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Abstract: Accurate and reliable power load forecasting not only takes an important place in
management and steady running of smart grid, but also has environmental benefits and economic
dividends. Accurate load point forecasting can provide a guarantee for the daily operation of the
power grid, and effective interval forecasting can further quantify the uncertainty of power load
on this basis to provide dependable and precise load information. However, most of the previous
work focuses on the deterministic point prediction of power load and rarely considers the interval
prediction of power load, which makes the prediction of power load not comprehensive. In this
study, a new double hybrid load forecasting system including point forecasting module and interval
forecasting module is developed, which can make up for the shortcomings of incomplete analysis for
the existing research. The point forecasting module adopts a nonlinear integration mechanism based
on Back Propagation (BP) network optimized by Multi-objective Evolutionary Algorithm based on
Decomposition (MOEA/D) to improve the accuracy of point prediction. A fuzzy clustering interval
prediction method based on different data feature classification is successfully proposed which
provides an effective tool for load uncertainty analysis. The experiment results show that the system
not only has a good effect in accurately predicting power load, but also can analyze the uncertainty of
the power load, which can be used as an effective technology of power system planning.

Keywords: power load forecasting; point forecasting; interval forecasting; nonlinear integration
mechanism; fuzzy clustering

1. Introduction

Power load forecasting is the foundation and key task of management and control of power
system [1]. It is often applied in energy supervise, unit commitment and load control [2]. High
precision load prediction ensures the secure and steady operation of power system [3]. Therefore, it is
essential to enhance the deliverability and prediction precision of smart grid [4]. However, due to
many indeterminate reasons such as climate variation, economy growth, public activities and national
decisions, the accuracy of power load forecast often fails to achieve the expected results [5]. In view of
this, all countries in the world are looking for effective load forecast methods to enhance the accuracy
of load forecasting [6].

In addition, the combination of ultra-short term load forecast (USTLF), short term load forecast
(STLF), medium and long term load forecast (LTLF) is significant to the safe and economic operation of
power system [7]. USTLF and STLF are the necessary basis of power grid dispatching, and reducing the
error of STLF is an effective method to strengthen the supervising level of power system [8]. Accurate
prediction of power load can save a lot of time to manage the power grid and avoid major changes [9].
Therefore, it is essential to establish a load prediction model with high forecast ability. For the sake of
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achieve precise and steady STLF, researchers have adopted a lot of methods, including (a) statistical
method, (b) artificial intelligence method and (c) hybrid method [10].

In the early stage of power load forecasting, traditional statistical methods are often applied,
including some conventional forecasting methods, such as regression method [11], exponential
smoothing [12], Autoregressive Moving Average Model (ARMA) [13], Autoregressive Integrated
Moving Average (ARIMA) [14,15], seasonal ARIMA [16], grey forecasting model (GM) [17], etc. These
models could obtain power load prediction, but due to their own limitations, they cannot achieve the
expected forecasting accuracy. In order to overcome these limitations, more and more effective load
forecasting approaches have been put forward. In recent years, the prediction model based on artificial
intelligence is gradually springing up in electric load prediction [18]. At the moment, the algorithms of
artificial intelligence mainly include artificial neural network (ANN) [19,20], support vector machine
(SVM) [21], multi-layer perceptron (MLP) and radial basis function (RBF). Although better than
the traditional methods, they still unable to fit the current complicated and variable power load
characteristics well to achieve satisfactory accuracy due to the defects of a single prediction method [22].
For example, the artificial neural network is easy to fall into local optimization, over fitting and low
convergence rate [23]. This has led to the largely establishment of integrating and hybrid models,
which are composed of several single models and can achieve better prediction performance [24].

Xiaobo Zhang et al. [25] successfully proposed a new power load prediction model, CS-SSA-SVM,
which integrated singular spectrum analysis (SSA), support vector machine (SVM) and cuckoo search
(CS) algorithm. This model can significantly enhance the effectiveness of power load forecast. Dong, Y.
et al. [26] developed a short-term load prediction model using a unit for feature learning named
Pyramid System and recurrent neural networks, and it can greatly increase the stabilization and safety
of the smart grid. Wang, R. et al. [27] proposed a new power load forecasting system by combining data
preprocessing, hybrid optimized algorithm and certain individual conventional prediction methods,
which conquers the shortcomings of individual conventional prediction model and obtains a single
model optimization with higher prediction accuracy than traditional forecasting model.

Another problem of power load forecasting is that the research direction is relatively single.
Specifically, most of the previous analysis only focuses on the point prediction of load, and rarely
considers the load interval prediction together to prediction modeling and analysis. This is not
enough to meet the needs of engineering applications, or to ensure the reliability of the power system.
Probability interval prediction can display more messages, and its results can help managers to
implement appropriate policies. However, the research on interval modeling and prediction is still
lacking. At present, the main research direction of uncertainty quantification is mainly statistical
methods, including quantile regression [28], bootstrap method [29], kernel density estimation [30], etc.
in addition, there are interval prediction methods based on artificial neural network, including lower
upper bound estimation method (LUBE) and so on [31].

Table 1 summarizes the existing point prediction and interval prediction methods and models,
and evaluates the advantages and disadvantages of these methods.

For point forecasting, from the traditional statistical model to the artificial neural network model,
and even for the recently developed hybrid model, the prediction accuracy has been continuously
improved, but the models still have a lot of space for improvement. According to the nonlinear
characteristics of load, this paper proposes a method of nonlinear combination of single prediction
model, and uses swarm intelligence optimization algorithm to optimize the model parameters to further
improving the prediction effect. For interval forecasting, no matter quantile regression method [32],
bootstrap method [33], kernel density estimation method [34] or LUBE method, these methods have
their own advantages and disadvantages that are difficult to overcome. In conclusion, the interval
prediction method is not uniform and further research and investigation are needed according to
the existing knowledge to obtain more effective results [35]. Therefore, based on the hypothesis of
distribution, this study develops a new architecture of interval prediction, which is better than most
single model interval prediction architectures.
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Table 1. Summary of point prediction and interval prediction models.

Method Advantage Disadvantage

Point Forecasting

Statistical models (AR, ARIMA,
fractional-ARIMA.)

• Consider information from historical data
• High calculation efficiency
• Few adjustable model parameters
• Can mine the linear law of data effectively

• Cannot mine the nonlinear law of data
• Stable data only
• Assuming the interference sequence is white noise

is necessary

Artificial neural network
• Can fit the non-linear patterns of data, and has

good generalization ability and
self-learning ability

• The calculation process is complex
• High requirements on the number of training samples
• Fall into local optimum easily

Hybrid model
• Integrate the advantages of each single model
• Improvement of prediction accuracy

• Improved spaces in each part of the model still exist
• Non-linear patterns of data cannot be further mined

by linear combination

Interval Forecasting

Quantile regression

• Be able to deal with heterogeneity
• High tolerance for outliers
• Consider the whole distribution
• Ability to capture tail features of distribution

• High training data set requirements
• Large amount of calculation
• Results are easily discarded

Bootstrap methods
• Avoid possible discarding in quantile regression
• Very effective when handling small samples

• Poor performance in handling large samples
• Large amount of computation

Kernel density estimation • Fast construction prediction interval • Strict distribution assumption

LUBE
• Avoid the data distribution hypothesis
• High calculation efficiency
• Model coefficient is easy to adjust

• The objective function is complex
• Traditional mathematical methods cannot optimize

the objective function
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According to the review of the above literature and methods, the major contribution of this article
is to design a hybrid double prediction system, including two parts: point forecasting and interval
forecasting, which make up for the shortcomings of the existing research. Specifically, the double
prediction system includes the preprocessing module based on Improved Complete Ensemble Empirical
Mode Decomposition (ICEEMDAN), the prediction module based on nonlinear combination model,
the interval prediction module and the evaluation module. As a new signal processing technology,
ICEEMDAN decomposes and reconstructs the power load sequence to get a clear time sequence.
The nonlinear combination model is an effective prediction model proposed in this study. Among
it, Extreme Learning Machine (ELM) [36], RBF, Elman Neural Network (ENN) and ARIMA [37] are
selected as the basic models of the combination model, and the prediction results of these four models
are nonlinear aggregated by BP [38] neural network. BP network is very sensitive to the selection of
parameters, which directly affects the validity of point prediction and interval prediction. Therefore,
in order to find the optimal parameters in BP model, Multi-objective Evolutionary Algorithm based
on Decomposition (MOEA/D) is developed effectively. Finally, an interval prediction method based
on fuzzy clustering is established, which does not need the hypothesis of distribution and model.
Therefore, the interval structure has a strong anti-interference ability to the abnormal values in the
interval data. In addition, to testify the ability of the designed prediction architecture, we select
9 indicators to verify the accuracy of the prediction, and implement a series of discussion to judge the
effectiveness of the prediction system.

The leading innovations of the forecasting system are summed up bellow:
(1) A new double forecasting system for power load is established in this paper, which is

successfully combined of point forecasting module and interval forecasting module. The purpose
of the system is to improve the accuracy of load point prediction, and effectively analyze the uncertainty
of power load data.

(2) A nonlinear combination method based on the BP algorithm optimized by MOEA/D is
proposed to better improve the forecasting performance of the system. To obtain the optimal
combination pattern of each model, the nonlinear aggregation mechanism based on BP is adopted to
combine the models and eliminate the inherent defects of individual model and linear combination.
In particular, MOEA/D algorithm is used to search the best parameters of BP, which further improves
the prediction accuracy.

(3) An interval prediction method based on fuzzy clustering is established, which provides
an effective tool for load uncertainty analysis. The interval forecasting method determines the upper
and lower bounds of the power load prediction value to quantify the uncertainty information of the
load, and provide more comprehensive reference information for the operation risk decision makers of
power system.

The rest of this paper is: Section 2 shows the methods applied in the proposed double forecasting
architecture. In Section 3, the double forecasting system is established. Section 4 introduces the
experimental data and displays the experimental results. Section 5 provides further discussion. Finally,
the conclusion is given in Section 6.

2. Knowledge and Tools of Model Preparation

In constructing our model, several methods are chosen as the best choice, and they are combined
to improve the ability of the model. Here we introduce three main methods named improved complete
ensemble empirical mode decomposition (ICEEMDAN), multi-objective evolutionary algorithm based
on decomposition (MOEA/D) and Fuzzy C-Means (FCM) clustering algorithm in detail.

