
applied  
sciences

Article

DERN: Deep Ensemble Learning Model for Short-
and Long-Term Prediction of Baltic Dry Index

Imam Mustafa Kamal 1 , Hyerim Bae 2,* , Sim Sunghyun 2 and Heesung Yun 3

1 Department of Big Data, Pusan National University, Busan 46241, Korea; imamkamal@pusan.ac.kr
2 Department of Industrial Engineering, Pusan National University, Busan 46241, Korea; ssh@pusan.ac.kr
3 Korea Maritime Institute, Busan 49111, Korea; heesung@kmi.re.kr
* Correspondence: hrbae@pusan.ac.kr; Tel.: +82-51-510-2733 or +82-51-512-7603

Received: 8 January 2020; Accepted: 20 February 2020; Published: 22 February 2020
����������
�������

Abstract: The Baltic Dry Index (BDI) is a commonly utilized indicator of global shipping and trade
activity. It influences stakeholders’ and ship-owners’ decisions respecting investments, chartering,
operational plans, and export and import activities. Accurate prediction of the BDI is very challenging
due to its volatility, non-stationarity, and complexity. To help stakeholders and ship-owners make
sound short- and long-term maritime business decisions and avoid market risk, we performed
short- and long-term predictions of BDI using an ensemble deep-learning approach. In this study,
we propose to apply recurrent neural network models for BDI prediction. The state-of-the-art of
sequential deep-learning models such as RNN, LSTM, and GRU are employed to predict one-
and multi-step-ahead BDI values. In order to increase the accuracy, we assemble the models.
In experiments, we compared our results with those of traditional methods such as ARIMA and MLP.
The results showed that our proposed method outperforms ARIMA, MLP, RNN, LSTM, and GRU in
both short- and long-term prediction of BDI.

Keywords: time-series; forecasting; baltic dry index; ensemble method; deep learning

1. Introduction

The Baltic Dry Index (BDI) is a freight index created by the London-based Baltic Exchange.
This index indicates shipment costs for dry bulk cargoes consisting of commodities such as grain,
coal, iron, ore, and copper. The BDI is a composite of three sub-indices, namely Capesize, Panamax,
and Supramax. Those indices have different bulk-carrier capacities, 180,000, 74,000, and 58,000 dwt,
respectively. The BDI has been widely used as a world-trade economic indicator [1]. Many stakeholders
make serious efforts to forecast it, precisely, so as to be able to make smart investment and trading
decisions. However, the volatility, non-stationarity, and complexity of the BDI is known to be more
intractable than stock prices. Therefore, it is a challenging task to perform predictions against
BDI values.

The BDI is regarded as a barometer not only of the shipping industry and international trade,
but also of the global economy [2]. Investors, speculators, and researchers have long found it to be
useful, theoretically challenging, and relevant when projecting future profits. However, because many
managerial decisions are based on future prospects, forecasting accuracy is essential for organizations
and companies in order to avoid market risk. Recent advances in both analytical and computational
methods have resulted in a number of new ways of mining freight-index time-series data.

Ship owners, stakeholders and investors need to be concerned about not only short-term
prediction of time-series data but also long-term prediction. Predicting a long-term sequence of
time-series data is more difficult than short-term prediction [3]. For example, in making a decision
on a vessel, there are multiple options available to the vessel’s owners. If the BDI trend is increasing,
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the vessel’s owners wait for the right time to sell the vessel to get the maximum profit. Instead,
they will immediately sell it if the BDI index tends to decline. In other cases, if the BDI index has an
upward trend, the vessel’s owner will not rent the vessel to the market. Instead, they will operate the
ship by themselves. Conversely, if the BDI trend decreases, they will rent the vessel. Therefore, in this
study, we developed an analytic method for accurate prediction of short- and long-term values of the
BDI for helping vessel’s owners.

The rest of this paper is organized as follows. Section 2 provides the background of our research
and discusses the relevant BDI-related work. Section 3 introduces our proposed method. Section 4
analyzes the experimental results and compares them against econometrics and machine learning
methods. Finally, Section 5 draws conclusions and anticipates future work.

2. Background

In this section, we present the background on our BDI-related research and discuss and some
time-series prediction models available in the literature.

