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Abstract: Action recognition is an application that, ideally, requires real-time results. We focus on single-
image-based action recognition instead of video-based because of improved speed and lower cost of
computation. However, a single image contains limited information, which makes single-image-based
action recognition a difficult problem. To get an accurate representation of action classes, we propose
three feature-stream-based shallow sub-networks (image-based, attention-image-based, and part-image-
based feature networks) on the deep pose estimation network in a multitasking manner. Moreover,
we design the multitask-aware loss function, so that the proposed method can be adaptively trained
with heterogeneous datasets where only human pose annotations or action labels are included (instead
of both pose and action information), which makes it easier to apply the proposed approach to new
data on behavioral analysis on intelligent systems. In our extensive experiments, we showed that
these streams represent complementary information and, hence, the fused representation is robust in
distinguishing diverse fine-grained action classes. Unlike other methods, the human pose information
was trained using heterogeneous datasets in a multitasking manner; nevertheless, it achieved 91.91%
mean average precision on the Stanford 40 Actions Dataset. Moreover, we demonstrated the proposed
method can be flexibly applied to multi-labels action recognition problem on the V-COCO Dataset.

Keywords: convolutional neural network; deep learning; action recognition; pose estimation;
multitask learning

1. Introduction

The action recognition problem [1,2] can be solved using a video or a single image. However,
video-based action recognition has a delay (required for receiving all video frames) and a large
computational complexity, which makes it impractical for embedded devices with limited resources [3].
Moreover, image-based action recognition is the basis for applications such as video-based action
recognition and visual question answering. Hence, we focus on action recognition from a single image.

To infer the human action, the human pose is an essential component [4–7] because a variety
of human behaviors can be categorized based on the pose (such as standing and sitting). However,
human pose information is not enough for the deep understanding of human actions because many
actions have the same pose structure. For example, “Raising arms” can be further categorized into
fine-grained classes such as “Brushing teeth” and “Waving hands”. Therefore, action recognition can
be considered as a fine-grained classification problem.

Many studies on fine-grained classification [8–10] have been focusing on local information,
because the distinctive features are in the local area. In terms of action recognition, the foreground
around the human joints can be the key local information for classifying fine-grained actions. Moreover,
the most important local information is the objects that interact with the person. Hence, the primary
focus should be on these areas. Based on the above analysis, we propose a body-part-aware and
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attention-based action recognition method using the pose information, as depicted in Figure 1.
It consists of three streams: (1) image-based action recognition; (2) attention-based action recognition;
and (3) body-part-based action recognition. Moreover, the information that describes the human action
should be considered together, which leads us to multitask learning for human pose estimation and
action recognition.

Figure 1. Proposed method. The proposed method is one end-to-end trainable convolutional neural
network. The HRNet-based feature extractor is shared between pose estimation and action recognition
task in a multitasking manner.

By definition, multitask learning is learning of M number of tasks, where all or some subset of the
tasks are related, thus improving the generalized learning of models of these tasks by using knowledge of
all or some of the M tasks [5,11,12]. Regardless of the advantages of multitask learning, the performance
of individual tasks suffers when the tasks are learned simultaneously. It is similar to the problem of earlier
and later classifiers discussed in [13]: an earlier classifier degrades the performance of the later classifier
because early classifiers interfere with later classifiers. This performance drop can be mitigated with
the use of dense connectivity, which connects each layer with all subsequent layers and avoids features
optimized only by the early classifier. Recently, Sun et al. [14] proposed a pose estimation method with a
structure based on dense connectivity. In our method, we use the High-Resolution Net (HRNet) [14] as a
feature extractor, as depicted in Figure 1.

There is another problem in applying multitask learning to fine-grained action classification.
Because deep learning has become the de-facto standard for studies on human behavior analysis,
many data required to train models in a supervised manner. However, creating a dataset is difficult
and time-consuming. Specifically, not enough datasets contain both human pose annotations and
action labels to solve this fine-grained action recognition problem. Moreover, for various applications
of intelligent systems, a low computational cost is necessary, and the system must be able to reuse an
existing dataset for human behavior analysis. To solve this problem, we propose action recognition
through an adaptive multitask (multitask-aware) loss function, which is designed to handle even
datasets where only human pose annotations or only action labels are available (instead of both pose
and action information).

Our contributions can be summarized as follows:

• Human action is an organic combination of the human pose, area of interaction, and interacting
objects. In this context, we propose a deep network to efficiently fuse all the human-centric information
based on multitask learning.
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• The loss function in the proposed deep network is designed by a multitask-aware loss function.
Thereby, the proposed method can efficiently handle various datasets, even if they do not include
both human pose annotations and action labels.

