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Abstract: An open quantum bipartite system consisting of two independent two-level atoms
interacting nonlinearly with a two-mode electromagnetic cavity field is investigated by proposing a
suitable non-Hermitian generalization of the Hamiltonian. The mathematical procedure of obtaining
the corresponding wave function of the system is clearly given. Pancharatnam phase is studied to give
a precise information about the required initial system state, which is related to artificial phase jumps,
to control the degree of entanglement (DEM) and get the highest concurrence. We discuss the effect
of time-variation coupling, and dissipation of both atoms and cavity. The effect of the time-variation
function appears as frequency modulation (FM) effect in the radio waves. Concurrence rapidly
reaches the disentangled state (death of entanglement) by increasing the effect of field decay. On the
contrary, the atomic decay has no effect.

Keywords: concurrence; control; entanglement; Pancharatnam phase; two-two level atoms

1. Inroduction

Quantum systems promise enhanced capabilities in sensing, communications, and computing
beyond what can be achieved with classical-based conventional technologies rather than quantum
physics. Mathematical models are essential for analyzing these systems and building suitable quantum
models from empirical data is an important research topic. In Dirac theory of radiation [1], he
considered atoms and the radiation field with which they interact as a single system whose energy
is represented by the frequency/energy of each atom solely, the frequency/energy of every mode
of the applied laser field alone, and a small term is to the coupling energy between atoms and field
modes. The interaction term is necessary if atoms and field modes are to affect each other. A simple
model is that we consider a pendulum of resonant frequency ω0, which corresponds to an atom, and a
vibrating string of resonant frequency ω1 which corresponds to the radiation field. Jaynes–Cummings
model (JCM) [2] is the first solvable analytical model to represent the atom–field interaction with
experimental verification [3]. JCM has been subjected to intensive research in the last decades with
many interesting phenomena explored [4–7]. The matter–field coupling term may be constant [8–10]
or time-dependent [11,12], and that depends on the considered physical situation. Parametric coupling
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for superconducting qubits [13,14] is studied [15]. In our case, the atoms are moving while interacting
with the laser field, this topic has been investigated for different quantum systems [16–20].

Using a non-Hermitian generalization of the Hamiltonian (NHH) is now considered as a model to
describe an open quantum system [21–23], we may obtain complex-energy eigenvalues. These NHHs
are justified as an approximate and phenomenological description of an open quantum system such
as radioactive decay processes [24]. Driving a quantum system with the output field from another
driven quantum system, and a quantum trajectory theory for cascaded open systems were studied
by proposing NHH in [25,26], respectively. Investigating the dynamics of three-level systems has
allowed the discussion of teleportation and non-classical properties [27,28], concurrence, and Shannon
information entropy [29,30]. Entanglement is robust under decoherence, independent of the initial state
of the qubits, is relatively easy to generate, and has a system-independent value, such systems could
be used as “entanglement batteries”. This entanglement can be harvested and further transmitted in a
quantum circuit [31]. The entanglement is maximized for intermediate values of the cavity damping
rates and the intensity of the white noise field, vanishing both for small and for large values of these
parameters and thus exhibiting a stochastic-resonance-like behaviour [32].