2.1. Related Works

Cullinane et al. [4] were the pioneers in conducting research on BDI prediction using the ARIMA
model. In the past several years, there has been some research done on BDI prediction. Cho and Lin
used a fuzzy neural network model to analyze and forecast BDI [5], and Kamal et al. [6] forecast BDI
as a high-dimensional multivariate regression problem by using deep neural networks. Sahin et al. [7]
predicted one-step-ahead BDI values by their proposed three artificial neural networks, specifically a
univariate model and two bivariate models, by harnessing historical BDI data and the world price
of crude oil. Qingcheng et al. [8] proposed a decomposition technique for BDI data, and then used a
neural network for prediction. Zhang et al. [9] compared econometric models such as ARIMA and
GARCH with artificial neural network models such as BPNN, RBFNN, and ELM. The majority of the
previous research has treated BDI prediction as regression and short-term prediction tasks. In the
present study, by contrast, we conducted research on both short- and long-term prediction of BDI
to facilitate ship-owners’ short- and long-term decision-making. In addition, in terms of models,
the majority of the previous studies have harnessed artificial neural network models and statistical
models. Note that in terms of sequential learning for prediction of time-series data, the recurrent neural
network is the state-of-the-art method. Moreover, nowadays, deep learning with a deep architecture is
a promising approach for accurate prediction.

Over the course of the past few decades, there have been many outstanding approaches
to the prediction of time-series data, such as ARIMA [10], Support Vector Regressor (SVR) [11],
fuzzy systems [12], and deep learning [13–16]. Nonetheless, by those methods alone, accurate
prediction of real data is unobtainable, since real, time-series data commonly is volatile and
non-stationary. For enhanced prediction, some researchers have proposed data transformation [17],
decomposition [18–20], and even ensemble methods [21,22]. In the present study, we harnessed
and combined deep-learning approaches including a deep recurrent neural network (Deep RNN),
a long-short-term memory network (LSTM) and a gated rectified unit neural network (GRU) to obtain
more accurate prediction results.

2.2. Sequential Model

Recurrent Neural Network (RNN) is a type of neural network with loops that allow for retention
of information from the past. Specifically, the loops enable RNN to use information from past time
slices to produce output for the current time slice t. Thus, we can say that the decision made at a
time slice t− 1 affects the decision to be made at t. Therefore, the response of the network to the new
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data depends on the current input as well as the output from the recent past data. The RNN output
calculation is based on iterative calculation of the output of the following two equations:

ht = H(Wxhxt + Whhht−1 + bh) (1)

yt = whyht + by (2)

In Equations (1) and (2), xt is the input sequence, yt is the output sequence, and ht represents the
hidden vector sequence at time slice t (t = 1, 2, ..., T); W and b represent weight matrices and biases,
respectively; and lastly, H is an activation function used for the hidden layer. The back-propagation
through time (BPTT) technique is usually used to train RNNs [23]. However, it is difficult to use
BPTT to train traditional RNNs, due to the gradient-vanishing and exploding problem [24]. Errors
from later time steps are difficult to propagate back to previous time steps for proper updates of
network parameters. To address this problem, the long short-term memory (LSTM) unit has been
developed [25].

LSTM is a special type of recurrent neural network with memory cells. These memory cells are
the essential component for handling of long-term temporal dependencies in the data. LSTM has the
option to add or delete information from this cell state. This operation is done by special structures
in LSTM, which are called gates. The three types of gate are input gate (it), forget gate ( ft), and output
gate (ot), shown in Equations (3) to (8). C̃t is a “candidate” hidden state that is computed based on the
current input and the previous hidden state. Ct is the internal memory of the unit. It is a combination
of the previous memory, as multiplied by the forget gate, and the newly computed hidden state,
as multiplied by the input gate. ht is the output hidden state, and is computed by multiplying the
memory by the output gate [26].

ht = σ(Wi · [ht−1, xt] + bi) (3)

ht = σ(W f · [ht−1, xt] + b f ) (4)

ot = σ(Wo · [ht−1, xt] + bo) (5)

C̃t = tanh(Wc · [ht−1, xt] + bc) (6)

Ct = ft ∗ Ct−1 + it ∗ C̃t (7)

ht = ot ∗ tanh(Ct) (8)

GRU is another type of RNN with memory cells [27]. It is similar to LSTM but with a simpler
cell architecture. GRU also has a gating mechanism to control the flow of information through the
cell state, but has fewer parameters and does not contain an output gate. It consists of two gates, r
being a reset gate, and z an update gate. The reset gate regulates the flow of new input to the previous
memory, and the update gate determines how much of the previous memory to keep. The following
equations are used in the GRU output calculations:

zt = σ(Wxzxt + Whzht−1 + bz) (9)

rt = σ(Wxrxt + Whrht−1 + br) (10)

h̃t = tanh(Wxhxt + Whh(rt � ht−1) + bh) (11)

h̃t = zt � ht−1 + (1− zt)� h̃t (12)

In previous studies [28,29], it has been noted that GRU is comparable to, or even outperforms,
the LSTM. Regarding the obtainment of high accuracy in prediction of the BDI, in this study, we
combined RNN, LSTM, and GRU into an ensemble method. The idea was to combine the predictions
from multiple different sequential models. Each model has different strength and weakness, meaning
that its predictions are better than any other in a certain condition. Importantly, the models must
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be good in different ways: they must make different prediction errors. In addition to reducing the
variance in the prediction, our ensemble can also result in better predictions than any single best model.
For instance, Krizhevsky et al. used model averaging across multiple well-performing CNN models to
achieve outstanding results [30].