• According to the experimental results, the proposed method achieved 91.91% mean average
precision (mAP) on the Stanford 40 Actions Dataset [15], while having very little effect on the
pose estimation task in our multitask learning framework. Moreover, we demonstrated that
the proposed method can be flexibly applied in multi-labels action recognition problem on the
V-COCO Dataset [16].

The rest of this paper is organized as follows. In Section 2, we introduce related work. The proposed
method is presented in Section 3. Section 4 shows our extensive experiments. We report experimental
results on the MPII Human Pose Dataset [17], Stanford 40 Actions Dataset [15], and V-COCO Dataset [16].
This is followed by conclusion in Section 5.

2. Related Works

2.1. Human Pose Estimation

Several studies have been published on the pose estimation [14,18–22]. Xiao et al. [21] stacked
deconvolution layers over the last convolution stage in ResNet [23]; this simple architecture achieves
better results than previous complex methods [19,20]. Sun et al. [14] started with a high-resolution
sub-network and gradually added high-to-low sub-networks forming new stages; each sub-network
receives information from other parallel sub-networks, which leads to rich high-resolution representation
and improved spatial precision. They also achieved superior performance for pose detection on two
benchmark datasets: the COCO Keypoint Detection Dataset [24] and the MPII Human Pose Dataset [17].
The proposed method exploits the essence of multitask learning by simultaneously learning the human
joints and human actions because both tasks are human-centric, and intermediate results of the pose
estimation task benefit the action recognition task.

2.2. Single-Image-Based Action Recognition

The problem we focus on in this paper is single-image-based action recognition, which has been
actively studied due to its importance [25]. However, traditional person detectors [4,26] that rely
on hand-crafted features were not adequate for proposing candidates bounding boxes for action
classification. Khan et al. [26] proposed an action-specific person detection based on transfer learning
to improve the quality of bounding boxes. Recently, deep learning has produced successful results
in single-image-based action recognition [26–30]. Zhang et al. [28] proposed action recognition with
only action labels, which learns the action masks and extracts the features from the objects in an action.
Focusing on the part information, Zhao et al. [27] localized seven body parts by using an independent
human pose estimator and trained a body-part-based action classification model based on manually
annotated semantic part labels. Although this work [27] is similar to our proposed method, we estimate
three body parts from the proposed multitask-based framework, instead of an independent human
pose estimator, and do not use manual annotations for part action classification.

There is another research direction on recognizing human interaction with objects [16,31,32],
which deviates from our main focus, as we use heterogeneous datasets for the human pose task and
the action task in a multitasking manner. Moreover, we do not use the object information directly, i.e.,
we do not use object detectors.

2.3. Fine-Grained Classification Problems

Many fine-grained classification problems can be solved with part-based methods and visual
attention methods [8–10]. Liu et al. [8] applied the attention model on part patches and achieved
competitive accuracy on benchmark datasets. Zhang et al. [9] proposed an approach for fine-grained
recognition by picking deep filters and training discriminative detectors, avoiding the need for
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object/part annotations. Xiao et al. [10] presented two attention pipelines: object-level (predictions
driven by several relevant patches of an image) and part-level (driven by detected parts); the final
classification merges the results of both pipelines. Although intra-class variation problems are solved
by proper localization techniques [8–10], fine-grained classification tasks suffer from inter-class
similarity. Dubey et al. [33] addressed the problem of inter-class similarity affecting the feature
learning in fine-grained classification tasks by introducing pair-wise confusion in output activations,
hence improving the generalizability of networks.

Local information about human joints helps to recognize fine-grained classes of human actions.
We use the local information around the human joints by using heat maps for body joints, which is
similar to what was proposed by Fukui et al. [34].

2.4. Multitask Learning

Multitask learning has been applied to several areas, including human behavior understanding [5,11,12].
Luvizon et al. [5] reinforced that human pose is extremely relevant to action recognition and presented
a single framework that performs end-to-end trainable multitasking to learn the 2D pose, 3D pose,
and action recognition. Kim et al. [11] applied multitask learning to a baseline hypothesis that
captioning data may be helpful for action classification because both are human-centric, and the
captioning data are usually related to human actions. Similarly, Ranjan et al. [12] applied multitask
learning to face detection, landmark localization, face pose estimation, and gender recognition tasks.
They used the fact that the lower layers respond to edges and corners and, therefore, contain better
localization properties, which can be used for landmark localization and pose estimation tasks. For face
detection and gender recognition tasks, they used the deeper layers, as they are suitable for these
complex tasks.

