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Abstract: Traffic speed prediction plays a significant role in the intelligent traffic system (ITS).
However, due to the complex spatial-temporal correlations of traffic data, it is very challenging
to predict traffic speed timely and accurately. The traffic speed renders not only short-term
neighboring and multiple long-term periodic dependencies in the temporal dimension but also
local and global dependencies in the spatial dimension. To address this problem, we propose a novel
deep-learning-based model, Global Spatial-Temporal Graph Convolutional Network (GSTGCN),
for urban traffic speed prediction. The model consists of three spatial-temporal components with
the same structure and an external component. The three spatial-temporal components are used to
model the recent, daily-periodic, and weekly-periodic spatial-temporal correlations of the traffic data,
respectively. More specifically, each spatial-temporal component consists of a dynamic temporal
module and a global correlated spatial module. The former contains multiple residual blocks which
are stacked by dilated casual convolutions, while the latter contains a localized graph convolution
and a global correlated mechanism. The external component is used to extract the effect of external
factors, such as holidays and weather conditions, on the traffic speed. Experimental results on
two real-world traffic datasets have demonstrated that the proposed GSTGCN outperforms the
state-of-the-art baselines.

Keywords: spatial-temporal dependencies; traffic periodicity; graph convolutional network; traffic
speed prediction

1. Introduction

Traffic speed prediction is an important part of the Intelligent Transportation System (ITS).
Accurate and timely traffic prediction can assist in real-time dynamic traffic light control [1] and urban
road planning, which will help alleviate the huge congestion problem as well as improve the safety and
convenience of public transportation. Besides, traffic control in advance can prevent traffic paralysis,
pedaling, and other events. Traffic speed prediction aims to predict future traffic speed based on a
series of historical traffic speed observations. The three key complex factors affecting traffic speed are
as follows:

Factor 1: Global Spatial Dependencies. As shown in Figure 1, given the road network and
sensors, the spatial correlations over different nodes on the traffic network are both local and global.
Take Sensor 1 for example; the traffic status of its adjacent sensors (see Sensors 2 and 3) can influence
that of Sensor 1. These are localized spatial correlations between sensors. In addition, the sensors (see
Sensor 4) far from Sensor 1 can indirectly affect the traffic status of Sensor 1. Thus, all other sensors on
the road network have impacts on Sensor 1. These are global spatial correlations between sensors.
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Factor 2: Multiple Temporal Dependencies. Historical traffic conditions at different timestamps
in the same location have different effects on status of a future timestamp. As shown by Sensor 1 in
Figure 1, the traffic status at time t + 1 is more related to that of time t− l + 1, compared with that
of time t. In addition, we find that the trend of traffic speed over time in different workdays shows a
high degree of similarity in Figure 2a. Moreover, the trend of traffic speed on the same workday in
different weeks is similar as well in Figure 2b, which indicates that traffic speed renders both short-term
neighboring and multiple long-term periodic dependencies. Thus, we consider the recent, daily, and
weekly periodic patterns for traffic speed prediction simultaneously.

Factor 3: External Factors. Traffic speed is significantly affected by external factors such as weather
conditions, holidays, other special events, and so on. According to Figure 3a, it is clearly shown that
the traffic speed on holidays is different from that on normal days. In addition, it can be seen in
Figure 3b that the traffic speed of a heavily rainy day is much lower than that of a sunny day.

In addition to the above-mentioned key factors affecting traffic speed, there is uncertainty and
inconsistency in the traffic data sensors collect, due to sensor failures, sensor maintenance, and other
reasons. Several studies [2,3] have focused on evaluating and improving the reliability of sensors.
To address the problem, in this paper, we also deal with the outliers and missing values in the traffic
data, respectively.

Figure 1. The topological structure of the road network and complex spatial-temporal correlations
between sensors.

(a) daily periodicity of traffic speed (b) weekly periodicity of traffic speed

Figure 2. Multiple temporal dependencies of the traffic speed for PeMSD7. (PeMSD7 is a dataset
containing traffic information from the sensors on the highways of Los Angeles County.)

Studies on traffic prediction have never stopped in the past few decades. Early statistical
methods [4,5] and traditional machine learning methods [6–8] for traffic prediction cannot model
the non-linear temporal correlations of traffic data effectively, and they hardly consider spatial
dependencies. In recent years, with the continuous development of deep learning, many researchers
have applied deep-learning-based methods to the traffic domain. Some studies [9–11] combine
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for traffic prediction,
where CNNs are used to capture the spatial dependencies while RNNs are used to extract the temporal
correlations of traffic data.
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(a) New Year’s Day versus Normal Day (b) sunny versus rainy

Figure 3. Effects of holidays and weather in San Francisco Bay Area.

The main limitation of the aforementioned methods is that conventional convolution operations
only capture the spatial characteristics of regular grid structures. They are not suitable for data with
irregular topologies. To tackle this problem, graph convolutional networks (GCNs) that can effectively
handle non-Euclidean relations are integrated with RNNs [12] or CNNs [13] to embed prior knowledge
of the road network and capture the correlations between sensors. The graph convolution network here
represents the road network structure as a fixed weighted graph. Wu et al. [14] integrated Wavenet [15]
into the GCN to capture the dynamic spatial-temporal correlations of traffic data, while using an
adaptive adjacency matrix to obtain hidden spatial dependencies in the road network. However,
there are still some limitations in these methods: (i) RNN-based models are challenging to train
well [16] due to the problem of gradient disappearance or gradient explosion, and the receptive field
of RNNs is limited; (ii) many existing methods only consider localized spatial correlations but ignore
non-local ones; and (iii) they do not utilize more complicated traffic-related features such as the existing
periodicity, repeating patterns, and external factors.