3. Method

In this section, our data pre-processing technique, followed by the system design of our proposed
method and the metric measure used to assess the accuracy of our approach are explained.

3.1. Data Pre-Processing and Analysis

The BDI data plotted in Figure 1a shows a sharp increase and a dramatic decrease between
2007 and 2008. Therefore, we pre-processed the data in a way to make it more stationary. By using
a decomposition technique, the BDI data is separated into three components: trend, seasonality,
and noise, as depicted in Figure 1c. The trend can be observed as increasing or decreasing the trend
value in the time-series data; however, the BDI data does not show any significant increasing or
decreasing trend, but rather a peak in 2008 and two long tails. The seasonality repeats the short-term
cycle in the BDI, and the noise corresponds to random variation in the series.

Figure 1. (a) BDI index data; (b) Difference transform of BDI data; (c) Decomposition of BDI data.

Due to the complexity of the bulk shipping market and the non-linear nature of freight rates
series [31], in this study, some data transformation techniques, including difference transform, power
transform, log transform, standardization and normalization, were employed. As indicated in
Table 1, for each transformation technique, we conducted a Dickey-Fuller stationary test to ensure
its effectiveness.

Table 1. Dickey-Fuller test of pre-processing data.

Data Test Statistics p-Value Critical Value 1% Critical Value 5% Critical Value 10%

Original data −2.190442 0.209733 −3.437455 −2.864676 −2.568440
Normalization −2.190442 0.209733 −3.437455 −2.864676 −2.568440

Standardization −2.190442 0.209733 −3.437455 −2.864676 −2.568440
Log transform −2.434086 0.132346 −3.437348 −2.864630 −2.568415

Power transform −2.546063 0.104665 −3.437348 −2.864630 −2.568415
1st difference transform −7.690264 1.42 × 10−11 −3.430000 −2.864676 −2.568440

Normalization is a rescaling of data so that all values are within a certain range. As shown in
Equations (1), (8) and (11), the value range of the tanh function is between −1 and 1; therefore, we
shrunk the BDI to this range. Different from normalization, the standardization technique rescales
the dataset according to the distribution of values so that the mean of the observed values is 0 and
the standard deviation is 1. Further, simple transformation techniques such as power transform and
log transform are performed. The 1st difference transform applied to a time series x creates a new
series z whose value at time t is the difference between x(t + 1) and x(t). This method works very
well in removing trends and cycles. As shown in Table 1, ‘1st difference transform’ results in the
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smallest p-value, which indicates that it generates more stationary time-series data than the original
data. Therefore, in this research, we transformed the BDI data into a more stationary form by using ‘1st
difference transform’, before feeding it into the model. The 1st-difference-transformed data is plotted
in Figure 1b.

3.2. Deep Ensemble Recurrent Network

The design system of our approach is depicted in Figure 2, and the training process is expressed in
Algorithm 1. Firstly, the pre-processed data is independently trained by Deep RNN, LSTM, and GRU.
After those models converge in learning BDI data, in the testing phase, each of the predictions of RNN,
LSTM, and GRU, represented as P1, P2 and P3, are summarized using weighting wp1, wp2 and wp3,
respectively, to predict the Pf that represents the next value of the BDI. The values of wp1, wp2 and
wp3 are learned in supervised learning using basic forward- and back-propagation techniques as in
the neural network. As explained in Section 2.2, all of them are powerful sequence models. Deep
RNN is the best recurrent model, which is able to learn time dependency to predict the next value;
however, it cannot be combined with long-term dependency. LSTM is equipped with complex cell
memory to handle long-term dependency. As for GRU, whereas it harnesses cell memory as well, it
uses a simpler cell than LSTM. Therefore, for obtainment of more accurate results, we combined all of
those models in an ensemble called deep ensemble recurrent network (DERN). The purpose behind
this was to minimize the error rate, since in terms of memory cells, RNN is the simplest (under-fit)
model, while GRU is a simpler model than LSTM albeit more complex (over-fit) than RNN, which
complexity can be denoted as RNN < GRU < LSTM. Moreover, in machine-learning theory, there is
no method that is universally better than any other method (the “no free lunch” theorem), and each
method may make mistakes in different facets of operation. Stacking of multiple different sequential
models may lead to performance improvement over individual models. The multi-model ensemble is
a technique by which the predictions of the collection of models are given as inputs to a second-stage
learning model. The second-stage model is trained to combine the predictions from the first-stage
models optimally in order to obtain a final set of predictions.