By multitask learning of the human pose and action, we cut the complexity of action learning
but achieve comparable results with HRNet [14] for the pose estimation task, although there is an
additional action recognition task. As discussed above, only few datasets contain both pose and
action annotations. To overcome this limitation, the proposed method of action recognition through an
adaptive multitask loss function is designed to be applicable if either the pose or action annotation
is available.

3. Proposed Method

Human pose information is a key for action recognition problems, especially with single images.
Therefore, the proposed method uses HRNet-based [14] human pose estimation network as a backbone
network. Figure 1 depicts the overview of the proposed method, in which HRNet-based [14] feature
extractor is used for human pose estimation and action classification in a multitasking manner. However,
the shared feature extractor is not enough to classify fine-grained action classes based on the same
human pose. To get an accurate representation of action classes, we add three feature-stream-based
shallow sub-networks on the deep pose estimation network: (1) image-based feature stream; (2) attention-
image-based feature stream; and (3) part-image-based feature stream. The features represented by these
three streams of action recognition are complementary, as shown in our experiments in Section 4. Notably,
Figure 1 does not depict independent multiple networks but it is one end-to-end trainable convolutional
neural network.

3.1. HRNet: Multitasking Feature Representation

The proposed method uses HRNet [14] to represent multitasking features of input image I,
as depicted in Figure 1. A set of feature maps {F1, F2, F3, F4} is extracted from the image with decreasing
order of resolution and increasing order of channels. The highest resolution of the feature maps F1

is fed through a 3× 3 convolution layer: “Conv for Pose Estimation” (in Figure 1), which adjusts the
number of channels to the number of human joints and returns K heat maps, where the kth heat map
gives the location confidence of the kth joint.
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Moreover, the same set of multitasking feature representation from the HRNet-based feature
extractor is reused for action recognition. The image-based feature stream uses the lowest resolution
of feature maps F4 (as depicted in Figure 1). The heat maps for body joints from “Conv for Pose
Estimation” as a byproduct of the pose estimation are used to generate an attention-guided image
as an input of the attention-image-based feature stream. Additionally, the rich information from the
set of feature maps {F1, F2, F3, F4} are also passed through the attention-image-based feature stream;
thereby, the sub-network for the stream can be shallow. For the part-image-based feature stream,
we use the human joints information to localize the body parts.

3.2. Image-Based Feature Stream

The image-based feature stream uses the lowest resolution of the features maps F4 from the
HRNet-based feature extractor for the action recognition task. As presented in Figure 2, average pooling
is performed on the feature maps F4 to produce feature vector fimg, followed by passing through a
fully connected layer. The action can be trained from an action loss. The detailed configuration of the
image-based feature stream is provided in Section 3.5.

Figure 2. Image-based feature stream. The figure depicts the shared HRNet-based feature extractor
and image-based feature stream depicted in Figure 1. The background colors are the same as Figure 1.

3.3. Attention-Image-Based Feature Stream

In this section, we discuss the attention-image-based feature stream for foreground analysis
and the significance of this stream for feature extraction. Figure 3 presents the flow of this stream.
Inspired by Fukui et al. [34], we use an attention-guided image for the input of the attention-image-
based feature stream:

Iatt = I ◦ (1 + A) = I + I ◦A, (1)

where ◦ denotes element-wise product, I is the input image, and 1 is a tensor whose size is the same
as the input image and all elements are one. A is the attention map. To generate attention map A,
heat maps for body joints from the “Conv for Pose Estimation” are passed through “conv-bn-relu” to
adjust the number of channels to the input image. This is followed by the upsampling layer, so that
the generated attention map A has the same dimensions as the input image.

The “attention-ed” image Iatt is passed through the convolution, batch normalization [35],
and rectified non-linear unit (ReLU [36]), followed by max pooling. As depicted in Figure 3, the attention-
image-based feature stream is based on a ResNet18 [23], which is shallow. We aid the shallow stream
with skip connections from the feature maps {F1, F2, F3, F4} extracted by the HRNet, in which the
feature maps {F1, F2, F3, F4} are concatenated with each output of the layers in ResNet18 [23] by
using transition blocks, as depicted in Figure 3. Finally, average pooling is performed to create the
feature vector fatt for the attention-image-based feature stream. The detailed configuration of the
attention-image-based feature stream with information such as filter size and stride is provided in
Section 3.5.
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Figure 3. Attention-image-based feature stream. The figure depicts the shared feature extractor,
pose estimation, and attention-image-based feature stream depicted in Figure 1. The background colors
are the same as Figure 1.

We discuss the effect of the attention-image-based feature stream in Section 4.5: it enhances the
learning of the feature extraction network in our model, which, in turn, improves the localization of
the image-based feature stream.