To capture the dynamic complex spatial-temporal correlations more effectively, we propose a
novel global spatial-temporal graph convolutional network called GSTGCN to predict urban traffic
speed, which consists of three independent spatial-temporal components with the same structure and
one external component. Each spatial-temporal component contains a dynamic temporal module and
a global correlated spatial module. The main contributions of this paper are as follows:

• We develop a dynamic temporal module, which consists of multiple residual blocks stacked
by dilated causal convolutions. It has a long receptive field and can capture dynamic temporal
correlations effectively.

• We design a global correlated spatial module, which contains a localized graph convolution
and a global correlated mechanism. It is proposed to simultaneously capture the local spatial
correlations and global ones between sensors in the traffic network.

• The whole model fuses the output of the three spatial-temporal components considering
multiple temporal dependencies and takes external factors into account to predict traffic speed.
The experimental results demonstrate that the proposed GSTGCN outperforms the eight baselines.

2. Related Work

Over the past few decades, traffic prediction has been extensively studied. Early statistical
methods for traffic prediction were simple time series models, containing Autoregressive Integrated
Moving Average (ARIMA) [4] and its variant [17], vector autoregression (VAR) [5], etc. These methods
rely on data stationary assumption, thus have limited ability to model complex traffic data. Later,
models based on traditional machine learning methods, such as k-nearest neighbors (KNN) [6], support
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vector regression (SVR) [7], and Kalman filtering (KF) [8], were applied to traffic prediction to model
more complex data. However, these methods cannot capture non-linearity in traffic data effectively,
and barely utilize spatial correlations [18]. Moreover, they need more detailed feature engineering.

Recently, methods based on deep learning have been applied in many fields and achieved success,
which has inspired the study of traffic prediction to use deep-learning-based methods modeling
the complex spatial-temporal dependencies of the traffic data [19]. Lv et al. [20] utilized a stacked
autoencoder (SAE) to predict the traffic status of different nodes. Luo et al. [21] integrated KNN and
LSTM [22] to predict traffic flow. Yu et al. [23] combined LSTM networks with SAE to predict traffic
status in extreme conditions. Cui et al. [24] proposed a LSTM-based network composed of bidirectional
ones and unidirectional ones for traffic prediction. In addition, Zhang et al. [25] transformed the
road network into a regular 2D grid and used convolutional neural network to predict citywide
crowd flows. Liu et al. [26] used fully-connected neural networks and improved residual network to
predict bus traffic flow. Later, the authors of [9–11] combined convolutional neural networks (CNNs)
with recurrent neural networks (RNNs) and its variants for traffic forecasting. However, the main
limitation of the above models is that conventional convolution operations can only capture the spatial
characteristics of regular grid structures but do not work for data points with irregular topologies.
Therefore, they fail to make an effective use of the topological structure of the traffic network to capture
complex spatial correlations.

To extract the spatial correlations of traffic data with complex topologies, extending neural
networks to process graph-structured data has attracted widespread attention [27]. A series of studies
has extended traditional convolution to model arbitrary graphs on spectral [28–30] or spatial [31–33]
domain. Spectral-based methods use a graph spectral filter to smooth the input signals of nodes.
Spatial-based methods extract high-level representations of nodes by gathering feature information of
neighbors. Other studies focus on graph embedding, which learns low-dimensional representations
for vertices that preserve the graph-structured information [34,35]. To overcome the limitation of
conventional convolution and capture more complex spatial-temporal dependencies, Li et al. [12]
proposed a framework that combines the diffusion convolutional with the recurrent neural network to
forecast traffic conditions. Fang et al. [36] proposed Global Spatial-Temporal Network (GSTNet) for
traffic flow prediction. GSTNet employs tensor casual convolution and global correlated mechanism for
extracting dynamic temporal dependencies and global spatial correlations. Yu et al. [13] proposed the
Spatio-Temporal GCN (ST-GCN), which uses a full convolution structure combining graph convolution
with 1D convolution. In ST-GCN, the graph convolution is used to obtain the spatial correlation, and the
1D convolution is used to extract the temporal dependencies. STGCN is much more computationally
efficiently than the above-mentioned models using RNNs. Afterward, ST-MetaNet [37] utilizes
sequence-to-sequence structure and combines the graph attention network (GAT) with the recurrent
neural network (RNN) for capturing the spatial-temporal correlations. Wu et al. [14] integrated
Wavenet [15] into the GCN to extract the dynamic temporal dependencies of traffic data, while
using an adaptive adjacency matrix to obtain hidden spatial dependencies in the road network.
This self-adaptive adjacency matrix is constructed by the similarity of different node embeddings on
the road network. However, the learned spatial dependencies between nodes lack the guidance of
domain knowledge, and it is prone to overfit during the training phase [18]. In addition, most existing
traffic speed prediction methods ignore global spatial correlations between different nodes in the road
network, and they hardly utilize multiple temporal correlations and external factors.

3. Materials and Methods

3.1. Problem Description

The task of traffic speed prediction is to predict the future traffic speed based on the given
historical traffic measurements (such as traffic speed, traffic flow, etc.) of observed sensors in the road
network. We first define the road network as a weighted undirected graph G = (V , E , A), where V is a
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set of |V| = N nodes, representing observed sensors in the road network; E is a set of edges, indicating
connectivity of nodes; and A ∈ RN×N is a weighted adjacency matrix, which represents the proximity
between nodes and can be computed from the distance in the road network. Then, the traffic data
observed at time t on G are denoted as a graph signal Xt ∈ RN×F. Here, F represents the number of
features observed at each node. The goal of traffic speed prediction is to learn a function f to predict
future T graph signals based on graph G and T′ historical graph signals:

Xt+1, ..., Xt+T = fθ(Xt−T′+1, ..., Xt;G) (1)

where θ stands for the learnable parameters.