The first is improved complete ensemble empirical mode decomposition (ICEEMDAN).
Being an effective data processing method, ICEEMDAN is proposed by Colominas, Schlotthauer

and Torres [39] in 2014. It disintegrates the actual series into some intrinsic mode functions (IMF)
and a residual from high frequency to low frequency. CEEMDAN has been proposed to restore the
integrity property of EMD.
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Nevertheless, CEEMDAN is still worthy of improvement in mode and signal decomposition.
In ICEEMDAN, Fk(·) represents the operator figures out the k-th mode achieved by EMD, ω(i) is the
formation of Gaussian white noise that has zero mean and unit variance, and x(i) = x +ω(i). M(·) is
the operator and it can produce the local average of the signal. Then E1(z) = z−M(z) can be obtained.
The general steps of ICEEMDAN are as follows:

Step 1. The first residue is obtained by calculating the local averages of I formations x(i) =

x + β0E1(ω(i)) (i = 1, . . . , I) using EMD:

r1 =
〈
M(x(i))

〉
, (i = 1, . . . , I) (1)

In the formula, β0 = ε0 · S(x)/S(E1(ω(i))), and ε0 is the reciprocal of the expected signal-to-noise
ratio between the first additional noise and the analytical signal. S(·) is the operator which can calculate
the standard deviation of the signal.

Step 2. The first mode is calculated at the first stage (k = 1):

d̃1 = x− r1 (2)

Step 3. Calculate the k-th residual (k = 2, . . . , K):

rk =
〈
M(rk−1 + βk−1Ek(ω

(i)))
〉

(3)

βk = ε0 · S(rk) (4)

Step 4. The second mode is defined, where the local average of the formations r1 + β1E2(ω(i)) is
obtained by estimating the second residue. The second mode is

d̃2 = r1 − r2 = r1 −
〈
M(r1 + β1E2(ω

(i)))
〉

(5)

Step 5. Computing the k-th mode
d̃k = rk−1 − rk (6)

Step 6. Return back to Step 3 and prepare for the next k.
The second is Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D).
Recently, decomposition-based multi-objective evolutionary algorithm (MOEA/D) proposed by

Zhang Qingfu et al. [40] has attracted more and more researchers’ interest because of its concise and
effective characteristics, and many theoretical and practical achievements have emerged. The MOEA/D
algorithm is introduced below.

A multi-objective optimization problem (MOP) with M objectives and N decision variables can be
expressed as follows:

Mininize F(x) = (f1(x), f2(x), · · · , fm(x))
Subject to x ∈ Ω

(7)

In the formula, Ω ∈ Rn is decision space, and the decision vector x = {x1, x2, · · · , xn} ∈ Ω is
a candidate solution of MOP. Here, the objective function F(x) : x→ Rm includes M conflicting object
functions with continuous real values f1(x), f2(x), · · · , fm(x), and Ω is described as

Ω= {x ∈ Rn
∣∣∣∣f j(x)≤ 0, j = 1, . . . , m

}
(8)

where Rm represents the target space.
The pareto dominance relation of individuals is as follows: if there are decision vectors U and V,

and satisfy the following two conditions at the same time, we call U dominance V:
(i) If and only if fi(u) ≥ fi(v), for every i ∈ {1, . . . , m}.
(ii) There exists at least one index j ∈ {1, . . . , m}make fi(u) > fi(v).
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In this case V is said to be dominated by U, which can be denoted by u � v, and among � are
dominant relations.

If there is no point x ∈ Ω that makes F(x) dominate F(x∗), the point x∗ ∈ Ω is Pareto optimal. That
is, there is only one best set of compromise solutions called the non-dominated (not dominated by
all other solutions). The value of Pareto optimization solution in decided space and target space is
defined as Pareto solution set (PS) and Pareto frontier (PF).

MOEA/D has strong search ability for continuous optimization, combinatorial optimization and
PS complex problems. The principle of the algorithm is:

If a multi-objective optimal problem similar to Equation (7) and a weight vector λ= (λ1, · · · ,λm
)

are given, and the given weight vector satisfies
∑m

i=1 λ
i = 1, λi

≥ 0, i = 1, 2, . . . , m. MOEA/D based on
Tchebycheff decomposition uses this weight vector to optimize a MOP into several sub-problems by
the following methods.

min
x∈Ω

gtc(x
∣∣∣∣∣λ j, z∗) = min

x∈Ω
max
1≤i≤m

{
λ

j
i

∣∣∣∣fi(x) − z∗i
}

(9)

where z∗ = (z∗1, z∗2, · · · , z∗m) (i.e., z∗i < min
{
fi(x)

∣∣∣x ∈ Ω
}
, 1, 2, . . . , m) is the ideal point, and

λ j= (λ
j
1, · · · ,λ j

m

)T
. By solving multiple sub-problems with different weight vectors in Equation (9),

Pareto optimal solution set with good diversity can be obtained [41].
As is known that gtc is continuous of λ, so if λi is close to λ j, the gtc(x

∣∣∣λi, z∗) solution must close
to the gtc(x

∣∣∣λ j, z∗) solution. Hence, a useful tool of gtc(x
∣∣∣λ j, z∗) optimization is information about gtc

with weight vectors near the λi.
In the algorithm MOEA/D, the population is made up of the optimal solution of the sub-problem

currently found. Each sub-problem maintains a list of neighbors, which preserves sub-problems with
weight vectors similar to the sub-problem. Therefore, under the assumption of continuity, two neighbor
sub-problems should have similar optimal solutions. In each generation of MOEA/D, each sub-problem
is optimized applying only the message of its neighbor sub-problems.

As for each generation t, MOEA/D using the Tchebycheff holds [42]:
(1) A point group x1, · · · , xN

∈ N, in which the xi is the present solution for the i-th sub-problem.
(2) FV1, · · · , FVN, where FVi = F(xi) for each i = 1, . . . , N.
(3) The best value zi for objective fi now and z = (z1, · · · , zm)

T.
(4) An external population (EP), applying to store non-dominated solutions found during

the search.
The pseudo code of MOEA/D is described as follows:
The third is Fuzzy C-Means (FCM) clustering algorithm.
FCM clustering algorithm divides the sample points in the sample space X = {x1, x2, · · · , xn} into c

(c > 1) classes, and the degree of each sample point xi belonging to the k-th (1 ≤ k ≤ c) class is expressed
as uik. The fuzzy clustering of sample space X is represented by fuzzy matrix U = (uik)n×c, and U
satisfies the following conditions: {

uik ∈ [0, 1]∑c
k=1 uik = 1

(10)

The objective function is defined as:

Jm(U, V) =
∑n

i=1

∑c

k=1
um

ik · d
2
ik(xi, vk) (11)

In the formula, V = {v1, · · · , vk, · · · , vc}, vk is the k-th clustering center, d2(xi, vk) is the distance
measurement function between xi and vk, and m is the fuzzy weighted index. In order to get the best
fuzzy c partition of dataset X, the solution (U,V) that makes Jm(U,V) the smallest need to be obtained.
This can be achieved by the following steps [43]:
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Step 1: Initialization. Input dataset {xi, i = 1,2, . . . ,n}, clustering number c, fuzzy weighted index
m(m ∈ R > 1), maximum number of iterations T and threshold ε. The membership matrix U(t) (t = 0,
t is the iteration numbers) is initialized randomly and satisfies the Formula (10).

Algorithm: MOEA/D.

Input:
• MOP-multi-objective optimization problem
• N-the number of the MOEA/D subproblems
• λ1, . . . , λN-a uniform distribution of N weight vectors
• T-the number of the weight vectors in the neighborhood of each weight vector
• max_gen-the maximum number of generations

Output:
• EP-external population

Setup:
• Set EP = ∅
• gen = 0

Step 1: Initialization
• /*Initialize an primary internal population uniformly randomly.*/

P0 = {x1,· · · , xN} and FVi = F(xi)

• /*Initialize z = (z1,· · · , zn)T by a specific problem method. */

• /* Calculate the Euclidean distance between any two weight vectors, and then calculate the closest T
weight vectors to each weight vector.*/

• ∀i = 1, . . . , N, set B(i) = {i1, · · · , iT}

λi1, . . . , λiT represent the T closest weight vectors to λi
Step 2: Updating

• WHILE (t< max_gen) DO

• FOR EACHi = 1, . . . , NDO

/* Genetic operators */
/* Randomly select two indexes k, l from B(i), and then generate a new solution y from xk and xl by using

genetic operators. */

• FOR EACHj = 1, . . . , nDO

/*Update of z.*/
if zj < fj(y), then set zj = fj(y)
END FOR

• FOR EACH index j ∈ B(i) DO

/*Update of neighboring solutions.*/
if gte

(
y
∣∣∣λ j, z

)
≤ gte

(
x j

∣∣∣λ j, z∗
)
, then set xj = y and FVj = F(yj).

END FOR

• /*Update of EP.*/

/*Remove from EP all the vectors dominated by F(y). Add F(y)to EP if no vector in EP dominate F(y). */
END FOR

• t = t+1

END WHILE

• RETURN EP
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Step 2: Update the clustering center and membership matrix.

v(t+1)
k =

∑n
i=1 (u

(t)
ik )

m
xi∑n

i=1 (u
(t)
ik )

m , ∀k (12)

u(t+1)
ik =

[1/d2(xi, v(t+1)
k )]

1/(m−1)

∑c
j=1 [1/d2(xi, v(t+1)

j )]
1/(m−1)

, ∀k,∀i (13)

Step 3: If max
i,k
‖u(t)

ik − u(t+1)
ik ‖ < ε or t > T, the category of xi is signed as zi = arg max

1≤k≤c
(uik).

Otherwise, t = t + 1 and go to step 2.

3. Construction of Power Load Double Prediction System

In this paper, a double forecasting system of power load is established. The double forecasting
system means a forecasting system that integrates point forecasting and interval forecasting.
The relationship between point forecasting and interval forecasting is similar to point estimation and
interval estimation in statistics. The flow of the system we designed is to carry out point prediction first,
get the result of point prediction, then construct a suitable confidence interval according to the result of
point prediction to carry out interval prediction. The forecasting system includes two modules: point
forecasting module and interval forecasting module. The following is the system construction process,
and the system structure is shown in Figure 1.Appl. Sci. 2020, 8, x FOR PEER REVIEW  9 of 35 
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recorded in the upper right, and the methods displayed in the specific model are divided into five parts.
D and E part show the results of point forecasting and interval forecasting, respectively.

3.1. Point Forecasting Module

In this section, we successfully put forward a new type of nonlinear hybrid point forecasting
model, using RBF, ELM, ENN and ARIMA, as well as BP network, MOEA/D algorithm and nonlinear
combination mechanism to achieve high-precision and more stable load point prediction results.
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Considering the good prediction performance of BP network, this paper takes BP network as the
method of nonlinear combination.

The point prediction module of the designed system is composed of four steps. The details are
as follows:

Step 1: Power load data preprocessing.
For the sake of removing the noise and further collect helpful information from the power load

sequence, we use ICEEMDAN technology to disintegrate the original sequence, and rebuild the smooth
time series. Specifically, the original sequence is decomposed into some IMFs. IMFs with higher
frequency are eliminated to filter the time series. Here we remove IMF1, and the remaining IMFs are
rebuilt to get the final series.