The mechanism that we used to make short- and long-term predictions in the present study
is depicted in Figure 3. Figure 3a is one-step-ahead (short-term) prediction model. Therefore, we
transform the univariate time-series data of BDI into xi as a predicted variable and xi+1 as a response
variable. Afterwards, to predict the xi+2, xi+1 is appended to the training data. In Figure 3b meanwhile,
the model predicts multi-values of BDI at a time; thus, it predicts multiple sequences from xi+1 to xn at
once, where n is the number of step predictions. The challenging part of this technique is creating a
model that performs long-sequence prediction at once.

Figure 2. Ensemble deep RNN, LSTM and GRU model.



Appl. Sci. 2020, 10, 1504 6 of 16

Figure 3. (a) Short-term (one-step-ahead) prediction; (b) Long-term (multi-steps-ahead) prediction.

Algorithm 1: DERN

Input : D =
{

xi, yi
}m

j=1
output : Pf

for t← 1 to T do
Learn M1 based on D // M1 is RNN model with its hyper parameter

end
for t← 1 to T do

Learn M2 based on D // M2 is LSTM model with its hyper parameter
end
for t← 1 to T do

Learn M3 based on D // M3 is GRU model with its hyper parameter
end
for t← 1 to m do

P1 = D(M1) // Predict P1 given data D and model M1

P2 = D(M2) // Predict P2 given data D and model M2

P3 = D(M3) // Predict P3 given data D and model M3

end
for t← 1 to T do

Learn wP1, wP2, wP3 based on D // wP1, wP2, wP3 is weight of P1, P2 and P3,
respectively

end
for t← 1 to m do

Pf = P1(wP1) + P2(wP2) + P3(wP3)
end

We conducted some extensive experiments to decide the hyper-parameters of our models.
After some trials and errors, the optimal architecture of RNN, LSTM, and GRU are described in
Table 2. We utilized two stacked of recurrent layers, such as two-layer stacked of RNN, LSTM,
and GRU layer in RNN, LSTM, and GRU model, respectively. Each layer consist of 500 hidden unites
with 20% dropout units and tanh as gate activation. We set the output of the recurrent layers to return
a sequence. The length of the sequence corresponds to the number of steps of prediction. For instance,
if the task is a five-steps-ahead prediction, the sequence length is five. The sequence will be wrapped
by one TimeDistributed layer with the number of hidden units correspond to the sequence length,
and will be activated by Sigmoid function. Each model is trained independently until converge by
using Mean Square Error (MSE) as a loss function and Adam as an optimizer. In the ensemble layer,
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the output of each model is trained by a standard neural network with one dense layer, Sigmoid
activation function, and Adam optimizer is employed to decide the final prediction.

Table 2. Model configuration.

Hyper-Parameter RNN LSTM GRU

Recurrent layer 2 RNN layer 2 LSTM layer 2 LSTM layer
Hidden units 500 of each layer 500 of each layer 500 of each layer
Gate activation tanh tanh tanh
Dropout 20% of each layer 20% of each layer 20% of each layer

Wrapper layer 1 TimeDistributed layer 1 TimeDistributed layer 1 TimeDistributed layer
Hidden units # of step prediction # of step prediction # of step prediction
Activation Sigmoid Sigmoid Sigmoid

Loss function MSE MSE MSE
Optimizer Adam Adam Adam

Ensemble layer 1 Dense layer
Activation Sigmoid
Loss function MSE
Optimizer Adam

To assess how well our prediction predicted short- and long-term BDI, Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE) and Mean Absolute Error (MAPE), denoted in Equations (13)–(15),
respectively, were employed, where n corresponds to the number of data, yt is the actual value of BDI
at time t, and ŷ corresponds to the predicted BDI at time t.

RMSE =

√
1
n

n

∑
t=1

(yt − ŷt)2 (13)

MAE =
1
n

n

∑
t=1

(yt − ŷt) (14)

MAPE =
100%

n

n

∑
t=1

∣∣∣∣ (yt − ŷt)

yt

∣∣∣∣ (15)

4. Experiments

The original BDI data is stored on a daily basis starting from November 1999 and extending
to February 2018. To make our prediction simpler in performing long-term prediction, we sampled
the data on a weekly basis by using average values. The summary statistics of BDI data is shown in
Table 3. In the experiments, the data-shuffling technique was not implemented; instead, we employed
a sliding window technique to split our training and testing data. The data was divided into 70–30%,
80–20% and 90–10% slices for training and testing. We compared the results with deep-learning models
such as Deep RNN, LSTM, and GRU. Further, we compared our proposed method with ARIMA
and Multi-Layer Perceptron (MLP). To obtain the best parameters and architectures, the grid search
technique was employed.