3.4. Part-Image-Based Feature Stream

Although the pose is highly informative to recognize a variety of actions, some actions share
a similar pose structure. Therefore, human action recognition can be considered as a fine-grained
classification problem, which we address by our part-image-based feature stream. Instead of using
an independent pose estimator to localize joint locations in the previous methods [27], we use the
intermediate pose estimation result of the proposed multitask-based framework.

Figure 4 depicts the details of the part-image-based feature stream. The “Conv for Pose Estimation”
in Figure 4 produces the heat maps for body joints, which are used along with the input image I to
localize the body parts. The first column images in Figure 5 depict the intermediate pose estimation
results, which is used to create body part images.

For the input of part-image-based feature stream, it is important to crop properly sized patches
centering around the estimated joint locations. That is, a cropped part image should have a consistent
sized body part, regardless of the size of the human in the input image I. For this, we calculate a
cropping base length l as in Equation (2) and the width and the height of a part patch is set to two
times the base length l.

l =
1
4

√
(maxx −minx)

2 + (maxy −miny)
2, (2)

where maxx and maxy are the maximum values along the x-coordinate and y-coordinate, respectively,
among all the joint coordinates. Similarly, among all the joint coordinates, minx and miny are the
minimum values along x-coordinate and y-coordinate, respectively. Based on Equation (2), we crop
three part images (head, right hand, and left hand), which are further resized to the same size as the
input image I. We denote the cropped and resized images for a head, right hand, and left hand as Ih,
Ir, and Il , respectively. The second to fourth column images in Figure 5 depict the examples of Ih, Ir,
and Il .

Individually, Ih, Ir, and Il go through a ResNet18 network [23] with shared weights to generate
three body part-based feature vectors (fh, fr, and fl). Then, the three part’s feature vectors (fh, fr,
and fl) are concatenated to form a single-part-based feature vector fpart. This feature vector fpart is
passed through the fully connected layer to produce confidence scores for the actions. The detailed
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configuration of the part-image-based feature stream, such as filter size and stride, is provided in
Section 3.5.

Figure 4. Part-image-based feature stream. The figure depicts the shared feature extractor, pose estimation,
and part-image-based feature stream shown in Figure 1. The background colors are the same as Figure 1.

Figure 5. An example of parts localization for the part-image-based feature stream based on the V-COCO
dataset [16]. The localized parts are input to the part-image-based feature stream.

3.5. Detailed Structure of the Three Feature Streams for Action Recognition

Table 1 only depicts the configuration of the three feature streams in the proposed method because the
configuration of the HRNet-based feature extractor is the same as the original HRNet [14]. The image-based
feature stream uses the HRNet-based multitasking feature F4 for the action task; therefore, additional
layers are just average pooling and fully connected layers. The attention-image-based feature stream
and part-image-based feature stream are based on ResNet18 [23]. ResNet18 has a sequence of four main
blocks and we denote them as Layers 1–4, respectively. Each Layer block consists of two basic blocks.

We follow notations used in ResNet18 [23]: The bracket [·] in Table 1 is used to represent the
convolution filter size and the number of filters. For example, Layer 1 in the attention-image-based
feature stream consists of two basic blocks. [3× 3, 64 \\ 3× 3, 64] represents a basic building block
where two convolutional layers are used and the filter size is 3× 3 and the number of filters is 64.
Furthermore, by the first basic block in each Layer, down-sampling is performed with a stride of 2 and
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then it is followed by batch normalization [35] and ReLU [36] non-linearity. The second basic block in
each layer is followed by batch normalization [35] (see [23] for more details).

Table 1. Configuration of the three feature streams (FS) in the proposed method for action recognition.
Attention image-based FS and part Iimage-based FS are based on ResNet18 [23]. The layer names are
the same as in Figures 2–4 (see [23] for more details). Notably, there are additional transition layers
unlike ResNet18 [23].