In this work, we propose a new technique to control the entanglement. Stimulated Raman adiabatic
passage (STIRAP) is a process that allows transfer of a population between two states via at least
two coherent field pulses by inversely engineering the Hamiltonian parameters via Lewis-Riesenfeld
phases [33]. To investigate the essential requirements, such as, efficiency, selectivity robustness and
flexibility, one may use what is called STIRAP [34]. The goal was reached after implementing changes
which were motivated by the following consideration, based again on a rate-equation picture. The laser
beam S, generated by optical pumping , is necessarily confined to the axis of the cavity, and thus, the
driving laser-field P must also propagate along that axis. New molecules traveling towards the cavity
to further feed the laser action find themselves first in the wings of these two lasers, P and S. The P laser
is already strong enough to excite molecules in level 1 to the upper laser level (level 2), but the S laser is
not yet strong enough for the rate of stimulated emission to the target level to compete successfully with
the rate of spontaneous emission. Thus, before reaching the center of the cavity, many molecules are lost
by spontaneous emission to levels other than the target level, thereby spoiling efficiency and selectivity.
After model calculations had confirmed the validity of that view, a remedy was quickly found: remove
the cavity and bring in a second external laser S, with its center shifted upstream of the axis of laser
P. The molecules would then be interacting with a strong S field as they reached the wings of the P
laser. Therefore, the rate of stimulated emission, induced by the S field, would be sufficiently large to
compete with spontaneous emission as soon as molecules have traveled far enough to be excited by the
P laser. Modification of the molecular-beam-laser modeling code (using a density-matrix approach) [35]
to include the spatial shift of the two laser fields (a timing offset between the two fields affecting
the molecules) confirmed that fully transfer efficiency should be achievable. This prediction was in
fact experimentally demonstrated soon afterwards [36], where it was noted that the proposed and
demonstrated technique does not require laser intensity modulation, laser frequency chirping, or level
shifting. STIRAP has been explained chemically and physically [37], and its protocols have been applied
to various models to speed up adiabatic passage techniques and achieve fast and robust population
control in two-level atomic systems [38,39], in a three-level system STIRAP [40–42] can be used to
transfer population from the ground state |0〉 to the second excited state |2〉 without having excitations
in state |1〉 during the process. In this situation, it is possible to realize 0− 2 population transfer even in
systems where that would otherwise be a forbidden transition, as is the case of the transmon [43], and
four-level atom [44]. The system in [45] consisted of a fixed-frequency transmon qubit embedded in
a three-dimensional superconducting aluminium cavity and if the coupling strength is much smaller
than the qubit–cavity detuning, the undriven qubit–cavity system is well described by the dispersive
Jaynes–Cummings Hamiltonian. The authors of [46] measured the modulation response of several QC
lasers, packaged and processed as just described, by driven them with the output of synthesized signal
generator and light output was detected with a GaAs/AlGaAs quantum-well infrared photodetector
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(QWIP), also packaged for high-speed operation and the resulting photocurrent was amplified and fed
to a microwave spectrum analyzer, where the modulation amplitude was measured. In [47], the authors
review the physical phenomena that arise when quantum mechanical energy levels are modulated in
time. The dynamics resulting from changes in the transition frequency is a problem studied since the
early days of quantum mechanics. It has been of constant interest both experimentally and theoretically,
with the simple two-state model providing an inexhaustible source of novel concept. The choice of initial
system parameters as we propose is related to the artificial phase jumps of Pancharatnam phase. Phase
jumps are promising points such that they generate better entanglement degrees, and its successive
repetition inside any system dynamics reflects a good sign of system capability to transfer information,
as the geometric phases can be altered by changing the relative delay of the laser pulses [48].

Our work here is oriented around the interaction of an open quantum system of two independent
two-level atoms with a quantization (non-classical) of electromagnetic field in a dissipative cavity in the
multi-photon process. In Section 2, the considered physical scenario is introduced, the corresponding
Hamiltonian is investigated, and the mathematical procedure for obtaining the solution of the wave
equation is clearly given. In Section 3, we discuss the proposed technique to control the entanglement
by properly choosing the initial values of the atomic state. Concurrence is also discussed to determine
the effect of other parameters in the system. In Section 4, a brief conclusion and results are given.

2. Physical Scenario

The theoretical model as illustrated in Figure 1 can be written as a non-Hermitian Hamiltonian

Ĥ =
2

∑
j=1

2

∑
`=1

(−1)j+1

2
(Ω`

j − iΓ`
j )σ̂

`
jj +

2

∑
j=1

(ωj − iγj)â†
j âj

+
2

∑
`=1

λ̄`(t)
(
âκ
` σ̂`

12 + â†κ
` σ̂`

21
)
.