4.1. Short-Term Prediction

Short-term prediction finds one-step-ahead BDI data; the predicting mechanism follows the model
in Figure 3a, due to the fact that the data is weekly. Therefore, it predicts one week ahead of the BDI.
Figure 4 depicts the prediction of BDI in the testing phase using ARIMA, MLP, LSTM, Deep RNN,
GRU, and DERN. As we can see, all of them approximately predict the BDI correctly. In this case,
the worst method is the ARIMA model. As shown in Table 4, the ARIMA error rate is three times
higher than DERN in terms of RMSE. Notice that by changing the portion of training data, the error
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rate is uncertain since the BDI data is volatile, as indicated in Table 3: the swings the data takes relative
to the variance are enormously increased in the interval from 25 to 75%.

Figure 4. Short-term or one-step-ahead prediction of BDI in testing phase.

Table 3. Summary statistics of BDI data.

Parameter Value

Count 4567.00
Mean 2417.19

Standard Deviation 2127.62
Minimum 290.00

25% 993.00
50% 1588.00
75% 3020.00

Maximum 11,793.00

Table 4. Experimental results of one-step-ahead (short-term) prediction of BDI.

Method 70–30% 80–20% 90–10%
RMSE MAE MAPE RMSE MAE MAPE RMSE MAE MAPE

ARIMA 47.46 33.34 3.29 37.69 28.99 3.24 39.75 31.84 3.19
MLP 5.99 4.56 0.47 18.84 16.11 2.58 27.22 27.20 2.94

Deep RNN 5.92 4.45 0.46 4.23 3.89 0.59 3.31 2.84 0.36
LSTM 5.55 4.43 0.55 5.36 4.31 0.70 10.27 8.84 0.99
GRU 4.75 3.74 0.47 3.62 3.39 0.50 3.95 3.57 0.44

DERN 2.53 2.13 0.44 1.98 1.58 0.45 3.52 2.99 0.31

Table 4 shows that DEEP RNN, LSTM, and GRU roughly have a similar error rate. GRU slightly
outperforms LSTM, while LSTM outperforms Deep RNN. This was due to GRU and LSTM having a
cell memory gate to handle long-term dependency. It is known that GRU and LSTM have the same
mechanism for effective tracking of long-term dependencies while mitigating the vanishing/exploding
gradient problems. The LSTM uses more complex gates than GRU. Therefore, in this case, the LSTM
model, relative to GRU, tended to over-fit more. The Figure 5 shows that DERN is the nearest result
to the original data, and this is an average value among RNN, GRU, and LSTM, due to our having
combined them into an ensemble using a weighted technique. Moreover, in its short-term prediction
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of BDI, our approach outperforms the previous, Artificial Neural Network (ANN) model, for which
the average of MAPE was never lower than five [5]. In the ensemble layer, we obtain the weight
wP1, wP2, and wP3 of RNN, LSTM and GRU, respectively. The value of wP1, wP2, and wP3 are 0.337,
0.330, and 0.333, respectively. We can infer that in short-term prediction, each of the models has an
approximately equal effect to the prediction value.

Figure 5. Zoom-in of Figure 4: DERN result in more accurate prediction.

4.2. Long-Term Prediction

In long-term prediction, we try to predict the BDI more than one step ahead. In the present study,
value three, five and seven weeks ahead of BDI were predicted. The experiment showed that long-term
prediction resulted in a higher error rate than short-term prediction in terms of RMSE, MAE, and MAPE;
therefore, we conducted the experiment up to seven-steps-ahead prediction. The experimental results
of the long-term prediction are shown in Tables 5–7 for three-, five- and seven-steps-ahead prediction
of BDI. As indicated in all of those tables, DERN obtained the best error rate among the methods.
In this study, ARIMA failed to predict long-term BDI, its average error rate being more than seven
times higher than that of our proposed method. A visualization of the comparison of RNN, LSTM,
and GRU with DERN is provided in Figures 6–8 for three-, five-, and seven-ahead prediction of BDI,
respectively. Notice that the error rate trend is increasing over time. Even though the error rate grows
with the increasing number of steps, the models follow the trend of the testing data. The overall error
rate averages in terms of RMSE, MAE and MAPE, respectively, are plotted in Figure 9. Note that
ARIMA was omitted due to its large error. From the data, we could infer that one-step-ahead prediction
results in a much lower error rate than that of long-term prediction. Therefore, long-term prediction is
more challenging than short-term prediction; nonetheless, ship-owners and stakeholders commonly
are more interested in long-term prediction. The weight of ensemble layer in three-steps-ahead
prediction are 0.281, 0.357, and 0.362 for RNN (wP1), LSTM (wP2), and GRU (wP3) respectively. In the
five-steps-ahead prediction is 0.300, 0.350, and 0.350 for wP1, wP2, and wP3, respectively. While in
seven-steps-ahead prediction are 0.294, 0.362, and 0.344 for wP1, wP2, and wP3, respectively. Unlike
in short-term prediction, RNN has a smaller effect on the final prediction, while LSTM and RNN are
approximately the same effects to it.
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Table 5. Experimental results of three-steps-ahead prediction of BDI.