Layer Name Image Based FS Attention Image Based FS Part Image Based FS

Conv -
[
7× 7, 64

]
stride = 2

[
7× 7, 64

]
stride = 2

Max Pooling -
[
3× 3

]
stride = 2

[
3× 3

]
stride = 2

Layer 1 -

[
3× 3, 64
3× 3, 64

]
×2

[
3× 3, 64
3× 3, 64

]
×2

Transition -
[
3× 3, 64

]
-

Layer 2 -

[
3× 3, 128
3× 3, 128

]
×2

[
3× 3, 128
3× 3, 128

]
×2

Transition -
[
3× 3, 128

]
-

Layer 3 -

[
3× 3, 256
3× 3, 256

]
×2

[
3× 3, 256
3× 3, 256

]
×2

Transition -
[
3× 3, 256

]
-

Layer 4 -

[
3× 3, 512
3× 3, 512

]
×2

[
3× 3, 512
3× 3, 512

]
×2

Transition -
[
3× 3, 512

]
-

Avg. Pooling Average Pooling Average Pooling Average Pooling

Fully Connected #classes-d #classes-d #classes-d

softmax softmax softmax

In the attention-image-based feature stream, there are additional transition layers unlike a
ResNet18 network because the feature maps {F1, F2, F3, F4} extracted by the HRNet-based feature
extractor are concatenated with the output of each layer (Layer 1, Layer 2, Layer 3, or Layer 4),
as depicted in Figure 3. Furthermore, the transition layer is followed by batch normalization [35] and
ReLU [36] non-linearity.

3.6. Multitask-Aware Loss Function

The proposed method is based on multitask learning of human pose and action. The multitask
loss function consists of two losses in learning as

L(Ii, pi, yi) =
1
N

N

∑
i=1

1p(pi)Lp(Ii, pi) + λ1a(yi)La(Ii, yi), (3)

where λ is a hyperparameter to balance the losses between the pose and action tasks. N is the number
of samples, Lp(·) is the loss in pose estimation, and La(·) is the loss in learning the human action. Ii is
the ith input image and its ground truth labels for a human pose and action are pi and yi, respectively.
All elements of pi are set to −1 if there is no available ground truth for the ith input image in the
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human pose dataset. Similarly, yi is set to −1 if there is no available ground truth for the ith input
image in the action dataset. 1p(pi) is an indicator function that evaluates to 1 if the pose annotation
(pi) is available and 0 otherwise. Similarly, 1a(yi) evaluates to 1 if the action annotation (yi) is available
and 0 otherwise. Therefore, for each training sample, we calculate the pose loss and/or the action loss
depending on the availability of the respective annotations. For the human pose loss, Lp(·), we use a
weighted mean squared error as in [14]. The action loss La(·) is a combination of loss in learning the
action through multiple feature streams, as in Equation (3).

La(Ii, yi) = Limg(Ii, yi) + Latt(Ii, yi) + Lpart(Ii, yi) + Lconcat(Ii, yi) (4)

Here, Limg(·), Latt(·), and Lpart(·) are the loss in learning human action using the image-based
feature stream (Section 3.2), attention-image-based feature stream (Section 3.3), and part-image-based
feature stream (Section 3.4), respectively. Lconcat(·) is the loss in learning the human action from the
concatenated features from the three feature streams. The loss functions for the action recognition task
are a focal loss [37] and a Binary Cross Entropy (BCE) loss [38] (Sections 4.2.2 and 4.2.3, respectively),
depending on the different action recognition tasks.

4. Experiments

4.1. Experimental Setup

The proposed algorithm used a top-down human pose estimator [14] as a backbone to estimate a
human pose. To operate this kind of pose estimators, we assumed that the location of a person can be
determined by using a human detector on the image. Following Sun et al. [14], we used the human box
information to adjust the scale and position of the person in the image. This is because black areas exist
in resulting images (as depicted in our experiment figures). Notably, it is a common preprocessing
in human pose estimation research. For the proposed method, a RGB image was used, which was
resized to sizes 256× 256 and 512× 512. The resized image to 256× 256 was used for the input I of
the proposed method and the image of size 512× 512 was used for a crop base image for the three
part images. The cropped images from the crop base image 512× 512 were followed by resizing to
256× 256 for the input of part-image-based stream. All input images were normalized with a mean
and standard deviation of ImageNet [39].

As a feature extractor, HRNet-W32 was used. The HRNet-W32 and ResNet18 modules in the
proposed method were initialized by ImageNet pretrained models. The batch size was 16. Training
was performed using the Adam optimizer [40] with the initial learning rate of 1 × 10−5. Training
was performed until 210 epochs with the decaying rate factor of 0.1 on 170 and 200 epochs. For data
augmentation, we used affine transformation with the rotation factor of 90 degrees and the scale factor
of 0.25 for the MPII human pose dataset (we followed the affine data augmentation in [14], but changed
the rotation angle from 30 to 90 degrees). The rotation factor of 10 degrees and the scale factor of 0.25
were used for the Stanford 40 Actions Dataset. Flip image augmentation was used. Hyperparameter λ

in Equation (3) was set to 0.00075.