(1)

where Ω`
j is the associated frequency/energy of level j of the corresponding atom `, with Γ`

j is the

atomic corresponding decay rate, and σ̂`
ij = |i〉 〈j|, (i, j = 1, 2) are the atomic-flip operators for |j〉 → |i〉,

they satisfy the commutation relation [σ̂ij, σ̂αβ] = σ̂iβδαj − σ̂αjδiβ. ωj is the energy/frequency of the
quantized electromagnetic cavity field mode j with a corresponding decay rate γj and âj (â†

j ) is
the annihilation (creation) operator for the field mode j, and they obey the commutation relation
[âi, â†

j ] = δij. Here, we consider that Ω`
j >> Γ`

j , and ω`
j >> γ`

j [49]. λ̄`(t) is the time-dependent
coupling torque of the matter–field interaction. It is more realistic to consider that the interaction
intensity is not uniform, and in the following calculations we consider that λ̄`(t) = λ` cos(v`t). κ refers
to photon number process. To study the dynamics and properties of this model, we need to get the
corresponding wave function |ψ(t)〉, which can be formulated in the following form,

|ψ(φ, t)〉 =
∞

∑
n1,n2=0

(
A(n1,n2)

1 (φ, t)e−iα1t |n1, n2, 1, 1〉

+ A(n1,n2)
2 (φ, t)e−iα1t |n1, n2 + κ, 1, 2〉

+ A(n1,n2)
3 (φ, t)e−iα1t |n1 + κ, n2, 2, 1〉

+ A(n1,n2)
4 (φ, t)e−iα1t |n1 + κ, n2 + κ, 2, 2〉

)
(2)

where A(n1,n2)
m (t) (m = 1, 2, 3, 4) are functions of time and field modes, called the probability amplitudes.

αm are field-dependent functions, and can be defined as follows,
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α1 =
1
2
(Ω1

1 + Ω2
1) + n1ω1 + n2ω2,

α2 =
1
2
(Ω1

1 −Ω2
2) + n1ω1 + (n2 + κ)ω2,

α3 =
1
2
(Ω2

1 −Ω1
2) + (n1 + κ)ω1 + n2ω2,

α4 =
−1
2

(Ω1
2 + Ω2

2) + (n1 + κ)ω1 + (n2 + κ)ω2.

(3)

Figure 1. Energy level diagram of two two-level atoms coupled to two-mode field in a dissipative cavity.

By applying the time-dependent Schrödinger equation to the system, we get the following coupled
differential equations. The trigonometric function in λ̄`(t) can be reformulated in an exponential form.
There exist exponential terms with two different powers in the differential equations, e±i(∆+v)t and
e±i(∆−v)t. Approximately, we can ignore the counter oscillating terms e±i(∆+v)t. This approximation
is similar to the RWA and has been accepted physically for numerous models [29,50]. Therefore, the
differential equations can be recomposed to be

i


Ȧ(n1,n2)

1 (t)
Ȧ(n1,n2)

2 (t)
Ȧ(n1,n2)

3 (t)
Ȧ(n1,n2)

4 (t)

 =


k1 g2ei(∆−v)t g1ei(∆−v)t 0

g2e−i(∆−v)t k2 0 g1ei(∆−v)t

g1e−i(∆−v)t 0 k3 g2ei(∆−v)t

0 g2e−i(∆−v)t g1e−i(∆−v)t k4

×
×
[

A(n1,n2)
1 (t) A(n1,n2)

2 (t) A(n1,n2)
3 (t) A(n1,n2)

4 (t)
]T

(4)

After using the method in [29], we get

i


Ḃ(n1,n2)

1 (t)
Ḃ(n1,n2)

2 (t)
Ḃ(n1,n2)

3 (t)
Ḃ(n1,n2)

4 (t)

 =


k1 g2 g1 0
g2 k2 0 g1

g1 0 k3 g2

0 g2 g1 k4




B(n1,n2)
1 (t)

B(n1,n2)
2 (t)

B(n1,n2)
3 (t)

B(n1,n2)
4 (t)

 (5)
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where

k1 =
1
2i

(
Γ1

1 + Γ2
1 + n1γ1 + n2γ2

)
,

k2 =
1
2i

(
Γ1

1 − Γ2
2 + n1γ1 + (n2 + κ)γ2

)
,

k3 =
1
2i

(
Γ2

1 − Γ1
2 + (n1 + κ)γ1 + n2γ2

)
,

k4 =
1
2i

(
−Γ1

2 − Γ2
2 + (n1 + κ)γ1 + (n2 + κ)γ2

)
,

∆ = Ω1
j − κω1 = Ω2

j − κω2,

g1 =
λ̄1

2

√
(n1 + κ)!