3.2. The Architecture of Our Designed Network

Overview: As presented in Figure 4, the GSTGCN model proposed in this paper contains
three independent spatial-temporal components with the same structure and an external component.
The first three spatial-temporal components are designed to model the recent, daily-periodic, and
weekly-periodic dependencies of the historical speed data, respectively, and the external component
extracts the characteristics of external factors, such as weather condition, time of the day, and day of
the week, to model external impacts on traffic speed. The first three spatial-temporal modules have the
same structure. Each of them is composed of a temporal module with multiple stacked residual blocks
and a global correlated spatial module. The global correlated spatial module models the localized
spatial dependencies and the global spatial correlations of traffic data, respectively. We first construct
an adjacency matrix based on the points of interest (POI) data around the sensors and the related
features of the road segments. Then, we intercept three time series segments Xh, Xd, and Xw from the
traffic data along the time axis as inputs to the three spatial-temporal components. Next, we extract the
characteristics of external factors and enter them into the external component. After that, the outputs
of the first three spatial-temporal components Yh, Yd, and Yw are assigned different weights and then
fused into the output Yres. Then, we merge the Yres with the output of the external component Yext to
generate the prediction result. Finally, we utilize a tanh function to map the result into [−1, 1] [38].

Figure 4. The architecture of GSTGCN.
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Adjacency Matrix Construction. Previous studies have only used the distances between sensors
to construct the adjacency matrix, which represents the topological structure of the road network.
However, even if two sensors are geographically far apart, they may have similar traffic conditions
when they are in similar functional areas. Therefore, we consider not only the distance between the
sensors, but also the similarity of the regions in which they are located to construct the adjacency
matrix. More specifically, we first use the Dijkstra algorithm to calculate the distances between pairs
of sensors in the road network, dist(i, j) represents the distance between sensor i and sensor j. Next,
we use Openstreetmap [39] mapping each sensor to the corresponding road segment and collect the
properties of the segment as the road-related features of sensors, which includes speed _ limit, lanes,
length, etc. Then, we obtain the number of points of interest (POIs) of ten categories within 500 m
around the detector from FourSquare [40] as POI relevant features, which contain travel and transport,
food, arts and entertainment, residence, etc. Finally, we splice the road-related features and POI data
to form a feature vector Er. The form is defined as:

Er = (poi1, ..., poi10, lanes, speed_limit, type, length, is_bridge, oneway) (2)

where poii is the number of points of interest of the ith category. The details of road-related features
are presented in Table 1. Therefore, we calculate the similarity of sensor i, j using the cosine similarity
formula [41]:

sim(i, j) =

C
∑

m=1
Er

i,m × Er
j,m

||Er
i || × ||Er

j ||
(3)

where C is the length of feature vector and Er
i represents the feature vector of sensor i. Finally, we use

threshold-based Gaussian kernel [42] to calculate the adjacency matrix; the formula is as follows:

Wi,j =

Bi,j = w1exp(−dist(i, j)2

2σ2
1

) + w2exp(− (1− sim(i, j))2

2σ2
2

) if Bi,j ≥ κ

0 otherwise
(4)

where σ1 is the standard deviation of distances; σ2 is the standard deviation of similarities; w1 +w2 = 1;
and κ is the threshold.

Table 1. Road-related features.

Feature Description

lanes the number of lanes
speedLimit speed limit of the road segment (km/h)

isBridge whether the road leads to a bridge
roadLength length of the road segment (km)

type the type of road segment
oneway whether roads allow driving in only one direction

Detailed Three Time Series Segments: Suppose that the sampling frequency is p times a day.
The current time is t0, and the length of the sequence to be predicted is Tp. As described in Figure 5,
we intercept three time series fragments of length Th, Td, and Tw along the time axis as the inputs of
three spatial-temporal components, respectively. Here, Th, Td, and Tw are all integer multiples of Tp.
The details of the three time series fragments are as follows:

• The recent segment: Xh = (Xt0−Th+1,Xt0−Th+2,...,Xt0)∈ RN×F×Th . As shown by the red part in
Figure 5, this segment is directly adjacent to the time series to be predicted. Since the traffic
condition of the sensors gradually spreads to the vicinity over time, the adjacent historical time
series have a great impact on it.
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• The daily-periodic segment: Xd = (Xt0−(Td/Tp)∗q+1,Xt0−(Td/Tp)∗q+2,...,Xt0−(Td/Tp)∗q+Tp ,
Xt0−(Td/Tp−1)∗q+1,Xt0−(Td/Tp−1)∗q+2,...,Xt0−(Td/Tp−1)∗q+Tp ,...,Xt0−q+1,Xt0−q+2,...,Xt0−q+Tp )∈
RN×F×Td . It includes several time segments in the past few days that are the same as the predicted
time period, as shown by the green part in Figure 5. As people’s daily routines are almost fixed on
workdays, such as morning peaks and evening peaks, traffic data may show repeating patterns.
The purpose of this component is to model the daily periodicity of traffic data.