Step 2: Single model predicting.
In this study, we first use single models to predict the points to obtain a preliminary impression of

each model. Then the higher prediction accuracy model, RBF, ELM, ENN and ARIMA, are chosen as
member prediction models to build the combination model. RBF, ELM and ENN are used to handle
the non-linear features of load, while ARIMA has a good effect on discerning linear characteristics of
load data. Say concretely, we divide 1488 load data into training set train and testing set test, where
train includes 1152 data and test includes 336 data. The rolling forecasting strategy is employed, which
adopts the original data of the previous five periods to forecast the next period. The input and output
structure of train is shown in Equations (14) and (15). Using the RBF, ELM and ENN which trained by
train to predict the load of the testing set, the prediction sequences predict1, predict2 and predict3 are
obtained, respectively. Similarly, ARIMA is used to obtain the prediction sequence. predicti (i = 1, . . . ,4),
including 336 forecasting values are taken as the input datasets, which are inputted into the BP model.

input1 =


x(1) x(2) · · · x(l)
x(2) x(3) · · · x(l + 1)

...
...

. . .
...

x(n− l) x(n− l + 1) · · · x(n− 1)

 (14)

output1 =


x(l + 1)
x(l + 2)

...
x(n)

 (15)

In the Equations (14) and (15), n is the number of train and l is look-back time lag, and x(k) is the
power load value at time k. For example, take x(1) to x(l) as input and x(l + 1) as output; next, take x(2)
to x(l + 1) as input and x(l + 2) as output, to train the structure of RBF, ELM and ENN. Here, we set l = 5.

Step 3: Nonlinear combination model constructing.
For the sake of obtaining the combination model, a nonlinear decision-making method on the

basis of BP neural network optimized by MOEA/D is proposed to achieve the best result.
Before introducing the nonlinear integration, the linear integration method is first introduced.

Linear integration is to sum up the prediction results by linear weighting the prediction results of n
single prediction models. Suppose yt is the actual value, predictit (i = 1, 2, ..., n) is the prediction result
at time t, and n is the number of prediction models. wi represents the weight of the i-th prediction
model, and

∑n
i=1 wi = 1. Therefore, the final prediction results can be calculated as follows

ŷt =
∑n

i=1
wipredictit, t = 1, 2, . . . , m (16)

Considering the complexity of power load and the characteristic of different single models,
we choose nonlinear weight combination forecasting to compensate for the shortage of linear integration.
In this study, as an important application of nonlinear integration, BP is applied to the integration of
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a single prediction component for final prediction. Specially, BP neural network is a complex nonlinear
black box operation, and a large number of internal nodes in it are connected with each other, which can
be used as an arbitrary function approximation mechanism. We regard the trained BP neural network
as the weight integration of each single model, so this combination weight can also be regarded as
nonlinear integration. However, BP parameters have an important impact on the prediction results
and it is difficult to determine. Therefore, as an advanced swarm intelligence algorithm, MOEA/D is
used to improve BP parameters to improve forecasting performance.

In particular, the predict1, predict2, predict3 and predict4, which contains 336 power load prediction
values obtained from the RBF, ELM, ENN and ARIMA models mentioned in Step 2, are the basic
data of the BP model, where the first 240 values are considered as the training set and the remaining
96 values are taken as the testing set. Then the 96 prediction values obtained by BP are the forecasting
results of our proposed model. It is worth noting that it is difficult to find the weights and thresholds
of neurons in each layer of BP network, so MOEA/D is introduced to search for the best weights and
thresholds of neural network, which solves this problem to a certain extent. The input and output
structure of BP network training is shown in Equations (17) and (18).

input2 =
[

predict1 predict2 predict3 predict4
]

=


x̂1(1) x̂2(1) x̂3(1) x̂4(1)
x̂1(2) x̂2(2) x̂3(2) x̂4(2)

...
...

...
...

x̂1(N) x̂2(N) x̂3(N) x̂4(N)


(17)

output2 =
[

x(1) x(2) · · · x(N)
]T

(18)

In which N is 336, and x̂1(k), x̂2(k), x̂3(k), x̂4(k) is the k-th load value predicted by RBF, ELM, ENN
and ARIMA, respectively. By input and output, the optimized BP neural network can be trained.

Step 4: Power load point prediction.
According to the established nonlinear prediction model, the rolling forecasting technique is applied

for multi-step forecasting, and the final prediction results are obtained. The evaluation index is calculated
by using the prediction result and test, and then the performance of the model is effectively evaluated.

Specially, multi-step forecasting means forecasting multiple load values in the future. A time
index t is the forecast origin and a positive integer l is the forecast horizon. It can be assumed that the
time index t is exactly the time point that we are in, and our target is to obtain the forecasting value
ŷt+l(l ≥ 1). l = 1,2,3 corresponds to 1-step, 2-steps and 3-steps, respectively. Figure 2 shows the data
usage of multi-step forecasting.
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3.2. Interval Forecasting Module

Interval forecasting is obtaining the value interval of future load by certain forecasting methods,
which shows the possible fluctuation range of future load. If accurate load point prediction can
guarantee the daily operation of power grid, then effective interval prediction can further quantify the
uncertainty of power load and provide reliable and accurate load information. The interval forecasting
method of this system is developed according to point prediction, which is an interval prediction
method based on fuzzy system. The principle of the interval forecasting method proposed in this
study is to classify the point forecasting results according to different kinds of load data and construct
different but adaptive intervals. The classification is based on the real load data, and judge which
category the prediction results belong to, and then construct a specific confidence interval for this
category, so as to get the predicted load interval. The three steps of interval forecasting module are
shown as:

Step 1: Data classification.
The training set train of load data is clustered into several classes by FCM clustering method.

Assume that the data in each category follows the same normal distribution. Therefore, we can get
some interval classes F1, F2, · · · , Fk. The mean value and variance of each category are calculated
respectively to prepare for the interval construction next.

Step 2: Load interval estimation.
The confidence degree of each category interval is 95%. According to the mean and variance of

each category data, the corresponding confidence interval is constructed. Different categories have
different width of unified prediction interval. This process of constructing different adaptive intervals
according to different data characteristics is also one of the innovations of this model. According to the
testing set test point prediction results in the point prediction module, identify the category F that each
prediction value falls into. Then, according to the constructed confidence interval of each category, the
prediction interval of each prediction value is calculated as:

[xi − z1−α/2
s j
√n j

, xi + z1−α/2
s j
√n j

] (19)

where xi is point prediction value, j is the category number of xi, sj is standard deviation of category j,
nj is the data number of category j.

Step 3: Sorting out the prediction results.
According to the prediction interval of the above points, the final interval estimation of the power

load is obtained.

4. Experiments and Analysis

This section introduces the application of the double forecast model and several comparison models,
and divides the comparison into three experimental demonstrations. The operating environment of
the experiment is: 2.60 GHz CPU, 4.00 GB RAM, Windows 7 and Matlab R2016A. Considering the
random factors, to guarantee the reliability of the final results, 20 experiments are carried out each
time, and the average value is taken, respectively.

4.1. Dataset Description

From July 1, 2019 to July 31, 2019, power load data were collected from New South Wales,
Queensland, South Australia and Tasmania, including four weeks of power load data in this paper.
Electricity demand is collected every 30 min, with a total of 1488 data points and 48 data points per day.
Among them, the data from July 1, 2019 to July 27, 2019 were chosen as training set of selected model,
27 days in total, including 1296 data points; the data from July 28, 2019 to July 31, 2019 were used as
testing set, 4 days in total, including 192 data points. At the same time, the last three days data are
used to decide the network structure of BP model. Training set and testing set select identical rolling
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forecasting technique and output one-step, two-step and three-step prediction results. The power load
data from July 1, 2019 to July 31, 2019 and its statistical indicators which are minimum, maximum,
mean and std., are shown in Table 2. The distribution condition of areas and dataset are presented in
Figure 3.

Table 2. Structure of four selected datasets in Australia.

Site Samples Numbers
Statistical Indicator

Mean Std. Max Min

Site 1
All samples 1488 8568.51 1124.32 11379.76 6372.63

Training 1296 8556.83 1114.88 11379.76 6372.63
Testing 192 8647.37 1186.12 11107.04 6697.94

Site 2
All samples 1488 5935.55 738.00 7884.64 4318.74

Training 1296 5954.18 737.86 7884.64 4318.74
Testing 192 5809.81 728.39 7337.13 4707.27

Site 3
All samples 1488 1395.97 296.05 2229.02 611.41

Training 1296 1379.04 292.24 2178.39 611.41
Testing 192 1510.24 297.05 2229.02 997.92

Site 4
All samples 1488 1231.81 138.65 1628.73 910.65

Training 1296 1223.45 135.83 1611.11 910.65
Testing 192 1288.19 144.56 1628.73 987.02

Power load of New South Wales, Queensland, South Australia and Tasmania from 1 July to 31 July 2019.
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Figure 3. Description of observations in four sites. On the upper part is the geographic location
obtained by data points. The lower part of the graph shows the divide method of training set and
testing set.

As shown in the Table 2, the statistics of all samples, training sets and testing sets of three
sites are similar. The data set is reasonable and can be chosen to testify the supreme ability of the
proposed model.
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4.2. System Evaluation

The evaluation indexes of the designed double prediction system are introduced, including
5 indexes of point prediction and 4 indexes of interval prediction.

4.2.1. Point Forecasting Evaluation

Generally speaking, the evaluation criteria are not unique for the prediction system. Hence,
this paper uses five common evaluation standards to assess the point forecasting performance of the
proposed model and other comparative models. The five indexes include mean absolute percentage
error (MAPE), root mean square error (RMSE), mean absolute error (MAE), direction change (DC) and
the index of agreement of forecasting results (IA). Among these indexes, the smaller the values of
MAPE, RMSE and MAE, the larger the values of DC and IA, the better the prediction performance. See
Table 3 for details of the four indicators.

Table 3. Point forecasting evaluation metrics.

Indicator Definition Equation

MAPE Mean Absolute Percentage Error MAPE = 1
N

N∑
i=1

∣∣∣∣ yi−ŷi
yi

∣∣∣∣ · 100%

MAE Mean Absolute Error MAE = 1
N

N∑
i=1

∣∣∣yi − ŷi
∣∣∣

RMSE Root Mean Square Error RMSE =

√
1
N ·

N∑
i=1

(yi − ŷi)
2

DC Directional Change DC = 100
N−1

N−1∑
t=1

at

IA Index of agreement
IA = 1−∑N

i=1 (yi − ŷi)
2/

∑N
i=1 (

∣∣∣ŷi − y
∣∣∣−∣∣∣yi − y

∣∣∣) 2

Among the formula, yi and ŷi is the true and predicted value. N represents the testing set number. In addition, ai is

the directional factor, and is calculated as at =

0, otherwise
1, i f ((y(t + 1) − y(t))(ŷ(t + 1) − y(t))) > 0

.