n1!
,

g2 =
λ̄2

2

√
(n2 + κ)!

n2!
,

(6)

B(n1,n2)
1 (t) = A(n1,n2)

1 (t)ei(∆−v)t,

B(n1,n2)
2 (t) = A(n1,n2)

2 (t),

B(n1,n2)
3 (t) = A(n1,n2)

3 (t),

B(n1,n2)
4 (t) = A(n1,n2)

4 (t)e−i(∆−v)t.

iḞ (n1, n2, t) =M(n1, n2)F (n1, n2, t), (7)

The solution of the coupled system in Equation (7) depends on the initial states of the system.
We pay an attention for determining the formulas of probability amplitudes by preparing the atoms
initially to be made in superposition of the states

|ψ(0)〉atom = cos(θ) |e1, e2〉+ e−iφ sin(θ) |g1, g2〉 ,

where φ is the corresponding phase of the two states. If we take θ = 0, both atoms are in excited states.
Whereas if we take θ = 1

2 π, the ground states are considered. The solution of this system is given by

F (n1, n2, t) = exp
[
− iM(n1, n2)t

]
F (n1, n2, 0). (8)

whereM(n1, n2) and F (n1, n2, t) take the following forms,

M(n1, n2) =


k1 g2 g1 0
g2 k2 0 g1

g1 0 k3 g2

0 g2 g1 k4

 , (9)

F (n1, n2, t) =
[

B1(n1,n2)(t) B(n1,n2)
2 (t) B(n1,n2)

3 (t) B(n1,n2)
4 (t)

]T

(10)

This coupled system of differential equations can be solved numerically or analytically be using
a method to get the exponential of the 4× 4 matrix in Equation (5) as illustrated in [51] and applied
in [52–54]. By applying Newton interpolation method [51] for getting the matrix exponential, which
states that for a matrix A with eigenvalues λj, (j = 1, 2, .., n), n is the dimension of the matrix,
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etA = eλ1tI +
n

∑
j=2

[
λ1, ..., λj

]
Πj−1

κ=1 (A− λκI) , (11)

where I is the unitary matrix and the divided differences
[
λ1, ..., λj

]
depend on t and defined

recursively by

[λ1, λ2] =
eλ1t − eλ2t

λ1 − λ2
(12)

[λ1, ..., λκ+1] =
[λ1, ..., λκ ]− [λ2, ..., λκ ]

λ1 − λκ+1
, κ ≥ 2. (13)

Thus, by using the above method to e−iMt, where A = −iM and the eigenvalues Em(t) of A are
defined in Equation (5), then

Em(t) = −
b
4
± s±

√
q
s
− 2p− 4s2, (14)

with

s =
1
2

√
1
3

(
Q+

∆0

Q

)
, Q =

∆1 +
√

∆2
1 − 4∆3

0

2

1/3

,

p =
8c− 3b2

8
, q =

b3 + 8d− 4bc
8

,

∆0 = c2 − 3bd + 12e,

∆1 = 2c3 − 9bcd + 27(b2e + d2)− 72ce,

(15)

b = −i(κ1 + κ2 + κ3 + κ4),

c = ∆2 + 2g2
1 + 2g2

2 + ∆κ1 − κ1κ2 − κ1κ3 − κ2κ3 − ∆κ4

− κ1κ4 − κ2κ4 − κ3κ4 − 2∆v−vκ1 + vκ4 + v2,

d = −i
(

∆κ2 + ∆κ1κ2 + ∆2κ3 + ∆κ1κ3 − κ1κ2κ3 − ∆κ2κ4 − κ1κ2κ4

− ∆κ3κ4 − κ1κ3κ4 − κ2κ3κ4 + g2
1(κ1 + κ2 + κ3 + κ4)

+ g2
2(κ1 + κ2 + κ3 + κ4)− (κ2 + κ3)(2∆ + κ1 − κ4)v

+ v2(κ2 + κ3)

)
,

e = g4
1 +

(
g2

2 − κ2(∆ + κ1 −v)

)(
g2

2 + κ3(∆− κ4 −v)

)
− g2

1

(
2g2

2 + ∆(κ3 − κ2) + κ3(κ1 −v) + κ2(κ4 + v)

)
.