• The weekly-periodic segment:Xw = (Xt0−(Tw/Tp)∗7∗q+1,Xt0−(Tw/Tp)∗7∗q+2,...,Xt0−(Tw/Tp)∗7∗q+Tp ,
Xt0−(Tw/Tp−1)∗7∗q+1,Xt0−(Tw/Tp−1)∗7∗q+2,...,Xt0−(Tw/Tp−1)∗7∗q+Tp ,...,Xt0−q+1,Xt0−q+2,...,Xt0−q+Tp )∈
RN×F×Tw . It is composed of the same periods of the past few weeks with the same week attribute
as the time segment to be predicted, as shown by the blue part in Figure 5. Usually, the traffic
pattern on a weekday is similar to those on the historical weekday, but the weekend would be
different. The weekly-periodic component is designed to capture the weekly periodic patterns of
traffic data.

Figure 5. An example of extracting time series segments. Xh, Xd, and Xw correspond to the three
time series fragments input into the model. Xp is the time series to be predicted and its length is Tp.
The lengths of Xh, Xd, and Xw are Th, Td, and Tw. Here, Tp is equal to Th and Td, Tw are double Th.

3.3. Structures of the Three Spatial-Temporal Components

Traffic conditions usually involve multiple temporal periodic patterns, and the traffic data exhibit
strong daily and weekly periodicity. Taking multiple periodic temporal dependencies into account
will improve prediction performance [19]. The three spatial-temporal components, respectively, model
the recent, daily-periodic, and weekly-periodic spatial-temporal dependencies with the same structure.
It includes two sub-modules: a dynamic temporal module and a global correlated spatial module (see
Figure 4).

3.3.1. Dynamic Temporal Module

We propose a dynamic temporal module to extract the temporal dependencies of the traffic data.
The dynamic temporal module is composed of multiple residual blocks containing stacked dilated
casual convolutions [43]. It has a long receptive field so as to capture both short-term neighboring and
long-term periodic temporal dependencies with high effectiveness.

Dilated Casual Convolution: Dilated causal convolution (DCC) is based on 1D convolution,
injecting holes into the convolution kernel, padding zeros to the input sequence to keep its length
unchanged, skipping a fixed step, and sliding on the input sequence to operate convolution. In Figure 6,
for a 1D sequence x ∈ RT when the convolution kernel is f ∈ RK, xt denotes the tth value in the 1D
sequence x, the dilated causal convolution is F, and the tth value of the dilated causal convolution
result is as follows:

Ft(x) = ( f ∗d x)t =
K−1

∑
i=0

f (i) · xt−d·i (5)

where d refers to the dilation factor. It is the distance skipped during the convolution process. Multiple
stacked dilated casual convolutions with progressively increasing dilation factor d(l) = 2(l−1) make
the model’s receptive field grow exponentially, where l denotes the number of layers.
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Figure 6. Dilated casual convolution with kernel size 2. With dilation factor d, it performs a standard
1D convolution on the selected sequence that is picked from the input every d steps.

Residual Block Architecture: As shown in Figure 4, a residual block contains two stacked
dilated causal convolutional layers and an identity map. The identity map is connected across layers.
It addresses the gradient explosion problem in the deep networks. Weight normalization [44] is
added after each dilated causal convolution layer to tackle the overfitting problem. For non-linearity,
the rectified linear unit (ReLU) [45] keeps the model’s convergence rate steady. The dilation factors
of two DCC layers in a residual block are the same. Given an input Xl ∈ RN×T×F, the result Xl+1 ∈
RN×T×F′ after passing through the (l + 1)th residual block is:

Xl+1 = Xl + ReLU(Φ1 ∗d1 (ReLU(Φ0 ∗d0 Xl))) (6)

where Φ0, Φ1 ∈ RF×F′×K are the convolution kernels for two dilated causal convolutions in a residual
block. F and F′ represent the number of input features and output channels, respectively; d0 and d1

are the dilation factors; and K is the length of the convolution kernel.
Most previous models used RNN- and CNN-based methods to capture temporal dependencies,

but they cannot handle very long sequences and are prone to the problem of gradient explosions.
In contrast, residual blocks have a larger receptive field via stacking fewer dilated casual convolutional
layers, and the introduction of residual connections also eliminates the problem of gradient
disappearance or explosion. Besides, this architecture can be calculated in parallel with much less
resource consumption.

3.3.2. Global Correlated Spatial Module

This paper proposes a global correlated spatial module for capturing complex spatial correlations
between nodes on the traffic network. The module contains a localized graph convolution and a global
correlated mechanism with residual connection [16], where the former is used to extract local spatial
correlations while the latter is used to capture the non-local spatial correlations.

Localized Graph Convolution: Since traditional convolutions fail to effectively extract the
complicated spatial correlations between different nodes on the traffic network, the spectral graph
theory extends the convolution to the graph-structured data. In spectral graph theory, the Laplacian
matrix of a graph represents its topological structure. Therefore, we can study the properties of the
graph by analyzing the eigenvalues and eigenvectors of the Laplacian matrix. The Laplacian matrix of
a graph is defined as L = D−A, and the normalized Laplacian matrix L = IN −D−

1
2 AD−

1
2 ∈ RN×N ,

where IN is a unit matrix with N dimensions, A ∈ RN×N is the adjacency matrix, and the D ∈ RN×N
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is the degree matrix, with Dii = ∑j Aij. The eigenvalue decomposition of the normalized Laplacian
matrix is L = UΛUT , where U is eigenvectors of the normalized L and Λ is the diagonal matrix with
corresponding eigenvalues. Let x ∈ RN be the signal of all nodes on the traffic network. The Fourier
transform of the signal x is x̂ = UTx. According to the properties of the Laplacian matrix, U is an
orthogonal matrix, so the inverse Fourier transform of the signal x̂ is x = Ux̂. Based on these concepts,
the signal x on graph G is filtered by the convolution kernel gθ :

gθ ∗G x = gθ(L)x = gθ(UΛUT)x = Ugθ(Λ)UTx (7)