4.2.2. Interval Forecasting Evaluation

For interval prediction, we select four evaluation indexes, which are forecasting interval coverage
probability (FICP), forecasting interval normalized average width (FINAW), mean width of the
constructed PIs (MPI) and Accumulated width deviation (AWD). Table 4 shows the specific definitions
of four indices.

Table 4. Interval prediction evaluation metrics.

Indicator Definition Equation

FICP Forecasting interval coverage probability FICP = 1
N

N∑
i=1

ci × 100%

FINAW Forecasting interval normalized average width FINAW = 1
N

N∑
i=1

Ui−Li
ymax−ymin

× 100%

MPI Mean width of the constructed PIs MPI = 1
N

N∑
i=1
|Ui − Li|

AWD Accumulated width deviation AWD = 1
N

N∑
i=1

AWDi

Among the formula, Ui and Li represent the upper limit and lower limit of forecasting interval, respectively. ci is the
number of the truth value contained in constructed interval. N represents the testing set number. ymax and ymin are
the maximum and minimum of the targets in the whole prediction process. In addition, the calculation expression

of AWDi is AWD = 1
N

N∑
i=1

AWDi, and AWDi is the width deviation of construction interval of each sample.

Specifically, FICP is the forecasting interval coverage probability of the test data set, which is the
main evaluation index of interval prediction. It indicates the coverage effect of the obtained confidence
interval to the actual value. Given the confidence level, if FICP is at least greater than or equal to
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1-alpha, the constructed interval is valid; otherwise, the constructed interval is invalid. FINAW is the
normalized average width of the forecasting interval of the testing set. The cost of reducing the width
is diminishing the possibility of expected target covering; increasing the coverage requires increasing
the width of the interval, so FICP and FINAW are essentially contradictory. MPI represents the average
width of the obtained interval. AWD is the accumulated width deviation of testing dataset, which
could be obtained by calculating the relative deviation degree. The cumulative sum of AWDi can
measure the relative deviation degree. See Table 4 for the specific description of the formula.

4.3. Diebold-Mariano Test

To verify the designed hybrid model owns better forecasting ability than compared models,
an effective verification method called Diebold-Mariano (DM) test proposed by Diebold FX and
Mariano RS is adopted. The theory of DM test is introduced first.

Considering the significance level α, zero hypothesis H0 indicates the predictive effectiveness of
the developed model and the comparison model are not significantly different. The meaning of H1 is
contrasted with H0. The relevant formulas are shown as:

H0 : E[L(err1
i )] = E[L(err2

i )] (20)

H1 : E[L(err1
i )] , E[L(err2

i )] (21)

In the formula, L represents the loss function of prediction error. erri
1 and erri

2 are the error
sequence predicted by selected model.

In addition, the statistics of DM test can be defined in the following ways:

DM =

∑n
i=1 (L(err1

i ) − L(err2
i ))√

S2/n
s2 (22)

in which S2 is the estimate of the variance of di = L(err1
i ) − L(err2

i ). Assuming a certain significance
level α, the obtained value DM is in comparison with that of zα/2. Once DM statistics exceed the interval
[−zα/2,zα/2], H0 can be rejected. This shows the predictive performance of the established model and
that of the comparative model are significantly different, which means that H1 will be accepted.

4.4. Results and Analysis of Point Forecasting

To testify the performance of the point prediction module, two experiments are conducted in this
part: experiment I and experiment II. The main purpose of experiment I is to prove the good ability of
the nonlinear combination model in the point forecasting, so as to reasonably verify the superiority
of the proposed model. In addition, experiment I proves the necessity of data preprocessing. In the
same way, to prove the rationality and superiority of the ICEEMDAN technology selected in this work,
it is compared with other commonly used data preprocessing technology, and this is the content of
experiment II. The detailed analysis of each experiment is as follows.

4.4.1. Experiment I: Comparison with Individual Models

In this work, all experimental datasets are trialed to assess the effectiveness of the point prediction
module, while three comparisons are designed. In comparison (a), the proposed model is compared
with the four data preprocessed models, ICEEMDAN-RBF, ICEEMDAN-ELM, ICEEMDAN-ENN and
ICEEMDAN-ARIMA, in order to analyze the advantages of the combination model using the nonlinear
combination method. In comparison (b), four ICEEMDAN-based models are compared with single
models RBF, ELM, ENN and ARIMA, respectively. In comparison (c), the effectiveness of the designed
forecasting model is further tested by using the traditional model SVR and Generalized Regression
Neural Network (GRNN) as comparison methods. The predicted results are displayed in Table 5 and
Figure 4, and the comparison consequences are as follows.
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Table 5. Abilities of the established model and single models.

Site Model
One-Step Two-Step Three-step

MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC

Site 1

SVR 1.9099 156.7013 187.9195 0.9944 0.8220 2.5219 210.3356 258.5180 0.9894 0.7474 3.0868 262.8112 341.3188 0.9817 0.6614
GRNN 1.2373 107.3457 140.2939 0.9964 0.9215 2.1193 183.9606 244.3408 0.9885 0.8632 3.1821 276.0676 368.4048 0.9727 0.7778

RBF 1.3330 120.0048 162.0430 0.9951 0.9058 2.5730 227.8929 303.8217 0.9819 0.8053 5.7891 518.6760 671.9120 0.8625 0.6143
ELM 0.8640 75.3729 101.7329 0.9981 0.9476 2.8427 246.4113 327.8275 0.9733 0.8304 6.0739 518.3696 663.3588 0.9629 0.7570
ENN 0.9387 81.4666 108.1564 0.9979 0.9476 2.1680 188.5787 247.6781 0.9886 0.8053 3.4611 299.2232 375.4925 0.9727 0.6614

ARIMA 1.2105 103.8960 137.7456 0.9965 0.9058 2.5009 224.8970 300.2767 0.9839 0.7526 2.4838 223.0066 292.3059 0.9847 0.7672
ICEEMDAN-RBF 0.7367 65.4730 94.1611 0.9984 0.9476 2.2596 198.6571 278.7425 0.9862 0.8368 5.2163 471.4579 1091.9532 0.8148 0.7937
ICEEMDAN-ELM 0.8543 74.4721 98.4847 0.9983 0.9424 2.7422 239.9533 319.7560 0.9810 0.7579 5.6887 494.3489 636.1800 0.9215 0.6190
ICEEMDAN-ENN 0.9216 81.0992 105.1646 0.9980 0.9319 1.8371 159.6742 204.5202 0.9923 0.8579 3.0383 261.0713 330.9170 0.9788 0.6984

ICEEMDAN-ARIMA 1.0649 94.4410 123.4999 0.9973 0.9267 2.3297 209.7987 281.9299 0.9857 0.7895 2.3985 215.6049 282.7638 0.9856 0.7831
Proposed Model 0.6577 56.7791 80.1018 0.9988 0.9372 1.6540 143.5974 192.1716 0.9932 0.8474 1.7361 151.6523 200.2943 0.9926 0.8730

Site 2

SVR 3.6548 212.2143 250.9721 0.9780 0.6754 3.8775 228.6832 273.7403 0.9737 0.6368 3.5513 208.0377 261.8331 0.9734 0.6085
GRNN 1.5213 86.3305 117.6754 0.9932 0.8377 2.3967 135.6083 189.3953 0.9822 0.6947 3.3451 188.7230 274.1698 0.9618 0.6508

RBF 0.9823 58.2252 76.4982 0.9973 0.9058 3.3178 195.5145 263.8302 0.9576 0.7862 7.1590 416.3507 603.8911 0.6753 0.4778
ELM 0.9063 53.5149 68.9417 0.9977 0.9058 2.9227 170.9014 228.5369 0.9705 0.8253 6.0964 353.5843 484.5720 0.8766 0.6571
ENN 1.0283 60.5118 80.1060 0.9969 0.9267 2.1192 125.0372 168.7274 0.9863 0.8053 3.5815 209.5433 279.5027 0.9611 0.6667

ARIMA 2.2121 125.7167 146.7645 0.9901 0.7487 2.4574 146.4694 189.3542 0.9830 0.7368 2.4456 146.0298 189.5241 0.9830 0.7407
ICEEMDAN-RBF 0.9729 57.3546 80.5129 0.9969 0.8901 3.1682 185.6588 279.8124 0.9639 0.7263 7.2699 412.7709 950.5817 0.6926 0.5661
ICEEMDAN-ELM 0.8875 52.5323 66.6224 0.9979 0.9110 2.8790 169.0021 227.7103 0.9755 0.7368 5.8342 340.6032 450.3827 0.9043 0.6349
ICEEMDAN-ENN 0.9815 58.7002 77.6269 0.9971 0.9005 1.9832 115.6628 155.7612 0.9882 0.8526 3.1668 183.2636 247.5578 0.9692 0.7354

ICEEMDAN-ARIMA 1.0105 60.3096 79.7003 0.9970 0.8848 2.3534 139.8655 181.7611 0.9842 0.7737 2.3018 136.8617 181.2463 0.9843 0.7672
Proposed Model 0.7373 43.3423 55.6332 0.9985 0.9319 1.8561 110.1146 146.8969 0.9893 0.8000 1.8413 109.4865 144.4127 0.9897 0.8307

Site 3

SVR 18.1694 250.6877 267.6887 0.8619 0.5759 16.2465 226.7004 250.1855 0.8711 0.5842 14.4738 204.6135 234.3931 0.8790 0.5503
GRNN 3.4558 53.6071 71.4746 0.9838 0.7330 5.9445 93.0097 121.8883 0.9503 0.5368 8.4107 133.1739 176.0579 0.8896 0.4709

RBF 4.7792 72.5550 105.3551 0.9017 0.7671 15.8938 241.5826 305.6250 0.8735 0.5163 18.0374 270.8042 333.5527 0.8372 0.3619
ELM 2.5036 38.1800 53.4851 0.9917 0.8482 4.5972 69.6088 90.9124 0.9746 0.5895 6.8086 102.6562 132.6552 0.9411 0.4233
ENN 2.5906 39.5491 54.8027 0.9912 0.8168 5.2533 80.6505 109.2907 0.9626 0.5684 8.0953 123.4767 165.8262 0.9066 0.4550

ARIMA 3.3119 50.7776 66.8833 0.9860 0.7539 4.6843 69.4605 98.5552 0.9721 0.6947 4.6833 69.4314 98.7034 0.9722 0.6984
ICEEMDAN-RBF 4.1722 70.1981 187.8232 0.9075 0.8010 15.8023 220.4719 256.5942 0.8629 0.5947 16.2465 226.7004 250.1855 0.8711 0.5842
ICEEMDAN-ELM 2.2105 33.5601 51.5923 0.9922 0.8848 7.0790 108.0376 149.7840 0.9297 0.4737 12.7588 193.4990 266.7974 0.7656 0.4233
ICEEMDAN-ENN 2.4307 37.2182 53.8956 0.9914 0.8272 4.9206 75.8476 99.2984 0.9693 0.5632 7.2839 112.3960 147.7066 0.9259 0.4233