(16)

e−itM = eE1tI + [E1, E2] (−iM−E1I) + [E1, E3] (−iM−E1I) (−iM−E2I)
+ [E1, E4] (−iM−E1I) (−iM−E2I) (−iM−E3I)
+ [E1, E5] (−iM−E1I) (−iM−E2I) (−iM−E3I) (−iM−E4I) ,

(17)

where the divided differences are formulated as follows,

[E1, E2] =
eE1t − eE2t

E1 − E2
, (18)

[E1, E3] =
[E1, E2]− [E2, E3]

E1 − E3
=

eE1t − eE2t

(E1 − E2)(E1 − E3)
− eE2t − eE3t

(E1 − E2)(E2 − E3)
, (19)
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[E1, E4] =
[E1, E3]− [E3, E4]

E1 − E4

=
eE1t − eE2t

(E1 − E2)(E1 − E3)(E1 − E4)
− eE2t − eE3t

(E1 − E2)(E2 − E3)(E1 − E4)

− eE3t − eE4t

(E1 − E4)(E3 − E4)
.

(20)

After the derivation of the matrix exponential, we can calculate the formulas of the probability
amplitudes of the wave function of the sytem. The atoms are initially in superposition of states, and
the initial field is oriented in the coherent states. Then, the final form of the probability amplitudes be
formulated to be 

A(n1,n2)
1 (t)ei(∆−v)t

A(n1,n2)
2 (t)

A(n1,n2)
3 (t)

A(n1,n2)
4 (t)e−i(∆−v)t

 = e−itM


A(n1,n2)

1 (0)

A(n1,n2)
2 (0)

A(n1,n2)
3 (0)

A(n1,n2)
4 (0)

 (21)

For simplicity, in the next calculations we consider λ1 = λ2 = λ, v1 = v2 = v, Γ1 = Γ2 = Γ, and
γ1 = γ2 = γ.

3. Pancharatnam Phase and Concurrence

We need to estimate a certain parameter for controlling the dynamics and entanglement of the
system. A special attention is paid for the value of the initial latter phase parameter φ. To reach that
goal, we investigate the evolution of Pancharatnam phase Φ(φ, t) = arg(〈ψ(φ, 0)|ψ(φ, t)〉). To control
the phase φ, we plot Φ(φ, t) vs. φ for three different values of the scaled time λt, as in Figure 2. The red,
black, and blue curves are plotted for λt = π/3, π/4, and π/2, respectively. In the red curve, we note
that there is a smooth evolution of the phase, whereas for the black and blue curves, they exhibit two
artificial phase jumps for two different values of φ. The phase jump for the blue curve (λt = π/2)
is repeated every period of π and in-between the jumps the evolution is semi-parabolic shaped and
reflects a slow variation of the system. The two phase jumps of the black curve are repeated every
≈ 13

20 π and in-between the two jumps the variation is very slow, smooth and is separated by ≈ 7
20 π.

Figure 2. The evolution of Pancharatnam phase Φ(φ).

Now, we can detect the dynamical behavior of the considered mutipartite system, by investigating
the degree of entanglement (DEM) by using the concurrence measure, which was formulated as a
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convex measure to amount the DEM for two qubits in pure states by Wootters and Hills [55]. For two
qubits in pure states, concurrence is C(t) =

√
2 (1− Tr$̂2), where $̂ = |ψ(t)〉 〈ψ(t)| is the reduced

density operator. The definition of concurrence has been extended to include multiple qubits [56], and
can be calculated generally by

C(t) =

√√√√2
4

∑
i,j=1,i 6=j

(
$iiρjj − $ij$ji

)
,

where $ij are the elements of reduced density $ in matrix form. Figure 3 sketches the evolution of
concurrence C(t) against the scaled time λt.

(a) v = πλ, θ = 0.

(b) v = 0, θ = π
4 . (c) v = πλ, θ = π

4 .
Figure 3. The evolution of concurrence C(t) vs. the scaled time, for the one-photon process (κ = 1),
ωj = Ωj = 0.1λ, Γj = 0, and n̄j = 10.