The spectral graph convolution first uses the Fourier transform to map the graph signal x and
the kernel gθ into an orthogonal space formed by the Laplacian matrix eigenvectors, then performs
convolution in the Fourier domain, and last conducts the inverse Fourier transform to obtain the
final graph convolution results. However, this method requires explicit Laplacian matrix eigenvalue
decomposition, and the computational complexity is too high, when the scale of the graph is large.
Therefore, in this paper, we employ the Chebyshev polynomial [29] to approximate the convolution
kernel and solve this problem. The formula is as follows:

gθ ∗G x = gθ(L)x =
K−1

∑
k=0

θkTk(L̃)x (8)

where the parameter θ ∈ RK is a vector of polynomial coefficients and L̃ = 2
λmax

L− IN , with λmax the
maximal eigenvalue of the Laplacian matrix. The Chebyshev polynomials are recursively defined as
Tk(x) = 2xTk−1(x)− Tk−2(x), in which T0(x) = 1, T1(x) = x.

We denote xi,t ∈ RC as all extracted features of the ith node at the tth historical timestamp, where
C is the number of the input channels. Thus, the input signal of the graph convolution is a feature
matrix Xt = [x1,t, x2,t, ..., xN,t]

T ∈ RN×C and the result of graph convolution is as follows:

X̂t =
K−1

∑
k=0

θkTk(L̃)Xt (9)

where X̂t = [x̂1,t, x̂2,t, ..., x̂N,t] ∈ RN×D, and D is the number of the output channels. It is worth noting
that the convolution results contain the feature information of K-order neighbors, and only capture the
local spatial correlation of the road network structure.

Global Correlated Spatial Mechanism: To model the global spatial correlations between different
nodes in the road network, a global correlated mechanism is proposed, as depicted in Figure 4.
The formula for computing global correlations is as follows:

yi,t = ∑
∀vj 6=vi

si,j · φ(x̂i,t, x̂j,t) · x̂j,tWg + x̂i,tWr (10)

where yi,t ∈ RF represents the output feature of the ith node at timestamp t. Considering whether there
is an edge between the ith node and the jth node in the road network, if there is an edge, si,j = α > 1,
else si,j=1. si,j represents the static global topological weights. In Equation (10), φ is the Gaussian kernel
φ(x, y) = exp(xTWφy), measuring the correlations between two node embedding representations,
where Wφ ∈ RD×D is the learnable parameter. ∑∀vj 6=vi

si,j · φ(x̂i,t, x̂j,t) · x̂j,tWg represents the impact of
all other nodes on the ith node in the spatial dimension and "+x̂i,tWr" denotes a residual connection
with the localized output features of the ith node, with Wr ∈ RD×F and Wg ∈ RD×F the learnable
parameters. The output of the global correlated mechanism at timestamp t is Yt = [y1,t, y2,t, ..., yN,t]

T ∈
RN×F, and the final output feature matrix of the spatial module is Y ∈ RN×T×F.
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3.4. The Structure of the External Component

Traffic speed is affected by many factors such as holidays, weather conditions, and so on. Suppose
t0 is the current time and St+1 represents the feature vector of the external factor at time interval
t + 1 to be predicted. We use the feature vectors of the T time intervals to form a feature matrix S.
In our implementation, S = [St+1, ..., St+T ]

T ∈ RT×Fs , where Fs = 15 is the number of features we
select. Specific details are shown in Table 2. Since the weather conditions at the next T intervals are
unknown, we use the weather forecasting data from the weather website Darksky [46]. Next, we
stack two fully-connected layers in the external component to deal with the external factor features.
The first layer embeds each sub-factor and followed by an activation. The second layer maps the
low-dimensional features to the higher-dimensional ones to get Yext whose shape is the same as Yres.

Table 2. External factors.

Name Description

is_weekend whether it is weekend, dimension: 1
is_weekday whether it is weekday, dimension: 1
is_holiday whether it is holiday, dimension: 1

hour hour of the time, dimension: 1
minute minute of the time, dimension: 1
weather e.g., clear-day,rain,cloudy, dimension: 10

3.5. Multi-Component Fusion

In this section, we discuss how to integrate the four main parts of the model. Since the first three
spatiotemporal components model the recent, daily-periodic, and weekly-periodic spatial-temporal
correlations, respectively, the impact of the three parts on different locations is various. For example,
we intend to predict the traffic speed at 08:30 on Monday morning. For some places with obvious
morning peaks, the output of the daily-periodic and weekly-periodic component have significant
impacts on prediction performance, and for some places where there is no obvious periodic pattern,
the output of the daily component and weekly component will be useless. Above all, the different
locations are all affected by short-term neighbors, long-term period, and trend, but the degrees of
impact may be diverse [25]. Therefore, the impact weights of different spatiotemporal components on
each node are constantly changing, and these weight values should be learned from historical traffic
data. Thus, we fuse the three components of Figure 4 as follows:

Yres = Wh ◦ Yh + Wd ◦ Yd + Ww ◦ Yw (11)

where ◦ is Hadamard product. Wh, Wd, and Ww are all learned parameters. These parameters indicate
the degree to which the outputs of the three spatiotemporal components affect the forecasting target.