Portion Accuracy Measure Model t1 t2 t3

70–30%

RMSE

ARIMA 701.29 789.60 989.10
MLP 121.19 199.15 229.12

Deep RNN 94.09 141.05 208.98
LSTM 71.79 139.65 208.80
GRU 70.93 133.71 204.14

DERN 64.12 123.98 234.25

MAE

ARIMA 693.11 732.51 932.43
MLP 89.62 148.18 189.19

Deep RNN 57.72 117.78 168.06
LSTM 55.62 107.58 166.01
GRU 56.63 108.76 146.91

DERN 58.00 99.96 126.03

MAPE

ARIMA 98.81 101.08 131.43
MLP 15.31 17.91 25.93

Deep RNN 9.08 13.61 20.93
LSTM 6.45 12.73 20.46
GRU 6.13 11.99 20.09

DERN 4.05 9.87 18.46

80–20%

RMSE

ARIMA 694.93 872.92 991.80
MLP 152.71 195.15 299.92

Deep RNN 101.01 155.05 274.97
LSTM 91.79 149.11 278.82
GRU 91.10 134.31 269.22

DERN 89.04 132.93 258.21

MAE

ARIMA 901.97 1002.22 1032.43
MLP 68.92 199.98 208.01

Deep RNN 65.02 147.38 196.91
LSTM 63.92 127.38 186.91
GRU 62.97 128.48 176.91

DERN 60.57 126.35 167.76

MAPE

ARIMA 103.91 140.08 181.13
MLP 17.78 25.71 36.44

Deep RNN 12.28 17.73 33.04
LSTM 9.78 15.73 23.99
GRU 9.62 14.95 22.09

DERN 10.01 11.85 20.17

90–10%

RMSE

ARIMA 894.03 1012.42 1300.10
MLP 119.89 197.04 309.92

Deep RNN 99.91 179.14 292.82
LSTM 99.11 169.14 288.81
GRU 101.07 159.25 278.91

DERN 98.22 147.50 268.62

MAE

ARIMA 981.07 1302.22 1687.03
MLP 108.12 187.01 206.11

Deep RNN 72.32 160.01 199.61
LSTM 64.32 145.33 189.51
GRU 63.92 144.99 189.01

DERN 60.61 154.19 175.11

MAPE

ARIMA 114.21 180.18 221.90
MLP 16.95 24.95 33.91

Deep RNN 11.65 18.55 29.20
LSTM 10.64 16.63 24.01
GRU 11.80 15.03 24.91

DERN 10.71 12.01 19.82
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Figure 6. Long-term prediction: three-steps-ahead prediction of BDI: (a) Deep RNN; (b) LSTM; (c)
GRU; (d) DERN.

Figure 7. Long-term prediction: five-steps-ahead prediction of BDI: (a) Deep RNN; (b) LSTM; (c) GRU;
(d) DERN.
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Table 6. Experimental results of five-steps-ahead prediction of BDI.

Portion Accuracy Measure Model t1 t2 t3 t4 t5

70–30%

RMSE

ARIMA 731.07 799.10 999.08 1009.98 1020.05
MLP 145.10 209.31 241.97 255.06 259.99

Deep RNN 91.96 160.28 214.43 257.35 290.34
LSTM 79.40 142.33 201.69 248.45 293.33
GRU 79.92 155.84 219.02 276.65 325.09

DERN 75.11 139.05 200.15 245.23 293.31

MAE

ARIMA 698.81 772.81 952.69 978.01 981.97
MLP 94.92 158.19 191.09 201.44 210.03

Deep RNN 64.38 111.64 153.25 188.69 214.41
LSTM 58.09 99.40 141.41 180.80 212.31
GRU 57.54 108.50 154.50 198.63 231.78

