adj3 (like–dislike), which indicates respondents’ preference.

Tables 8 and 9 present the shoe color schemes and types that resulted in relatively small and
large prediction errors using the GA-ANN, respectively. These prediction data were compared with
statistics obtained from the original questionnaire responses, which revealed that for shoe types for
which the predictions were accurate, the questionnaire investigation results were comparably coherent,
and the trends were identifiable. A review of these samples suggested that the prediction results for
casual and running shoes were the most accurate, whereas the prediction results for shoes with a
shape that is relatively difficult to identify were the least accurate. Regarding shoes with two colors,
the prediction accuracy for shoes with black soles was relatively higher than for single-color shoes.
Therefore, the effect of color could not be predicted; the prediction accuracy for different colors varied
randomly. This was found by plotting the colors with high and low prediction accuracies on the color
wheel, in which no identifiable trend could be observed. This study inferred that the respondents
had relatively similar opinions of the different shoe shapes, so trends in their perceptions were easily
identified. By contrast, the opinions of the respondents regarding the color schemes were different, so
no obvious trend could be identified.
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In addition to th econfigurations of solid colors (color = hue), this study included gradient color
effects, because these more closely reflect product designs currently on the market. Figure 6 presents
the curves representing the difference between the predictions for five experiment levels, employing
gradient colors using the GA-ANN and actual questionnaire statistics. The three curves in Figure 6
separately represent the results for the three adjective pairs. The dotted lines indicate GA-ANN
predictions, whereas the dots indicate actual experimental values. The closer the dots to the curves,
the more accurate the prediction results are. Whereas Figure 6 shows the results for horizontal color
gradient effects, Figure 7 depicts those for vertical color gradient effects. A comparison of these two
figures reveals that the GANN predictions were slightly superior when horizontal color gradients
were used. This indicates that if designers wish to use a color gradient effect to stimulate consumers,
they should employ a horizontal gradient (Figure 6), because Kansei design determines that it is more
effective at triggering consumer feelings.



Appl. Sci. 2020, 10, 1560 14 of 19

Table 8. Close-to-optimal parameters generated by GA optimization on the trained ANN model.

Shoe Form Type Color Quantity Gradient or Color
Index

Optimal Shoecolor Schematic

Opt. Value Questionnaire
Average Score
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Table 9. Shoe designs for which relatively large prediction errors in the ANN were generated.

Shoe Form Type Color Quantity Gradient or Color
Index

Optimal Shoe Color Schematic

Opt. Value Questionnaire
Average Score
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6. Conclusions

The design factors of the sports shoes in this study were the input parameters of the ANN, and GA
was used to search for the optimal ANN structure. It was found that the GA-based ANN model
outperformed the conventional ANN model. The results indicated that a model built with three hidden
layers [28 × 38 × 19] was best for predicting the object value reliability. The R2 for Adj3 (like–dislike)
was equal to 0.834, suggesting that the developed model is a feasible and efficient tool for predicting the
objective value of product images. Additionally, comparing the optimized values and questionnaire
average values demonstrated that the model’s prediction accuracy was higher for shoe bodies with
two colors than those with a single color. Highly accurate prediction results were obtained for casual
and running shoes, whereas shoes that had a shape that was relatively difficult for respondents to
identify returned inaccurate predictions. The colors of samples that resulted in higher prediction rates
were random (i.e., no specific pattern was identified), suggesting that the respondents had varying
personal color preferences.

The highest accuracy rate was obtained for Adj3 (like–dislike), indicating that composite models,
such as GA-ANN, can facilitate the prediction of consumer preference for products under development
to a certain extent.

In this paper, we have presented a hybrid GA-ANN predictive model for searching close-to-optimal
sports shoe color combinations for a given product. The ANN was used to determine consumer
perceptions for 360 experimental samples according to the concept of Kansei engineering. However,
further research identifying any correlations or interactions among respondents’ preferences for
particular color combinations, predicting the proper shoe brand and size, and implementing specific
testing protocols for footwear fit and comfort perception, is warranted. Although the current study
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focused on the color scheme design of sports shoes, the proposed method is suitable for other design
issues in the development of footwear and related products.
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