Then, we further merge the fusion result Yres of the three spatiotemporal components with the
output of the external component Yext to generate the final prediction result Ŷ , as illustrated in Figure 4.
The output of the entire model is:

Ŷ = tanh(Yres + Yext) (12)

where tanh is a function to map the prediction result to the range of [−1, 1] and makes the model
converge faster.

Our model predicts the future T timestamps speeds of all sensors based on the historical T′ traffic
conditions. We choose the L2 loss as the training target of GSTGCN, which is defined by:

L(Ŷt+1, ..., Ŷt+T ; Θ) = ∑
t

T

∑
i=1
||Ŷt+i − Yt+i||2 (13)
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where Θ are all learnable parameters in the GSTGCN, Yt+i is the ground truth, and Ŷt+i is the model’s
prediction result.

4. Experiments

4.1. Datasets

The proposed model was verified on two highway traffic datasets, PeMSD4 and PeMSD7, collected
by Caltrans Performance Measurement System (PeMS) [47] at 30-s intervals. The traffic speed data
were aggregated from the raw data into 5-min windows. This system deploys 39,000 detectors in major
cities in California. Geographic information of sensors is recorded in datasets with corresponding
interval. The details of the datasets in our experiments are:

PeMSD7: It contains the traffic information from the sensors on the highways of Los Angeles
County. We selected 204 sensors and collected three months of data from 1 January 2018 to 31 March
2018 for the experiment.

PeMSD4: It refers to the traffic data from the sensors in San Francisco Bay Area. We chose
325 sensors and extracted the data from 1 January 2017 to 31 March 2017 for the experiment.

During the experiment, both datasets were divided into chronological order, with 70% used for
training, 10% for validation, and the remaining 20% for testing. The sensors distribution of the two
datasets is displayed in Figure 7. In the data preprocessing stage, we discarded traffic speed outliers
less than 0 and used the tensor decomposition method to complete the missing values in the traffic
speed data. Then, we encoded the non-numeric features in external factors using a one-hot encoding
scheme. Later, we used Min-Max normalization to map its value into [0, 1] and the original speed into
[−1, 1]. During the evaluation phase, we re-projected the speed back to the original range as the final
prediction result.

Figure 7. Sensor distribution of PeMSD4 and PeMSD7 datasets.

4.2. Evaluation Metric

In the experiments, we applied three widely-used metrics to evaluate the performance of our
model: Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) and Mean Absolute Percentage
Error (MAPE). They are defined as follows:

MAE =
1

M× N

M

∑
i=1

N

∑
j=1
|yi,j − ŷi,j| (14)

RMSE =

√√√√ 1
M× N

M

∑
i=1

N

∑
j=1

(yi,j − ŷi,j)2 (15)

MAPE =
1

M× N

M

∑
i=1

N

∑
j=1

|yi,j − ŷi,j|
yi,j

(16)
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where ŷi,j and yi,j are the true value and the predicted value, N is the number of detectors we select in
the road network, and M is the total number of predicted samples.

4.3. Baselines

We compared our model with the following eight models:

• ARIMA [4]: This model predicts future time series data based on historical series values.
• SVR [7]: This model uses support vector regression to predict travel time.
• SAE [20]: A stacked auto-encoder model is used to learn common traffic flow features and is

trained in a voraciously layered way.
• SBU-LSTM [24]: A deep LSTM-based network composed of bidirectional ones and unidirectional

ones for traffic prediction.
• DCRNN [12]: Diffusion Convolutional Recurrent Neural Network integrates sequence2sequence

framework and diffusion convolution to model the relationships of inflow and outflow.
• STGCN [13]: Spatio-Temporal Graph Convolutional Network is a complete convolutional

structure combining graph convolution with 1D standard convolution layers for traffic prediction.
• ST-MetaNet [37]: Spatial-Temporal Meta Learning Network utilizes graph attention network

(GAT) and the recurrent neural network (RNN) for traffic prediction.
• Graph WavaNet [14]: Graph WavaNet employs graph convolution network (GCN) with

self-adaptive matrix and a stacked dilated 1D convolution to model the spatial-temporal graph.

4.4. Experiment Settings

We implemented our GSTGCN model based on the Pytorch framework and conducted
experiments on a computer with one Intel(R) Xeon(R) W-2123 CPU @ 3.60GHz and one NVIDIA
Quadro P2000 GPU card. The dynamic temporal module in the model contained four residual blocks.
The residual blocks consisted of two stacked dilated casual convolutions. The kernel size was set as 3.
The dilation factors of three residual blocks were 1, 2, and 4. The number of kernels in localized graph
convolution and the hidden channels was set to 8. The hyperparameter α was set as 2. For external
component, we set the output channels of the first fully-connected layer to 22, and the output channels
were reduced to 1 by the next fully-connected layer. During the phase of constructing adjacency matrix,
κ, w1 and w2 were set as 0.5. The batch size was 256, and we trained the model for 30 epochs. We used
Adam optimizer to train our model with the initialized learning rate of 0.001. During the testing phase,
we predicted the traffic speed in the next hour (12 steps) based on 12 historical speeds.