DERN 57.90 99.00 136.03 178.81 212.05

MAPE

ARIMA 100.01 121.18 141.03 152.87 164.09
MLP 17.93 19.08 23.93 27.87 29.65

Deep RNN 9.46 13.19 19.30 25.75 27.46
LSTM 5.73 10.86 15.90 19.64 22.89
GRU 5.58 10.62 15.17 19.51 22.95

DERN 4.95 9.85 12.96 17.00 19.32

80–20%

RMSE

ARIMA 724.03 842.92 1000.80 1010.75 1024.62
MLP 155.29 197.45 309.62 320.74 350.97

Deep RNN 98.81 138.35 167.67 212.59 224.87
LSTM 67.56 122.51 160.39 190.65 213.23
GRU 62.96 119.82 160.87 191.39 214.23

DERN 62.04 118.98 160.99 190.01 210.00

MAE

ARIMA 900.17 1005.21 1042.33 1050.39 1072.11
MLP 73.48 201.08 218.01 240.55 255.12

Deep RNN 60.96 104.67 129.80 167.03 179.80
LSTM 53.18 92.75 123.78 151.54 171.19
GRU 49.10 88.78 122.20 148.33 170.18

DERN 48.56 87.39 121.76 144.72 170.00

MAPE

ARIMA 123.31 143.18 183.83 189.11 192.99
MLP 19.18 26.17 35.41 37.11 39.98

Deep RNN 9.07 14.24 20.76 24.53 27.81
LSTM 6.93 11.87 17.74 20.26 23.93
GRU 6.54 10.98 16.94 19.39 21.48

DERN 6.50 8.81 14.17 16.98 19.52

90–10%

RMSE

ARIMA 890.01 1042.12 1370.07 1490.10 1640.97
MLP 126.39 207.45 259.11 298.55 301.54

Deep RNN 93.99 137.53 166.94 175.15 221.83
LSTM 71.00 131.49 178.91 216.40 241.35
GRU 70.43 127.65 172.92 210.40 243.12

DERN 67.29 127.51 168.92 209.55 240.76

MAE

ARIMA 991.47 1402.21 1707.09 1811.87 1991.08
MLP 118.22 197.53 216.10 223.09 245.12

Deep RNN 58.25 98.50 132.02 162.15 182.85
LSTM 55.67 103.69 142.64 174.16 194.45
GRU 56.07 102.74 139.42 172.02 205.66

DERN 55.61 101.19 135.19 171.04 200.11

MAPE

ARIMA 124.01 189.08 231.10 256.98 279.14
MLP 18.35 27.91 36.04 39.43 42.76

Deep RNN 8.99 13.98 20.28 25.15 28.20
LSTM 6.73 11.95 16.01 22.25 24.06
GRU 6.88 10.97 17.90 20.21 25.67

DERN 5.01 9.13 14.87 17.02 19.09
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Table 7. Experimental results of seven-steps-ahead prediction of BDI.

Portion Accuracy Measure Model t1 t2 t3 t4 t5 t6 t7

70–30%

RMSE

ARIMA 739.21 889.88 1008.98 1208.98 1568.72 1759.66 1973.26
MLP 131.09 197.15 229.82 267.11 299.56 337.98 353.31

Deep RNN 90.57 157.58 212.35 255.03 288.60 310.13 324.06
LSTM 73.67 143.11 200.43 249.52 290.83 317.09 329.46
GRU 77.74 150.71 214.46 270.16 323.02 364.61 390.65

DERN 69.53 143.08 198.09 240.92 287.43 300.41 320.04

MAE

ARIMA 699.93 734.08 962.73 974.23 999.00 1020.87 1127.11
MLP 90.62 147.18 179.69 199.04 244.42 261.81 280.00

Deep RNN 63.38 109.58 151.40 186.30 212.95 232.66 250.13
LSTM 57.11 101.85 142.55 181.92 211.23 230.28 243.53
GRU 56.63 107.01 153.64 196.62 232.58 264.67 290.33

DERN 56.00 99.93 136.03 167.39 201.04 225.01 237.33

MAPE

ARIMA 98.01 112.78 134.49 156.03 175.53 187.67 199.90
MLP 14.91 15.91 18.93 22.09 25.00 26.22 29.34

Deep RNN 7.45 12.17 16.48 19.99 21.93 24.14 31.27
LSTM 5.37 10.34 14.40 18.44 21.51 23.41 24.79
GRU 5.52 10.81 15.62 20.07 23.82 27.05 29.73