In Figure 3, we plot C(t) versus the scaled time by using the estimated initial value for the latter
phase φ = π

2 , which is chosen due to the existence of the artificial phase jump at this value in the
geometric phase in Figure 2. In Figure 3a, we set the atoms initially to be in excited (upper-most)
states θ = 0, and v = πλ, we note that DEM ≤ ln 2, which is less than the standard result in models
initially prepared in superposition of states. In the next figures, we examine the results of considering
superposition of atomic states. In Figure 3b, we set the coupling variation parameter v = 0, and
take three various values for the decay parameter γ of the field. We observe that, in the beginning
of the interaction between the two atoms and the coherent field λt ≤ 3π, the effect of the decay
parameter is not noticed and the concurrence curves are very similar, but at a drastic point of change,
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it differs dramatically, as we see that the black curve γ = 0, and then it fluctuates till reaching a
stable case of concurrence to be ≥ 0.8; the red curve γ = (10−4λ) has a chaotic behavior, as in the
beginning. It evolves to give a higher rate of concurrence compared with the absence of decay case
(black curve), and after a sufficient time it decreases. The blue curve γ = (10−3λ) represents the system
when concurrence rapidly reaches the disentangled state (death of entanglement). In Figure 3c, we
set v = πλ, and we note the effect of the oscillation in the matter–field coupling as proposed in the
considered model. The effect of that function is clearly noted in the higher case of the decay rate (blue
curve) as the interaction has become very weak and fluctuations affect the system evolution. The effect
of the time variation function appears as the frequency modulation (FM) effect in the radio waves.
FM is a method to encode information in a laser field by varying the instantaneous frequency of the
coupling between matter and laser. Also, we note that the presence of v or its absence, the system has
reached a disentangled state in the same period of scaled time, but the evolution itself changes by the
presence of v. In Figure 4, by taking into consideration the effect of the decay in the atomic energy
levels (Γj), the concurrence has not been affected.

(a) v = 0 (b) v = πλ

Figure 4. The evolution of concurrence C(t) vs. the scaled time, for the one-photon process (κ = 1),
θ = π/4, ωj = Ωj = 0.1λ, γj = 0, and n̄j = 10.

(a) v = πλ, and γ = 10−3λ (b) v = πλ, and Γ = 10−4λ

Figure 5. The evolution of Pancharatnam Φ(t) vs. the scaled time, for the one-photon process (κ = 1),
θ = π

4 , ωj = Ωj = 0.1λ, and n̄j = 10.

In Figure 5, we display the evolution of Pancharatnam phase Φ(t) vs. the scaled time, for various
values of the system decay parameters γ and Γ. Both curves approximately exhibit the same behavior
and for λt ≤ 6π the phases exhibits a quick subsequent artificial phase jumps, then take a dominate
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saturation period till λt ≤ 16π, which is followed by a slow fluctuation that evolves to start another
subsequent artificial phase jumps but less quick than the previous evolution.

4. Conclusions

The interaction between atoms with field of the system has been investigated by taking into
consideration that cavity leaks energies of both atoms and field while the laser field couples the atom
as a cosine wave function of time with a parameter v in the multi-photon process. The RWA has been
applied twice to approximate the interaction part of the system. By solving the coupled differential
equations resulting by applying the time-dependent Schrödinger equation, we get the wave vector and
the corresponding eigenenergies. To control the Degree of the Entanglement (DEM) of the system, we
determine the initial latter phase by plotting the Pancharatnam phase for three different time points,
and investigate the concurrence between the two atoms according to the best value of the latter phase.
By increasing the effect of field decay parameter γ, the concurrence rapidly reaches to the disentangled
state (death of entanglement). On the contrary, the atomic decay parameter Γ has no effect on the
concurrence. The effect of the time-variation function appears as FM effect in the radio waves. FM is
used to encode information between atom and field. The system reaches disentangled state in the
same period of scaled time, but the evolution itself changes by the presence of v. We note that for
various values of the system decay parameters γ and Γ, the evolution of Pancharatnam phase in both
curves approximately exhibits the same behavior.
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