4.5. Experimental Results

4.5.1. Prediction Performance Comparison

Table 3 displays the GSTGCN and all baseline models on the PeMSD4 and PeMSD7 datasets for
prediction of MAE, RMSE, and MAPE of 15 min (3 steps), 30 min (6 steps), and 60 min (12 steps).
As shown in the table, we observed that deep learning methods perform better than simple time series
methods (ARIMA) and traditional machine learning methods (SVR), indicating that deep learning
methods can model more complex traffic data. Graph-based models containing STGCN, DCRNN,
Graph WaveNet, ST-MetaNet, and GSTGCN predict more accurately than SAE and SBU-LSTM.
It means that the spatial topological information of the traffic data is critical to prediction performance.
Compared to DCRNN, STGCN, ST-MetaNet, and Graph WaveNet, GSTGCN has a great advantage
in long-term prediction with a slower error growth rate and achieves the best prediction accuracy
on all metrics and both two datasets. To further verify the accuracy of our model, we compared the
prediction performance of GSTGCN for the morning peak hours and weekends with that of Graph
Wavenet. Based on the experimental result shown in Figure 8, we found that GSTGCN performs better
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than Graph WaveNet, which demonstrates that GSTGCN is more effective in modeling the complex
spatiotemporal correlations.

(a) morning peak hours (b) weekends

Figure 8. Speed prediction in the morning peak hours and weekends of the dataset PeMSD7.

Table 3. Performance comparison of different approaches for traffic prediction on PeMSD7 and PeMSD4
datasets. The best results are marked in bold.

Data Method
15 min 30 min 1 h

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

PeMSD7

ARIMA 5.68 9.38 12.36% 6.29 9.98 13.67% 7.23 11.02 14.52%
SVR 3.67 5.52 7.64% 4.28 8.02 9.19% 5.14 9.67 11.27%
SAE 3.44 5.25 7.24% 4.01 7.89 8.89% 4.92 9.25 10.43%
SBU-LSTM 3.52 5.05 7.01% 3.95 7.42 8.52% 4.78 8.93 9.87%
DCRNN 2.46 4.52 5.50% 3.32 6.51 7.94% 4.37 8.23 8.78%
STGCN 2.34 4.40 5.36% 3.28 6.34 7.80% 4.16 7.86 8.80%
ST-MetaNet 2.05 3.95 4.52% 2.81 5.66 6.23% 3.57 7.10 8.01%
Graph WaveNet 2.04 3.92 4.72% 2.74 5.54 6.83% 3.36 6.74 8.74%
GSTGCN 1.20 2.16 2.66% 1.81 3.03 4.58% 3.05 4.63 8.63%

PeMSD4

ARIMA 5.04 7.45 10.86% 6.06 8.09 11.05% 6.98 9.78 12.32%
SVR 3.08 4.62 6.54% 4.09 6.72 7.78% 5.67 8.13 10.96%
SAE 2.90 4.44 6.25% 3.98 6.48 7.52% 5.28 7.66 8.34%
SBU-LSTM 2.10 4.01 6.09% 3.66 6.26 7.05% 4.33 6.85 7.88%
DCRNN 2.15 3.45 4.38% 2.90 5.15 5.74% 3.49 5.78 6.17%
STGCN 2.05 3.30 4.27% 2.85 4.98 5.65% 3.24 5.65 5.98%
ST-MetaNet 1.21 2.73 4.01% 1.79 4.17 3.92% 2.31 5.12 4.83%
Graph WaveNet 1.31 2.76 2.75% 1.66 3.75 3.69% 2.00 4.61 4.73%
GSTGCN 0.73 1.65 1.78% 1.31 3.17 2.94% 1.89 3.43 4.78%

4.5.2. Model Structure Comparison

In this section, we mainly discuss the structural differences between STGCN [13], ST-MetaNet [37],
Graph WaveNet [14], and our proposed model GSTGCN.

STGCN is a deep learning framework with complete convolutional structures. It contains
multiple 1D casual convolutions followed by a gated linear unit (GLU) for capturing temporal
correlations and employs K-order Chebyshev graph convolution on traffic data to extract spatial
dependencies. The architecture only captures simple nonlinear temporal correlations and localized
spatial dependencies of traffic data. We can observe that STGCN performs poorly compared to the
other models in Figure 9a, especially in the case of long-term prediction.
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ST-MetaNet employs a sequence-to-sequence architecture. It introduces meta-learning to
spatiotemporal modeling. The model first utilizes the points of interests (POIs) and density of road
network around the detector to construct node attributes and then constructs the graph’s edge attributes
using k-nearest neighbor (KNN) algorithm. In the model, a meta graph attention network (GAT) is
used to capture diverse spatial correlations, and a meta recurrent neural network (RNN) is employed
to consider diverse temporal correlations. Compared with the ordinary 1D casual convolution, RNN
has the advantage for time series modeling, as it can remember the previous input sequence using its
inner memory structure. Besides, ST-MetaNet takes meta-learning knowledge into account. Thus, it is
superior to STGCN in Table 3 and Figure 9a.

Graph WaveNet is a graph neural network architecture for spatial-temporal graph modeling.
In the spatial dimension, Graph WaveNet introduces an adaptive adjacency matrix to capture spatial
correlation based on diffusion convolution. The adaptive adjacency could learn the hidden spatial
dependency existing in the road network and the diffusion convolution could capture localized spatial
correlations. In the temporal dimension, Graph WaveNet employs stacked dilated casual convolution
(DCC) to obtain temporal dependencies. The stacked dilated casual convolution’s receptive field grows
exponentially as the number of layers increases and can handle long sequence very well. Therefore,
as shown in Table 3 and Figure 9a, Graph WaveNet performs better than ST-MetaNet.