4.2. Datasets

4.2.1. MPII Human Pose Dataset

The MPII Human Pose Dataset [17] has 24,920 images, including 40,522 person instances labeled
with the joints. The dataset consists of instances from YouTube videos with diverse human activities
and events. Each person instance has 16 labeled joints. Among the 40,522 total person instances,
we used 28,821 and 11,701 for training and testing, respectively. To evaluate the pose estimation,
we used the head-normalized probability of the correct keypoint (PCKh score). The PCKh score
is the standard metric in the MPII Human Pose Estimation [17]. Specifically, we used PCKh@0.5,
which regards 50% of the length of the head segment as a threshold for joint localization accuracy, i.e.,
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if the distance between the estimated joint position and the ground-truth position is less than 0.5 times
the length of the head segment, it is considered accurate.

4.2.2. Stanford 40 Actions Dataset

We performed extensive experiments on the Stanford 40 Actions Dataset [15]. The dataset includes
40 diverse action classes (such as applauding, blowing bubbles, brushing teeth, fishing, fixing a bike,
taking photos, phoning, and walking a dog). The dataset contains images collected from Google, Flickr,
and Bing. We use the standard training and testing sets (4000 train images and 5532 test images).

4.2.3. V-COCO Dataset

The V-COCO (Verbs in COCO) Dataset [16] contains a total of 10,346 images, including 16,119
people instances. Each of these instances has binary labels for 26 different action classes. The dataset is
split into “train”, “val” and “test” sets. The contents of the dataset come from the COCO Dataset [24].
The “train” and “val” split are from the “COCO train” set while the “test” split is from the “COCO val”
set. The “train” split contains 2533 images and 3932 people instances. The “val” split contains 2867
images and 4499 people instances. The “test” split contains 4946 images and 7768 people instances.
We used the “train” and “val” splits for training and testing the proposed method, respectively.

4.3. Evaluation of the Pose Estimation Task on the MPII Human Pose Dataset

Table 2 compares the experimental results of the pose estimation task in our multitask-based
framework with the performance of only a single pose estimation framework [14]. Here, “pose_hrnet_w32”
is the pose estimator trained by the author of [14] and “pose_hrnet_w32_aug90” is a retrained version
with the same rotation augmentation as explained in Section 4.1. As is the nature of multitask learning,
the pose estimation task in our method suffers from the additional action recognition task. However,
the performance drop is very low, considering the additional action recognition task due to the
multitask-aware loss function in Equation (3) and the dense connectivity in the HRNet [14], as we
expected. It demonstrates that performing pose estimation and action recognition using our approach
(adaptive multitask learning) saves the time and effort required for annotations. It is very useful,
because there are very few data with pose-level and action-level annotations together. Other part-based
methods [29] that do not use the pose-level annotations train multiple part detectors to first obtain
coarse parts and further learn on these coarse parts to obtain the most discriminative parts, which
are computationally expensive. Unlike other methods [27], the proposed action recognition method
benefits from abundant information, such as the pose and multiresolution features, while being
computationally inexpensive and achieving improvement in overall generalized performance.

Table 2. Evaluation of the pose estimation task in our multitask-based method versus pose estimation
as a single task on the MPII Human Pose Dataset [17]. The performance metric used is PCKh@0.5 [17].
Bold font indicates the best result.

Arch Head Shoulder Elbow Wrist Hip Knee Ankle Mean

pose_hrnet_w32 [14] 97.1 95.9 90.3 86.4 89.1 87.1 83.3 90.3

pose_hrnet_w32_aug90 [14] 97.3 96.1 90.9 86.2 89.2 87.0 82.8 90.4

proposed_method 96.7 95.4 88.7 83.3 87.5 84.4 79.4 88.5

4.4. Evaluation of the Action Recognition Task on the Stanford 40 Actions Dataset

In this section, we present experimental results for action recognition by highlighting the importance
of the feature streams and compare the performance with the existing methods on the Stanford 40 Actions
Dataset. The action recognition task in the proposed method has three complementary streams. Each of
these streams was trained with a loss function. Thus, we report the mAP on each of these streams and
the concatenation-based feature in Table 3. The mAP obtained on individual feature streams are: 85.57%
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(image-based feature stream in Section 3.2), 85.38% (attention-image-based feature stream in Section 3.3),
and 84.27% (part-image-based feature stream in Section 3.4). On concatenation-based action decision
in Figure 1 (Image + Attention + Part), we obtained mAP of 91.76%. As depicted in Figure 1, each of
three streams is a component of the entire end-to-end trainable network. Thus, the concatenation feature
can learn the combination of features extracted by the three streams, achieving better performance than
those by three streams. Additionally, we evaluated the ensemble of the estimated action recognition
result from multiple streams of the proposed method because the ensemble technique [41] is a method
commonly used to improve generalized performance. We denote it as “Ensemble of (Image + Part +
Concatenation)” in Table 3. The obtained mAP is 91.91%. We report the ensemble of (Image + Part +
Concatenation) as the proposed method for comparison.