ICEEMDAN-ARIMA 2.4481 36.6852 53.6428 0.9917 0.8482 4.4250 66.3791 90.2881 0.9760 0.6895 4.4222 66.5045 90.6995 0.9759 0.6931
Proposed Model 2.0714 30.9618 44.2547 0.9945 0.8691 3.6063 54.3514 75.7387 0.9828 0.7474 3.7028 54.7373 72.0933 0.9847 0.7720

Site 4

SVR 3.9387 49.3677 54.0031 0.9679 0.6440 5.4554 70.1198 78.7384 0.9284 0.5789 4.4034 56.5173 70.1077 0.9426 0.6296
GRNN 1.6749 22.1333 30.1784 0.9881 0.8482 2.6568 35.3348 47.6012 0.9683 0.6895 3.6258 48.2613 63.0378 0.9402 0.6243

RBF 2.7267 168.5272 237.3737 0.9866 0.7898 4.9468 289.4248 391.8644 0.9526 0.7295 9.3387 429.3665 579.0957 0.9044 0.6844
ELM 1.4988 19.6842 26.1392 0.9919 0.8264 4.1464 55.3052 77.8929 0.9656 0.7295 8.0347 107.8908 151.7349 0.9279 0.6481
ENN 1.5777 20.7727 27.2960 0.9908 0.8220 3.0841 41.0474 56.3762 0.9578 0.6526 4.6071 61.4170 83.6801 0.8986 0.6138

ARIMA 1.7759 23.5059 31.3690 0.9873 0.8063 2.7463 36.2074 48.6230 0.9715 0.7105 2.7533 36.3150 48.6865 0.9714 0.7143



Appl. Sci. 2020, 10, 1550 16 of 32

Table 5. Cont.

Site Model
One-Step Two-Step Three-step

MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC

Site 4

ICEEMDAN-RBF 2.5025 208.7714 257.0299 0.9895 0.7474 4.7572 285.1412 335.2767 0.9597 0.5579 8.9365 489.6447 531.0756 0.9060 0.5947
ICEEMDAN-ELM 1.3761 18.0908 23.9922 0.9927 0.8429 4.1208 54.6678 72.7303 0.9247 0.6526 7.4296 98.1502 129.9749 0.7542 0.6032
ICEEMDAN-ENN 1.5181 20.0772 27.7423 0.9904 0.8168 2.6237 34.9796 47.8112 0.9694 0.7000 3.7543 50.2631 68.4913 0.9304 0.6296

ICEEMDAN-ARIMA 1.4191 18.5971 24.4587 0.9927 0.8115 2.5278 33.4552 46.0766 0.9740 0.6947 2.5401 33.6274 46.1556 0.9739 0.6931
Proposed Model 1.3288 17.3109 22.2651 0.9939 0.8325 2.1116 27.1452 35.1427 0.9845 0.7474 2.2401 29.2987 39.5900 0.9806 0.7249

1 
 

 

 Figure 4. The multi-step prediction ability of all models in Experiment I for site 1. The center of the picture is a one-step prediction time series figure. Around it are the
error diagrams of eight comparison models and the proposed model.
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(1) For comparison (a), the developed hybrid nonlinear model has the best ability in one to three
step load forecast in four datasets, whose error index was superior to other models. For instance,
in one-step forecasting, the MAPE of the established model is about 0.6577%, 0.7373%, 2.0714% and
1.3288%, while the prediction accuracy of the other ICEEMDAN-based model is 0.1% to 2% lower than
that of the established model. For the two and three step prediction, the proposed model is also better
than other models in four sites.

(2) For comparison (b), comparing ICEEMDAN-ENN and ICEEMDAN-ARIMA models with
ARIMA and ENN without data preprocessing, it can be found that data preprocessing is very important
to enhance the ability of load forecasting. For site 1, the MAPE of ENN and ARIMA are higher than that
of ICEEMDAN-ENN and ICEEMDAN-ARIMA in one, two and three step prediction. The accuracy of
ICEEMDAN-RBF and ICEEMDAN-ELM which are not shown in the table are also improved. For site
2, site 3 and site 4, and Figure 4, the situation is similar.

(3) For comparison (c), it can be seen from five indexes MAPE, MAE, RMSE, IA and DC of Table 5,
the proposed model is more accurate than other individual models, such as SVR and GRNN. In addition
to the proposed hybrid prediction model, the single model with high prediction accuracy is ARIMA
and ENN. Therefore, we choose ARIMA and ENN as the model used in combination models, and the
same circumstance as RBF. ARIMA is a linear model, therefore it can show that the power load data has
certain linear characteristics, so it is a wise choice to take ARIMA into account in the proposed model.
Additionally, although the prediction accuracy of BP is not shown, the experimental results show that
it has relatively good prediction effect, so BP is selected as the model used in nonlinear combination.

4.4.2. Experiment II: Tests of Data Preprocessing Methods

This experiment is aiming at comparing the effectiveness of ICEEMDAN selected in this system
with other common data preprocessing methods, which includes EMD, EEMD, CEEMD, SSA and
WD. Therefore, the point forecasting models on the basis of different data preprocessing methods
are EMD-based model, EEMD-based model, CEEMD-based model, SSA-based model and WD-based
model. These models only use different decomposition method in the data preprocessing stage.
Through the experiment, we can test whether the proposed prediction model is reasonable, and can
also find the best method to remove the noises to improve the prediction effectiveness.

The results obtained by models using different data preprocessing approaches are shown in
Table 6. Figure 5 shows a clearer and more intuitive comparison. The conclusion can be drawn that
the model on the basis of the ICEEMDAN decomposition technology has much better performance
than other decomposition based prediction models. Say concretely, for site 2, the MAPE value of
ICEEMDAN-based proposed model is 0.7373%, 1.8561% and 1.8413% for three steps, which is 0.1 to
4 percentage points higher than that of EMD-based model, EEMD-based model, CEEMD-based model,
SSA-based model and WD-based model. Of all the benchmark models, EMD-based model is the worst.
Compared with other models, the MAE, RMSE, IA and DC of the one to three step prediction of the
developed model are also improved to different extent, which further shows the superiority of the data
preprocessing method selected by this hybrid model.

Remark 2. Experiment I and experiment II focus on proving the advantages of the proposed point forecast
module, and the results show that the designed point forecasting model is a very promising power load forecasting
method. It can also prove that the combination of data preprocessing technology, optimization algorithm and
nonlinear combined method could successfully solve the difficulties of load prediction through appropriate
prediction methods.
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Table 6. The models with different data preprocessing techniques.

Site Model
One-Step Two-Step Three-Step

MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC MAPE MAE RMSE IA DC

Site 1

EMD-based model 7.9921 703.2179 848.0034 0.7983 0.5916 8.0933 697.2798 827.3683 0.8112 0.5789 7.9109 691.9289 832.9187 0.8117 0.6190
EEMD-based model 6.4768 550.6402 680.4857 0.8925 0.6178 7.0479 612.2662 730.6838 0.8657 0.6158 5.2011 459.5873 598.1909 0.9248 0.6561

CEEMD-based model 2.0549 176.5654 227.7546 0.9904 0.8063 2.0285 175.3443 224.9582 0.9908 0.8211 2.1103 180.5625 228.8269 0.9901 0.7989
SSA-based model 1.9070 168.8455 234.2489 0.9897 0.8586 1.9845 173.4462 231.2932 0.9901 0.8474 1.9283 168.1976 228.0082 0.9905 0.8677
WD-based model 0.6582 57.0884 77.9511 0.9989 0.9529 1.7329 97.4880 132.7305 0.9968 0.9105 1.7491 152.1173 195.5254 0.9931 0.7989
Proposed Model 0.6577 56.7791 80.1018 0.9988 0.9372 1.6540 143.5974 192.1716 0.9932 0.8474 1.7361 151.6523 200.2943 0.9926 0.8730

Site 2

EMD-based model 5.3342 320.8286 436.0318 0.8792 0.6754 5.2566 317.6441 426.5115 0.8853 0.7368 5.8824 356.6128 504.2290 0.8231 0.6984
EEMD-based model 2.3126 133.3762 166.1339 0.9865 0.7435 2.1817 125.8414 255.6755 0.9881 0.7158 3.1988 127.6659 204.1506 0.9669 0.7302

CEEMD-based model 1.5685 91.9520 121.0101 0.9930 0.8586 1.9680 122.0495 168.2834 0.9634 0.7968 2.5498 110.6276 159.9772 0.9730 0.7930
SSA-based model 1.5960 93.8540 115.7924 0.9935 0.8063 1.9178 120.0527 167.5894 0.9763 0.8263 2.5884 112.8322 154.9322 0.9737 0.7824
WD-based model 0.7946 46.7711 60.5276 0.9983 0.9110 1.9386 116.6306 157.2216 0.9834 0.8042 3.2482 132.8212 172.4281 0.9858 0.7302
Proposed Model 0.7373 43.3423 55.6332 0.9985 0.9319 1.8561 110.1146 146.8969 0.9893 0.8000 1.8413 109.4865 144.4127 0.9897 0.8307

Site 3

EMD-based model 5.4613 85.9224 119.7561 0.9536 0.7382 5.1310 80.7809 107.1774 0.9643 0.7000 5.6913 89.9809 123.2727 0.9491 0.6931
EEMD-based model 3.7079 55.8826 76.5499 0.9822 0.7906 4.0544 61.4638 79.3819 0.9809 0.7632 4.8349 76.8613 109.7442 0.9626 0.7037

CEEMD-based model 3.9913 63.7212 106.0344 0.9649 0.8168 4.4234 69.8325 108.0533 0.9635 0.7632 4.6505 73.2335 109.6005 0.9625 0.7513
SSA-based model 3.8344 57.2709 71.3412 0.9850 0.7749 4.1258 46.8649 59.0353 0.9898 0.8368 4.2619 59.1854 73.7429 0.9801 0.7989
WD-based model 2.2001 33.1241 44.2224 0.9943 0.8743 4.4882 68.5368 93.9026 0.9730 0.6263 3.9055 58.9593 79.1266 0.9849 0.7460
Proposed Model 2.0714 30.9618 44.2547 0.9945 0.8691 3.6063 54.3514 75.7387 0.9828 0.7474 3.7028 54.7373 72.0933 0.9847 0.7720

Site 4

EMD-based model 3.0164 164.0450 197.0500 0.9864 0.6649 2.4541 135.9545 177.9912 0.9885 0.6947 2.8497 158.4661 196.5824 0.9853 0.6825
EEMD-based model 2.0505 112.7215 145.8150 0.9923 0.7853 2.3454 127.9509 166.0814 0.9897 0.7842 2.3412 126.2956 169.4155 0.9893 0.7725

CEEMD-based model 1.4065 55.9504 77.3350 0.9978 0.9005 2.2781 125.7992 159.2066 0.9908 0.7368 2.3741 130.5010 164.7806 0.9901 0.6984
SSA-based model 2.9273 158.8158 203.4684 0.9843 0.7487 2.5953 140.1998 191.1280 0.9863 0.7684 2.4590 136.6107 176.6479 0.9888 0.7143
WD-based model 1.3885 18.2316 25.0351 0.9921 0.8377 2.1772 28.6344 38.9430 0.9805 0.7263 2.5671 30.6863 40.0557 0.9715 0.7072
Proposed Model 1.3288 17.3109 22.2651 0.9939 0.8325 2.1116 27.1452 35.1427 0.9845 0.7474 2.2401 29.2987 39.5900 0.9806 0.7249
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4.5. Results and Analysis of Interval Prediction (Experiment III)

Base on the point power load forecasting, the probability interval forecasting could show more
load information. In this part, we develop a method based on fuzzy clustering, which carries out
interval forecasting on the basis of point forecasting. In addition, four datasets are applied in this
experiment. To verifying the ability of the designed interval forecast module, we use the all the
compared model of point prediction, and also use multi-step prediction to verify the interval predicted
results. The results of the interval predicted model and other models are shown in Table 7. Due to the
limited space, we only display the results of site 2 and site 3. We set the confidence interval to 90% to
assess the effectiveness of the interval predicted model.