Our proposed model GSTGCN integrates the spatiotemporal correlations of traffic data and the
influence of external factors together. In the temporal dimension, we employ three spatial-temporal
components considering multiple temporal periodicities, and we use stacked dilated casual convolution
(DCC) with residual connection to obtain temporal dynamics in each component. In the spatial
dimension, we model local and global correlations through a global correlated module, which contains
K-order Chebyshev graph convolution and a global correlated mechanism. When constructing the
adjacency matrix, we consider not only the distance between the geographic locations of the sensors,
but also the surrounding points of interests (POIs) data to explore the functional similarity of the area
where the sensors are located. In addition, we take external factors into account using fully connected
layers. Compared to Graph WaveNet, GSTGCN considers multiple temporal periodicities, global
spatial correlations, and the impact of external factors on traffic data. Hence, the experimental results
demonstrate that GSTGCN achieves the best prediction accuracy on all metrics.

(a) (b)

Figure 9. (a) Test Mean RMSE of 12 steps versus the number of training epochs on PeMSD7 dataset.
(b) Fault-tolerance comparison on PeMSD7 dataset.

4.5.3. Number of Residual Blocks in Dynamic Temporal Module

To determine the appropriate number of residual blocks in the model, we selected different
numbers of residual blocks and performed experiments. The experimental results are presented in
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Figure 10a. As the number of residual blocks increases, the prediction performance of the model
improves. However, after the number of residual blocks reaches 4, the accuracy of the model does not
continue to improve or even becomes worse, and the training time of the model also increases greatly.
Finally, four residual blocks are used in the dynamic temporal module of our model.

4.5.4. Effect of Each Component

To investigate the effect of each component of our model on the prediction result, we evaluate
the four variants separately by removing the external module, the global correlated mechanism,
the independent daily-periodic spatial-temporal component, and the independent weekly-periodic
spatial-temporal component from GSTGCN. These four variants are: GSTGCN-noExt, GTSGCN-noGlo,
GSTGCN-noDay, and GSTGCN-noWeek. Figure 10b illustrates the MAE comparison of the GSTGCN
and its four variants predicting the next 12 steps on PeMSD7. It can be seen from the figure
that the GSTGCN consistently outperforms GSTGCN-noExt and GSTGCN-noGlo, indicating the
effectiveness of the external component and the global correlated mechanism. The other two models,
GSTGCN-noDay and GSTGCN-noWeek, have similar short-term prediction performance as GSTGCN,
but they perform worse in the long-term predictions. Therefore, it is proved that the daily-periodic
component and the weekly-periodic component help to capture the long-term temporal dependencies
of the traffic data more effectively.

(a) (b)

Figure 10. (a) Prediction performance of GSTGCN with a different number of residual blocks on
PeMSD7. (b) MAE of each prediction step of GSTGCN and its four variants on PeMSD7.

4.5.5. Fault Tolerance Comparison

Due to sensor maintenance and breakdown, there are partially missing values in the traffic data.
To evaluate the fault-tolerant ability of the model, we randomly discarded a fraction α of the historical
traffic data, and trained the model using the remaining data. In the experiment, we set the α ranging
from 10% to 90%. We conducted experiments on the GSTGCN, Graph Wavenet, DCRNN, STGCN, and
ST-MetaNet using the dataset PeMSD7 separately, and the prediction MAE are shown in Figure 9b.
Our proposed model, GSTGCN, has better fault tolerance than all the other baselines. It indicates
that GSTGCN learn complex spatiotemporal correlations more effectively from sparse and noisy
real-world datasets.

4.5.6. Training Efficiency

We compared the computational cost of GSTGCN, DCRNN, STGCN, ST-Metanet, and Graph
WaveNet on PeMSD7. For the sake of fairness, the training time is the time it takes each model to
train one epoch, and the inference time is the time cost of each model to predict the traffic speed
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at 12 timestamps in the next hour on the validation data. Table 4 demonstrates the experiment
results. We observed that, during the training phase, the fastest is GSTGCN, followed by STGCN
and Graph WaveNet. GSTGCN runs eleven times faster than DCRNN and seven times faster than
ST-MetaNet in training. Since DCRNN and ST-MetaNet use recurrent neural network to capture
temporal dependencies, they need more time to train. For inference, GSTGCN is the most effective
one, and the time cost of STGCN and DCRNN significantly increases because they need to iteratively
predict the results of 12 steps, while GSTGCN and Graph WaveNet generate 12 predictions in one run.
To further investigate the performance of the compared models, we plot the Mean RMSE of 12 steps
on the PeMSD7 test set with increasing training epochs, as shown in Figure 9a. The figure suggests
that our GSTGCN achieves easier convergence and faster training procedure.

Table 4. The computation time on the PeMSD7 dataset.

Model GSTGCN Graph WaveNet ST-MetaNet STGCN DCRNN

Training time (s/epoch) 117.01 520.71 825.52 185.27 1378.25
Inference time (s) 16.32 23.68 44.55 118.597 253.64

5. Conclusions

We propose a novel global spatial-temporal graph convolutional network called GSTGCN to
predict urban traffic speed. In the spatial dimension, the model combines localized graph convolution
and global correlated mechanism for local and non-local spatial correlations. When constructing
the adjacency matrix that represents the structure of the road network, the model considers not
only the distances between the sensors, but also the similarities of the sensors’ locations. In the
temporal dimension, three independent modules are used to model the recent, daily-periodic and
weekly-periodic temporal dependencies, respectively. Each module consists of several residual blocks
containing stacked dilated causal convolutions. In addition, the model takes the effects of weather
condition and other factors such as holidays into account. Experiments on two real-world datasets
showed that the prediction accuracy of our model GSTGCN is significantly better than existing
models. In the future work, we plan to explore more complex spatial correlations to further improve
the prediction accuracy. Since GSTGCN is a general framework for the spatiotemporal prediction
problem of graph-structured data, we can also apply it to other practical applications, such as arrival
time estimation.
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