Table 3. Comparison of mAP obtained through feature representation from multiple streams for action
recognition on the Stanford 40 Actions Dataset [15]. Bold font indicates the best result.

Feature Representation mAP

Image-based feature stream 85.57

Attention-image-based feature stream 85.38

Part-image-based feature stream 84.27

Concatenation-Based Action Decision (Image + Attention + Part) 91.76

Proposed: Ensemble of (Image + Part + Concatenation) 91.91

Figure 6 depicts the average precision (AP) of detailed action classes obtained from three feature
streams and the result of the ensemble technique in Table 3. The features learned from the three
feature streams are complementary; the performance of one is better than the others in some action
classes, and vice-versa. Some notable classes are “Blowing bubbles” (95.00%), “Brushing teeth”
(84.99%), “Phoning” (73.92%), and “Smoking” (73.11%) that perform better for the part-image-based
feature stream in comparison to image-based feature stream and attention-image-based feature stream.
One thing common to these action classes is that the major distinction is based on interacting objects
and the parts of the human body. The part-image-based feature stream is designed to focus on
body parts (head, right hand, and left hand) and objects around them. Such action classes have
higher APs for part-image-based feature stream. However, on other actions such as “Jumping”,
“Running”, and “Walking a dog”, the part-image-based feature stream performs worse than other
feature streams. The image-based feature stream obtained an AP of 97.62% on “Jumping” and 93.61%
on “Running”. Similarly, attention-image-based feature stream obtained an AP of 97.41% and 93.47%,
respectively, on the same set of actions. For actions such as “Jumping”, “Running”, “Walking the
dog”, and “Gardening”, the human pose and background information is much more relevant than the
detailed body parts information. Overall, the “Proposed: Ensemble of (Image + Part + Concatenation)”
is the best. It means that each of the feature streams learns complementary features for action
recognition, as we intended.

In Table 4, we evaluate our methods by comparing them with the existing ones on the Stanford 40
Actions Dataset. Among the other methods (Action-Specific Detectors [26], VGG-16&19 [42], TDP [29],
ResNet-50 [23], and Action-Mask [28]), the performance of the method in [27] is the best. Part-Based
Network in [27] and Part Action Network in [27] use the body joints information to localize seven
body parts and feed the network with the person bounding box image along with the seven body part
images. Moreover, the Part Action Network [27] uses manually labeled part action annotations on
the Stanford 40 Actions Dataset. The Part-Based Network obtained 89.3% mAP and the part action
network obtained 91.2% mAP, whereas our proposed method (91.91%) uses only three body parts
and does not use additional annotations for body parts. The body joints in the proposed method are
localized in a multitasking manner, unlike the method in [27], which uses an independent human
pose estimator.
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Figure 6. Detailed performance evaluation (average precision) of our proposed method. FS, feature
stream. Results reported are on the Stanford 40 Actions Dataset [15]. Only some action classes are
represented in the figure.
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Table 4. Comparison of mAP with other methods on the Stanford 40 Actions Dataset [15]. Bold font
indicates the best result.

Method mAP

Action-Specific Detectors [26] 75.4

VGG-16&19 [42] 77.8

TDP [29] 80.6

ResNet-50 [23] 81.2

Action Mask [28] 82.6

Part-Based Network in [27] 89.3

Part Action Network in [27] 91.2

Proposed Method 91.91

4.5. Evaluation of the Action Recognition Task on the V-COCO Dataset

To further validate the usefulness of our multitask-aware loss function, we performed experiments
on the V-COCO Dataset [16]. Because the V-COCO Dataset is designed for human object interaction
benchmark, a single image contains multiple human actions and multiple object labels. However,
our focus was to perform action recognition for a single person. Thus, we created training and testing
images by transforming each person at the center using a bounding box. We solved multi-labels action
recognition task for the centered person on the V-COCO Dataset. We used the BCE [38] loss function
for the multi-labels problem. This is different from the action loss function used on the Stanford 40
Actions Dataset. This shows the flexibility of multitask-aware loss function in Equation (3). Table 5
depicts comparison of the mAP obtained on the V-COCO Dataset through different feature streams
and that of the of ensemble of multi-streams. The mAP obtained are 64.59% (image-based feature
stream), 66.30% (attention-image-based feature stream), 62.50% (part-image-based feature stream) and
72.36% (Proposed: Ensemble of (Image + Part + Concatenation)).

Table 5. Comparison of mAP obtained through feature representation from multiple streams for action
recognition on the V-COCO Dataset [16]. Bold font indicates the best result.