(1) For site 2, the best values of all indexes in all models are obtained by the proposed prediction
model. For proposed model, the coverage probability of forecasting interval (FICP) is 98.96% in
one-step, 79.06% in two-step and 78.95% in three-step. The average width of the interval is 356.9044,
333.2484 and 355.3731 in three steps according to MPI. Compared with the absolute value of power
load, the interval width obtained is relatively accurate. AWD is 0.0002, 0.0587 and 0.0554 for three
steps, shows the deviation degree of the constructed interval is small. All indexes reflect that the
predicted interval of proposed model is qualified. In contrast, for the FICP of single prediction model,
none of the predictions is better than proposed model. Although the ICEEMDAN-ELM has the same
value of FICP as proposed model in one-step, it is largely lower than two and three-step.

(2) By combining FINAW with FICP, for the proposed model, when the FICP value is very high,
FINAW is relatively small, which also shows the superiority of the developed model. In the one and
two step forecast, the AWD of most other benchmark models is more than ten times of the developed
model in one-step, and they are much larger in two and three step. This reflects the less deviation of
the developed model. These four indexes fully reflect the superior forecasting ability of the developed
model. The same conclusion can be drawn for site 3 in Table 7.
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Table 7. The designed model comparing with all other models for site 2 and site 3.

Site Model
One-Step Two-Step Three-step

FICP FINAW AWD MPI FICP FINAW AWD MPI FICP FINAW AWD MPI

Site 2

SVR 0.5573 0.1383 0.1098 482.5648 0.5340 0.1327 0.1310 483.8663 0.6053 0.1313 0.1340 443.8932
GRNN 0.8021 0.1288 0.0468 331.0903 0.6230 0.1270 0.1767 315.3002 0.5316 0.1246 0.2991 297.3550
ENN 0.9479 0.1348 0.0055 363.8898 0.7592 0.1322 0.0725 366.4838 0.5421 0.1253 0.2361 339.8606

ARIMA 0.9531 0.1314 0.0034 355.7632 0.6859 0.1297 0.0730 388.3355 0.7158 0.1283 0.0820 384.4358

ICEEMDAN-RBF 0.9635 0.1296 0.0076 366.6068 0.6806 0.1257 0.1734 441.8282 0.5632 0.1008 0.3972 1005.4671
ICEEMDAN-ELM 0.9896 0.1354 0.0005 364.4663 0.5916 0.1275 0.1506 407.4373 0.4526 0.1372 0.3171 520.7903
ICEEMDAN-ENN 0.9740 0.1344 0.0035 355.5277 0.7330 0.1285 0.0844 351.9259 0.4737 0.1223 0.2831 339.3854

ICEEMDAN-ARIMA 0.9583 0.1309 0.0037 354.3802 0.6649 0.1264 0.1009 387.4235 0.6842 0.1271 0.1005 389.6756

EMD-based model 0.3750 0.1273 0.9095 281.9169 0.3560 0.1293 0.5799 269.8817 0.4053 0.1166 2.2804 300.4038
EEMD-based model 0.6302 0.1301 0.1391 311.3577 0.6702 0.1294 0.1106 343.8937 0.7263 0.1397 0.1007 345.9396

CEEMD-based model 0.8438 0.1388 0.0371 362.4171 0.8325 0.1355 0.0333 347.8779 0.8368 0.1382 0.0364 350.5409
SSA-based model 0.8542 0.1377 0.0572 345.7467 0.8272 0.1368 0.0324 355.3823 0.8474 0.1396 0.0250 355.5278
WD-based model 0.9844 0.1329 0.0002 349.5355 0.8220 0.1282 0.0344 342.3839 0.6632 0.1319 0.1068 333.2383
Proposed Model 0.9896 0.1305 0.0002 356.9044 0.7906 0.1246 0.0587 333.2484 0.7895 0.1269 0.0554 355.3731

Site 3

SVR 0.1302 0.1320 1.0036 209.5036 0.1728 0.1296 0.9299 200.2102 0.2316 0.1361 0.7603 207.3294
GRNN 0.6979 0.1327 0.0908 145.7429 0.4921 0.1355 0.3627 149.0968 0.3632 0.1349 0.7105 138.6840
ENN 0.8490 0.1342 0.0582 169.3976 0.5654 0.1333 0.2129 163.6830 0.4632 0.1268 0.4586 155.3926

ARIMA 0.8698 0.1389 0.0386 175.0206 0.6649 0.1272 0.1579 170.7487 0.6737 0.1251 0.1720 166.9475

ICEEMDAN-RBF 0.8490 0.1094 0.1037 297.0992 0.7016 0.0004 0.1732 359.6531 0.6421 0.0010 0.3749 819.3448
ICEEMDAN-ELM 0.9010 0.1368 0.0475 163.6025 0.4712 0.1354 0.3762 161.3793 0.2842 0.1214 0.8042 181.5007
ICEEMDAN-ENN 0.8542 0.1298 0.0509 158.8348 0.5654 0.1290 0.2501 154.3947 0.4316 0.1343 0.5467 154.2944

ICEEMDAN-ARIMA 0.8646 0.1383 0.0397 174.3103 0.7173 0.1319 0.1549 177.1593 0.7105 0.1330 0.1534 178.5047

EMD-based model 0.5260 0.1354 0.2949 151.7276 0.5445 0.1436 0.2268 151.7952 0.5474 0.1390 0.2904 147.9657
EEMD-based model 0.7448 0.1335 0.1169 158.3364 0.7068 0.1319 0.1259 146.1860 0.5842 0.1314 0.2563 137.7404

CEEMD-based model 0.7396 0.1379 0.2067 150.0418 0.6963 0.1344 0.1944 156.7498 0.6632 0.1249 0.2152 149.5520
SSA-based model 0.6458 0.1339 0.1313 145.7313 0.6806 0.1428 0.0744 158.4497 0.7211 0.1398 0.0708 159.1189
WD-based model 0.9271 0.1338 0.0182 160.7955 0.6230 0.1337 0.1790 141.4222 0.7526 0.1250 0.1136 160.1570
Proposed Model 0.9375 0.1319 0.0171 163.1146 0.6963 0.1304 0.1033 143.1301 0.7053 0.1300 0.1055 154.2024
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(3) At the same time, in order to intuitive show the comparison results, the results of the designed
model and comparison models are pictured in Figure 6. The conclusions are consistent with Table 7,
providing intuitive evidence for verifying the superior ability of the proposed system in the load
interval forecasting. As shown in Figure 6, compared with other models, the proposed model has more
accuracy interval forecast results. Obviously, the prediction range not only covers most of the load
values, but also is narrowest among all models. This shows that the designed model is more stable
than others. As a result, the designed model has greater advantages for three experimental datasets.

 

2 

 

Figure 6. The final interval results of some models in multi-step forecasting in Experiment III for site
3. The figure shows the interval forecast results of the proposed model, singular spectrum analysis
(SSA)-based model, Improved Complete Ensemble Empirical Mode Decomposition (ICEEMDAN)-
Autoregressive Integrated Moving Average (ARIMA) model and Generalized Regression Neural
Network (GRNN) single model, respectively. In addition, the figure shows the relationship between
the interval forecasting band and the real value.

Remark 1. The same as the comparison model used in point forecast, 13 different competition models based on
four datasets and multi-step interval forecast are compared. The results show the designed interval model is
better than all the comparison models. Due to the excellent ability of the designed interval prediction module
based on fuzzy clustering, it is a very promising interval prediction method of power load.

5. Discussions

For the sake of discussing the experiment conclusions in detail and reduce the error of power load
forecasting, the validity of the established model, the combination mechanism of combination model
and the practical application in the power system are discussed.
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5.1. DM Test

The validity of the model is verified by DM test by all other models comparing with the proposed
hybrid forecasting model. Based on DM test theory, the zero hypothesis is that the prediction results
of both models is no significant difference, while the alternative hypothesis is contrast. We chose
two scales with alpha of 0.1 and 0.05 as the criteria to judge the significance of the results, among
which Z0.05/2 = 1.96 and Z0.1/2 = 1.645. Table 8 displays the DM statistics result and averages for the
four datasets.

It can be seen that most of the DM test values calculated by the developed model and the above
comparison model are larger than the upper limit of 5% significance level. However, for some results
of ICEEMDAN-RBF, ICEEMDAN-ARIMA and CEEMD-based model as well as WD-based model,
the results do not show significant differences with the proposed model. Therefore, it can be considered
to reject the zero hypothesis at the level of 10% significance. For example, the DM test statistic of
ICEEMDAN-ARIMA model in site 4 is 1.7554 for one-step, which is not significantly differ from the
developed model at 5% significance level, but significantly differ from the developed model at 10%
significance level. At the 10% level of significance, almost all the distinctions between the designed
model and the benchmark model are significant. There are a few models whose results indicate that the
difference between the compared model and the proposed model are not significant, but the indicators
such as MAPE show that the proposed model still own the best ability. Therefore, it can be proved that
the designed hybrid double forecasting model is preferable to other models.
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Table 8. Statistics value of DM test for experimented models.

Model
Site 1 Site 2 Site 3 Site 4 Average

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

SVR 10.2421 3.7990 5.4450 12.0094 7.7489 6.6256 20.2303 14.8429 13.6510 15.4262 11.4861 7.2714 14.4770 9.4692 8.2482
GRNN 6.7005 2.7004 6.3344 5.8339 2.6935 4.5938 5.1000 5.5463 7.2880 3.6934 3.3265 4.5505 5.3319 3.5667 5.6916
ENN 4.6088 0.7096 6.6149 3.8329 0.7633 5.4966 2.3136 4.0046 6.6916 4.6595 3.6181 5.0433 3.8537 2.2739 5.9616

ARIMA 6.0454 4.2348 4.5815 8.6486 3.0821 3.7492 5.0090 2.5516 3.3544 3.8152 3.0078 2.4218 5.8795 3.2191 3.5267
ICEEMDAN-RBF 2.2726 3.4049 1.9043 3.9948 4.0035 1.6998 1.6168 1.0272 2.8350 1.6711 2.7843 4.9304 2.3889 2.8050 2.8423
ICEEMDAN-ELM 3.3918 4.5582 7.6665 2.6856 4.4544 6.8413 1.2845 5.8037 7.1999 2.5286 6.2938 7.5247 2.4727 5.2776 7.3081
ICEEMDAN-ENN 4.3395 2.8364 7.6215 3.6637 2.2246 6.4366 1.9859 5.6524 7.0668 4.0098 4.9388 6.2504 3.4997 3.9130 6.8438

ICEEMDAN-ARIMA 5.0671 4.8208 4.7153 3.8596 3.8730 4.4482 1.6876 3.3002 2.7003 1.9344 3.7862 3.3557 3.1372 3.9451 3.8049
EMD-based model 12.5103 12.2324 12.1999 8.4157 6.8038 7.8571 6.7423 3.6924 4.5551 2.7678 3.0427 3.7667 7.6090 6.4428 7.0947

EEMD-based model 7.8833 10.4397 8.8332 8.8833 0.5832 1.4224 5.0327 0.2560 3.7998 2.3194 2.7970 1.9947 6.0296 3.5190 4.0125
CEEMD-based model 8.5483 2.0589 1.9290 6.5568 2.0620 2.1997 5.0188 3.0053 3.5458 1.8796 2.3883 1.2385 5.5009 2.3786 2.2283

SSA-based model 6.1150 1.5486 1.5539 7.2391 1.9479 2.7182 5.3803 2.2793 1.5968 2.5317 3.2860 2.3448 5.3165 2.2655 2.0534

WD-based model 0.5509 3.1524 0.4901 2.0042 2.9432 4.3772 1.0097 3.6831 0.0090 1.8457 1.3756 3.1393 1.3526 2.7885 2.0039

“ ” refers to 10% significance level; “ ” refers to 5% significance level. Considering the significance level α, zero hypothesis H0 indicates the predictive effectiveness of the proposed
model and the comparison model are not significantly different. The meaning of H1 indicates the predictive effectiveness of the proposed model and the comparison model are significantly
different. The relevant formulas are: H0 : E[L(err1

i )] = E[L(err2
i )], H1 : E[L(err1

i )] , E[L(err2
i )]. In the formula, L represents the loss function of prediction error. Errori

1 and Errori
2 are the

error sequence predicted by selected model.
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5.2. Performance Testing of Optimization Algorithms

This section first introduce the parameter settings of BP network and MOEA/D algorithm, then
implement the convergence testing of metaheuristic algorithms.

5.2.1. Parameter Settings

The artificial intelligence algorithm BP is used to combined the power load results. In BP neural
network, the weights and thresholds of input, hidden and output layer occupy an important position
in network performance. In order to effectively determine the connection weight and node threshold,
we choose the MOEA/D algorithm to optimize its parameters. The parameters of BP and MOEA/D are
shown in Tables 9 and 10, respectively.

Table 9. Default settings of Back Propagation (BP).

Experimental Parameters Value Setting

Training function TRAINLM
Adapt learning function LEARNGDM

Performance function MSE
Number layers 3

Inputs layer nodes number (layer 1) 4
Hidden layer nodes number (layer 2) 5
Output layer nodes number (layer 3) 1

Activation function hidden layer TANSIG
Activation function output layer PURELIN

Epochs 100

Table 10. Default settings of Multi-objective Evolutionary Algorithm based on Decomposition
(MOEA/D).

Experimental Parameters Value Setting

iterations 100
Population size 100

Optimizing parameter dimension 4
Neighbor size 26
Crossover rate 2

Simulated binary crossover parameter 2
Polynomial variation parameter 5

5.2.2. Convergence Testing of Optimization Algorithms

To discuss the performance of MOEA/D algorithm, different population size numbers are selected
to test ability under four test functions, and two multi-objective optimization algorithms, Multi-objective
Grey Wolf Optimization (MOGWO) and Multi-objective Dragonfly Algorithm (MODA), are selected
as the compared model. Table 11 shows the details of the four test functions. Through the comparison
of different optimization methods, it is proved that the prediction ability of MOEA/D is better than
that of other multi-objective algorithms. A total of 20 experiments are carried out in each case and the
average value is obtained. The calculation results of each index are shown in Table 12.
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Table 11. Test functions details of multi-objective optimization algorithm.

Test
Function

Objective Function Expression Constraint Scope Characteristic
Continuity Convexity

ZDT1
f1(x) = x1; f2(x) = g

(
1−

√
f1/g

)
;

g(x) = 1 + 9
n∑

i=2
xi/(n− 1)

[0,1] 3 3

ZDT2
f1(x) = x1; f2(x) = g

(
1− (f1/g)2

)
;

g(x) = 1 + 9
n∑

i=2
xi/(n− 1)

[0,1] 3 7

ZDT3

f1(x) = x1;
f2(x) = g

(
1−

√
f1/g− (f1/g) sin(10πf1)

)
;

g(x) = 1 + 9
n∑

i=2
xi/(n− 1)

[0,1] 7 3

ZDT4
f1(x) = x1; f2(x) = g(x)

(
1−

√
f1/g

)
;

g(x) = 91 +
n∑

i=2

(
xi

2
− 10 cos(4πxi)

) x1 ∈ [0, 1]
x2, · · · , xn ∈ [−5, 5] 3 3

We choose two performance indexes of optimization algorithm as the criteria to evaluate the
performance of optimization algorithm, which are Inverted Generational Distance (IGD) index and
Spread index. In addition, the running time of different algorithms is compared. In particular, IGD
is an indicator of the convergence condition of the algorithm, and its result can be used to judge the
robustness and stability of the algorithm. If the IGD value is smaller, the ability of the algorithm is
better. In Pareto set, Spread is usually used to evaluate the distribution of solutions. If SP is equal to 0,
all non-dominant solutions are equidistant.

The final simulated results are shown in Table 12. Considering all the algorithms, when the
population size is 100, 200, 300 and 500, respectively, the larger the population size has the better
the convergence effect. For MOGWO, too large of a population leads to over fitting of data, which
makes the algorithm worse. Compared with different algorithms, MOEA/D has the best performance
for ZDT1, ZDT2, ZDT3 and ZDT4. The IDG of MOEA/D algorithm is far less than that of other
algorithms, which shows the MOEA/D algorithm has the best convergence performance, and MODA
is the second best optimal algorithm. The convergence effect of MOGWO algorithm is much worse
than other algorithms. For Spread, MOEA/D has the best allocation performance. The elapsed time of
MOEA/D algorithm is significantly lower than the other two algorithms, which shows that MOEA/D is
undoubtedly the fastest and best algorithm in terms of working efficiency.

5.3. Combination Mechanism of Combined Model

For the sake of verifying the effectiveness of the designed nonlinear combination mechanism
MOEA/D-BP, a simple average strategy and a linear combination mechanism are selected as the
comparison in this study. Among them, the simple average strategy computes the mean value of the
prediction results of each model, while the linear combination mechanism uses the multi-objective
algorithm MOEA/D as the weight determination method to get the final prediction results. The compared
consequences between the developed model and the other two methods are represented in Table 13.
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Table 12. Results of MOEA/D and compared algorithms Multi-objective Grey Wolf Optimization (MOGWO), Multi-objective Ant Lion Optimizer (MOALO) and
Multi-objective Dragonfly Algorithm (MODA).

Test
Function

Population
MOEA/D MOGWO MODA

IGD Spread Time IGD Spread Time IGD Spread Time

ZDT1

100 0.0013 0.5739 3.1097 0.0193 0.8866 116.0957 0.0250 1.0384 20.4854
200 0.0012 0.4851 6.1752 0.0130 0.9015 245.1288 0.0019 1.5494 68.4797
300 0.0009 0.7106 9.0026 0.0192 0.9386 401.7427 0.0059 1.4796 153.8985
500 0.0006 0.5515 15.3153 0.0227 0.9087 815.3593 0.0017 1.6583 366.6784

ZDT2

100 0.0014 0.8703 3.1883 0.0192 0.9375 116.4861 0.0115 1.3818 23.7629
200 0.0009 0.4600 6.0496 0.0148 0.9921 240.5254 0.0046 1.4826 76.2996
300 0.0008 0.6134 9.2865 0.0369 1.1163 410.1265 0.0036 1.2181 135.2485
500 0.0006 0.5741 15.3978 0.0248 1.0642 848.2862 0.0018 1.6289 363.9572

ZDT3

100 0.0013 0.5202 3.1662 0.0257 1.1397 81.4449 0.0137 1.3363 18.3297
200 0.0008 0.5452 6.1386 0.0275 1.1883 143.5205 0.0142 1.5089 57.9230
300 0.0010 0.6783 9.0859 0.0284 1.2127 206.6538 0.0144 1.4316 116.3454
500 0.0005 0.7504 15.5836 0.0286 1.1296 351.9125 0.0141 1.3629 301.9324

ZDT4

100 0.0015 0.5218 3.1609 0.0165 0.9105 118.7787 0.0107 1.1224 16.4013
200 0.0008 0.4419 6.0650 0.0267 0.9716 247.0666 0.0028 1.4110 66.0034
300 0.0006 0.4475 9.1421 0.0327 1.0000 406.4541 0.0026 1.4141 335.4201
500 0.0010 0.6344 15.3649 0.0237 1.0559 858.8985 0.0053 1.3491 344.9575
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Table 13. Three different combination mechanisms.