Feature Representation mAP

Image-based feature stream 64.59

Attention-image-based feature stream 66.30

Part-image-based feature stream 62.50

Proposed: Ensemble of (Image + Part + Concatenation) 72.36

To analyze the effectiveness of different feature streams in our proposed method, we performed
experiments by training the models independently with these feature streams excluded from the
architecture and including them. In Table 6, “Baseline 1 (trained with Image)” represents the basic
multitask learning framework with only one stream (image-based feature stream) for action recognition.
“Baseline 2 (trained with Image + Part)” represents performance when including the part-image-based
feature stream on training the deep network. “Proposed (trained with Image + Attention + Part)” is
trained including three feature streams (image-based, attention-image-based, and part-image-based).
As can be seen in Table 6, Baseline 1 achieved a mAP of 68.08%, which was improved by a large margin
when trained with the part-image-based feature stream included, reaching a mAP of 69.15% (Baseline 1).
Overall, the proposed training method that includes the three modules for action recognition (i.e.,
image-based, part-image-based, and attention-image-based feature streams) obtained the mAP of 72.36%.
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Table 6. Comparison of mAP with the baseline methods on the V-COCO Dataset [16]. Bold font
indicates the best result.

Methods mAP

Baseline 1 (trained with Image) 68.08

Baseline 2 (trained with Image + Part) 69.15

Proposed (trained with Image + Attention + Part) 72.36

In Figure 7, we compare the class activation mappings [43] of the image-based feature stream on
Baseline 1 (trained with Image), Baseline 2 (trained with Image + Part), and Proposed (trained with
Image + Attention + Part). According to the experimental results, the image-based feature stream in
Baseline 1 can focus on both global and local information. Because Baseline 1 consists of only one
feature stream for action recognition (the image-based feature stream), it is optimized to focus on
both global and local information. On Baseline 2, a part-image-based feature stream is included in
training, which is designed to focus on the local information. Thus, the image-based feature stream can
focus on complementary global information. This, however, degrades the accuracy of the image-based
feature stream, as seen in Figure 7. We found the image-based feature stream is improved by the
attention-image-based feature stream on training i.e., “Proposed method”, as shown by the confidence
values in Figure 7. Since attention-image-based feature stream focuses on global information and the
feature extractor is a shared one, the image-based feature stream tends to focus on the local information
regarding the human body. Therefore, the role of attention-image-based feature stream is to enhance
the feature extraction capability of the image-based feature stream.

Figure 7. FS denotes Feature Stream. The first column depicts the results of the image-based feature
stream on Baseline 1. The second column depicts the results of the image-based feature stream on
Baseline 2. The third column depicts the results of the image-based feature stream with the proposed
method. The fourth column depicts the results of the attention-image-based feature stream with
the proposed method. The fifth column depicts the joints location from the pose estimation task.
The results reported are on the V-COCO Dataset [16]. Class activation maps [43] comparison for the
bold GTs (“Skateboard” in first row and “Ski” in second row).
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4.6. Qualitative Results

We propose a single end-to-end trainable multitask learning method for pose estimation and action
recognition. The MPII Human Pose Dataset [17] contains only pose annotations for training. However,
as can be seen in Figure 8, we present both pose estimation and action recognition results on this dataset.
Similarly, in Figure 9, we present both pose estimation and action recognition results on the Stanford 40
Actions Dataset [15], even though the dataset is only meant for action recognition and does not contain
pose annotations for training. Further, we present experimental results on the V-COCO Dataset [16]
in Figure 10. The V-COCO Dataset contains multi-labels for actions. Thus, the proposed method can
even handle heterogeneous datasets while simultaneously performing both pose estimation and action
recognition task.

Figure 8. Pose estimation and action recognition results on the MPII Human Pose Dataset [17]. Predicted
action classes along with confidence scores are shown below the individual results.

Figure 9. Pose estimation and action recognition results on the Stanford 40 Actions Dataset [15]. Predicted
action classes along with confidence scores are shown below the individual results.
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Figure 10. Pose estimation and action recognition results on the V-COCO Dataset [16], which has multi-
labels for a person. The ground truth labels and scores for the ground truths are shown below the
individual results.

5. Conclusions

In this paper, we propose a multitask-aware single-image-based action recognition method for
intelligent systems. Specifically, according to our findings, human action is best represented using
multiple streams: (1) image-based; (2) attention-based; and (3) part-based. We showed in our experiments
that the features represented by these streams are complementary and aid in the final classification of
the human action. Moreover, the proposed deep networks for action recognition are less expensive
in computations than the previous method while attaining better results. We believe that our method
contributes to the progress of real-time intelligent sensor systems.
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