Forecasting Index Combination Mechanism
Site 1 Site 2 Site 3 Site 4

1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step 1-Step 2-Step 3-Step

Point
forecasting

index

MAPE
Simple average 0.8325 2.6116 5.2487 0.8803 2.7780 5.4460 2.2154 6.8177 11.9686 1.3693 3.9487 6.9071

Linear combination 0.7523 1.9506 3.0621 0.8822 2.2748 3.6532 2.2914 5.3407 7.2275 1.3681 3.0562 3.8838
Proposed nonlinear model 0.6577 1.6540 1.7361 0.7373 1.8561 1.8413 2.0714 3.6063 3.7028 1.3288 2.1116 2.2401

MAE
Simple average 72.5631 228.5527 455.7279 52.1120 163.0551 317.7089 33.6322 104.0366 181.6364 17.9866 52.3630 91.3075

Linear combination 65.4888 170.9959 268.4048 52.3353 133.6672 210.5057 34.7565 81.4093 110.4988 17.9172 40.3232 51.6062
Proposed nonlinear model 56.7791 143.5974 151.6523 43.3423 110.1146 109.4865 30.9618 54.3514 54.7373 17.3109 27.1452 29.2987

RMSE
Simple average 96.5555 304.1764 584.0199 66.3370 219.8825 420.3207 51.4845 143.8811 249.2709 23.8797 69.6797 120.9681

Linear combination 633.9588 693.0493 620.0500 354.4644 409.8790 375.8085 51.6760 112.2067 147.1286 24.1894 54.3216 69.3954
Proposed nonlinear model 80.1018 192.1716 200.2943 55.6332 146.8969 144.4127 44.2547 75.7387 72.0933 22.2651 35.1427 39.5900

IA
Simple average 0.9983 0.9828 0.9333 0.9979 0.9771 0.9156 0.9922 0.9352 0.7924 0.9928 0.9314 0.7827

Linear combination 0.9986 0.9904 0.9690 0.9978 0.9843 0.9457 0.9922 0.9614 0.9267 0.9927 0.9609 0.9287
Proposed nonlinear model 0.9988 0.9932 0.9926 0.9985 0.9893 0.9897 0.9945 0.9828 0.9847 0.9939 0.9845 0.9806

DC
Simple average 0.9424 0.7842 0.6349 0.9058 0.7368 0.6402 0.8429 0.4947 0.4392 0.8063 0.6421 0.6085

Linear combination 0.9529 0.8158 0.7937 0.9058 0.7947 0.6825 0.8691 0.5842 0.4868 0.8429 0.6789 0.6720
Proposed nonlinear model 0.9372 0.8474 0.8730 0.9319 0.8000 0.8307 0.8691 0.7474 0.7720 0.8325 0.7474 0.7249

Interval
forecasting

index

FICP
Simple average 0.9896 0.7382 0.4211 0.9896 0.5864 0.4316 0.9063 0.5288 0.5316 0.8073 0.4921 0.3421

Linear combination 0.9896 0.8429 0.6684 0.9896 0.7539 0.5737 0.9010 0.6702 0.4368 0.8281 0.5812 0.4579
Proposed nonlinear model 0.9844 0.8639 0.8474 0.9896 0.7906 0.7895 0.9375 0.6963 0.7053 0.8594 0.7068 0.6947

FINAW
Simple average 0.1373 0.1397 0.1214 0.1372 0.1269 0.1298 0.1371 0.1343 0.1244 0.1261 0.1245 0.1293

Linear combination 0.1381 0.1352 0.1303 0.1308 0.1352 0.1277 0.1297 0.0014 0.0023 0.1311 0.1244 0.1283
Proposed nonlinear model 0.1333 0.1314 0.1312 0.1305 0.1246 0.1269 0.1319 0.1304 0.1300 0.1330 0.1275 0.1246

AWD
Simple average 0.0017 0.0918 0.3866 0.0005 0.1430 0.3538 0.0450 0.3576 0.7401 0.0259 0.3711 0.8820

Linear combination 0.0014 0.0298 0.1833 0.0005 0.0809 0.2204 0.0415 0.2451 0.4824 0.0295 0.2405 0.4074
Proposed nonlinear model 0.0005 0.0344 0.0420 0.0002 0.0587 0.0554 0.0171 0.1033 0.1055 0.0149 0.1042 0.1169

MPI
Simple average 617.1405 682.9169 678.9992 369.6635 402.1000 469.9174 164.4780 159.5414 175.0577 77.9761 81.8591 99.3020

Linear combination 633.9588 693.0493 620.0500 354.4644 409.8790 375.8085 163.5420 163.5335 139.8654 84.1470 85.5248 78.2974
Proposed nonlinear model 573.6699 584.0110 577.3195 356.9044 333.2484 355.3731 163.1146 143.1301 154.2024 79.9081 78.4391 79.3207
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Specially, the simple average method is to use the simple average formula under statistical sense
to calculate the final predicted value. The method formula is briefly introduced as follows:

f =
f1 + f2 + f3 + f4

4
(23)

where fi is the prediction results of the corresponding model. The linear combination of the models
is the weighted combination of the results of the four single models, and a final prediction value is
obtained. The weights are determined by the multi-objective optimization algorithm, which increases
the intelligence of the method.

The effects of each combination mechanism are compared based on five point forecasting error
measurement rules and four interval error forecasting measurement rules. The result shows that the
forecasting effectiveness of the nonlinear combination model is more accurate than that of the simple
average method and the linear combination mechanism, regardless of the sites and forecasting steps.
The linear combination mechanism is often more effective than the simple average strategy. In other
words, the simple average strategy is the worst. Therefore, the developed nonlinear combination
mechanism MOEA/D-BP has successfully improved the forecasting effectiveness of power load.

5.4. Practical Application of Load Forecasting To a Power System

Load forecasting is of great significance for how to improve the stability and reliability of power
grid. Accurate forecasting results can play a decisive role in the safety and stability of power network
operation. Point forecast represents the possible situation of load in a future period, while interval
forecast can reflect the possible range of load. The result of load forecasting is directly reflected in the
power grid planning, and the details are as follows [44].

5.4.1. Application of Load Point Forecasting

Power supply load calculation needs load forecasting. According to the results of load forecasting,
we can calculate the power supply load of each voltage level. The power supply load is the premise of
calculating the power balance and the basis of determining the newly added variable capacitance. The
network load is generally calculated according to the voltage level, which refers to the load provided
by the public transformer of the same voltage level. In order to allocate the capacity of distribution
network reasonably, it is necessary to predict and analyze the distribution of power supply load of
each voltage level network.

Point load forecasting can be applied to high voltage power grid planning. After receiving
power from the upper level grid or power supply, the high-voltage grid can directly supply power to
the high-voltage users, or provide power to the lower level medium voltage grid, which is the link
between the transmission network and the medium voltage grid. Load forecasting is directly related
to substation capacity demand and distribution in high voltage power grid planning. Substation
capacity demand is to determine the number and capacity of main transformer according to the
prediction results of network load and the value of capacity load ratio. The distribution of substation
is determined according to the load density of spatial load forecasting.

Point load forecasting can also be applied to medium voltage power grid planning. In the
medium voltage network planning, the load forecasting results are directly related to the distribution
and transformation planning and line scale planning. The planning of medium voltage distribution
is mainly to determine the capacity and distribution points of the new distribution transformer.
The medium voltage line planning is mainly based on the load forecasting results to determine the
number of lines to meet the growing demand for power supply [45].

5.4.2. Application of Load Interval Forecasting

Analyzing the existing load forecasting methods, it is found that a large number of methods
are deterministic load point forecasting results. In fact, because there are various uncertain factors
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in the power system, the decision making must face a certain degree of risk, so the uncertainty of
power demand must be considered in the decision-making. The results of traditional deterministic
forecasting methods can not reflect the uncertainty of demand, and interval forecasting can meet this
objective requirement.

Interval forecasting transmits more information than point forecasting. The result of interval
forecasting is a series of interval value, and this interval corresponds to a certain level of probability
confidence level, which can describe the possible range of future forecasting results. According
to the results of interval forecasting, the power system decision makers can better understand the
fluctuation range of future load changes, and better understand the uncertainty and risk factors that
may exist in the future load when carrying out production planning, system safety analysis and other
work, so as to make more reasonable decisions in time. According to the upper and lower bounds of
interval prediction, the rotating reserve capacity of power system can be arranged, so as to improve
the economic benefits of power system operation. Interval load forecasting can also meet the optimal
unit combination, economic scheduling and optimal power flow of the power system dispatching
department, which is conducive to improving the utilization rate of power generation equipment and
the effectiveness of economic scheduling. Therefore, the analysis of power system load change and
the study of power load interval forecasting method are helpful for decision makers to better grasp
the change of data in power grid planning and other aspects, so as to achieve more scientific analysis
and evaluation.

6. Conclusions

Precise and dependable power load forecasting not only takes an important place in power
management and operation of smart grid, but also own environmental advantages as well as economic
and social benefits. However, due to the complicated fluctuation of power load, its further development
and utilization are greatly limited, and even may endanger the dispatching and management of power
system. Most of the previous work focused on the deterministic point prediction of power load, seldom
considered the other important aspect which is the interval prediction of power load, and this situation
makes the prediction of power load not comprehensive.

In order to fully mine and evaluate the deterministic and uncertain characteristics of power load,
this study successfully developed a double forecast system, which makes up for the shortcomings of
the existing research. The system is divided into two parts: the point forecasting module based on
nonlinear combination and the interval forecasting module based on fuzzy clustering. It is of great
importance to comprehensively discuss the predictability and modeling of load. Different from the
previous work, this paper effectively designs BP neural network based on MOEA/D optimization as
a new nonlinear combination mechanism, obtains the final prediction results, further improves the
accuracy of point prediction, and improves the final prediction ability. On the basis of improving
the prediction accuracy, the load data is divided into different categories based on fuzzy clustering,
and then different intervals are constructed according to the prediction data of different categories.
This method constructs different intervals according to different characteristics of data, which is an
effective interval prediction method. Finally, a large number of experiments are carried out by using
the quantitative index, which proves the effectiveness and superiority of the system. In addition,
because the designed system has good performance, it can also be used in other load forecasting, wind
power forecasting, economic forecasting and other fields.
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Nomenclature

SVR Support Vector Regression MAE Mean Absolute Error

GRNN
Generalized Regression
Neural Network

MAPE
Mean Absolute Percentage
Error

ENN Elman Neural Network RMSE Root Mean Square Error
ELM Extreme Learning Machine IA Index of Agreement
RBF Radial Basis Function Model DC Directional Change

BP
Back Propagation Neural
Network

FICP
Forecasting Interval Coverage
Probability

AR Autoregressive Model FINAW
Forecasting Interval
Normalized Average Width

ARMA
Autoregressive Moving
Average Model

AWD Accumulated Width Deviation

ARIMA
Autoregressive Integrated
Moving Average

MPI
Average Width of the
Constructed PIs

EMD
Empirical Mode
Decomposition

MODA
Multi-objective Dragonfly
Algorithm

EEMD
Ensemble Empirical Mode
Decomposition

MOGWO
Multi-objective Grey Wolf
Optimization

CEEMD
Complementary Ensemble
Empirical Mode
Decomposition

MOEA/D
Multi-objective Evolutionary
Algorithm based on
Decomposition

SSA Singular Spectrum Analysis MOEA/D-BP Optimizing BP with MOEA/D

WD Wavelet Domain Denoising ICEEMDAN-RBF
RBF using ICEEMDAN
preprocessed data

ICEEMDAN
Improved Complete
Ensemble Empirical Mode
Decomposition

ICEEMDAN-ELM
ELM using ICEEMDAN
preprocessed data

ICEEMDAN-ENN
ENN using ICEEMDAN
preprocessed data

ZDT
Test functions for
multi-objective algorithm

ICEEMDAN-ARIMA
ARIMA using ICEEMDAN
preprocessed data
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