DERN 4.05 10.87 13.96 18.01 20.11 23.48 23.69

80–20%

RMSE

ARIMA 699.23 887.92 1004.21 1220.89 1400.67 1502.77 1701.12
MLP 159.01 181.25 209.92 220.90 250.11 270.99 300.86

Deep RNN 87.46 123.43 166.68 192.01 219.95 237.83 255.86
LSTM 62.74 117.33 155.29 186.05 209.26 227.93 242.47
GRU 61.07 117.77 156.74 188.74 214.68 237.32 257.57

DERN 60.94 102.33 154.21 178.00 208.11 217.43 240.12

MAE

ARIMA 900.06 1001.22 1202.49 1442.11 1558.00 1872.71 1991.91
MLP 69.91 198.18 218.31 236.16 257.12 277.09 296.66

Deep RNN 69.08 93.11 129.07 153.14 177.12 191.42 211.68
LSTM 55.76 86.98 118.25 147.24 168.10 182.84 194.88
GRU 47.63 87.48 118.09 146.51 170.46 187.73 207.20

DERN 46.51 84.35 118.76 146.13 165.10 180.33 194.00

MAPE

ARIMA 102.90 141.08 185.03 198.01 210.77 240.11 290.19
MLP 17.68 26.71 38.14 40.11 43.03 45.32 47.71

Deep RNN 8.48 13.71 16.04 20.88 22.03 26.12 30.80
LSTM 5.52 10.19 14.02 17.87 20.77 22.84 24.71
GRU 5.52 10.27 14.09 17.95 21.30 23.67 26.11

DERN 5.51 10.12 13.17 17.05 19.09 23.08 24.50

90–10%

RMSE

ARIMA 880.53 1002.41 1040.90 1321.11 1509.97 1610.11 1891.09
MLP 129.80 199.19 319.95 342.65 364.12 390.17 402.11

Deep RNN 71.73 126.45 164.00 195.55 219.68 243.05 264.41
LSTM 67.87 127.67 172.43 207.99 230.10 253.48 276.82
GRU 66.25 127.80 173.42 207.92 232.08 254.53 276.37

DERN 65.21 126.20 161.23 206.01 241.08 251.53 267.11

MAE

ARIMA 981.07 1312.12 1487.03 1700.76 1880.12 1976.32 2019.19
MLP 109.12 180.31 233.11 258.88 298.12 320.11 379.11

Deep RNN 56.73 97.33 129.47 160.01 180.24 197.67 220.86
LSTM 53.68 100.67 139.20 168.14 188.49 201.61 217.05
GRU 51.61 98.23 134.01 165.39 189.76 209.58 231.24

DERN 50.71 99.45 133.11 160.09 180.01 195.11 202.11

MAPE

ARIMA 124.91 190.38 251.93 271.33 296.39 301.11 329.81
MLP 14.45 24.05 33.31 43.11 56.65 71.12 84.49

Deep RNN 6.91 13.01 17.13 20.16 22.14 27.01 33.34
LSTM 5.57 10.61 14.71 17.91 19.91 21.10 22.46
GRU 5.22 9.95 13.47 16.60 19.14 21.15 23.23

DERN 5.67 9.13 11.82 15.84 18.01 19.22 21.21
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Figure 8. Long-term prediction: seven-steps-ahead prediction of BDI: (a) Deep RNN; (b) LSTM;
(c) GRU; (d) DERN.

Figure 9. Averages of RMSE, MAE and MAPE for one-to-seven-steps-ahead prediction of BDI using
MLP, Deep RNN, LSTM, GRU, and DERN, respectively.

5. Conclusions and Outlook

The Baltic Dry Index (BDI) is a parameter representative of international shipping activities.
It is an essential tool with which ship-owners and stakeholders plan their maritime businesses and
avoid market risk. Unlike common time-series data, the BDI index is characterized by volatility,
non-stationarity, and complexity; therefore, its prediction is very challenging indeed. In previous work,
most researchers have used the Artificial Neural Networks (ANN) and statistical models. In keeping
with the popularity of deep learning in this decade, in this paper, we propose a deep-learning approach
whereby the deep sequential models (RNN, LSTM, and GRU) are combined in an ensemble called
Deep Ensemble Recurrent Networks (DERN) for accurate prediction of short- and long-term BDI.
In short-term prediction using the RMSE indicator, DERN had an error rate roughly a half of GRU,
LSTM, Deep RNN and MLP, and approximately a third of ARIMA. However, in long-term prediction,
the error rate was not as good as the short-term prediction. Specifically, the results showed that
with increasing prediction steps, the error rate grew. Therefore, the long-term prediction is more
challenging than short-term prediction. Nonetheless, DERN still outperforms the conventional
methods in long-term prediction. Ship-owners and stakeholders, not to mention investors, prevalently
are more interested in long-term prediction. In future work, we will propose a more fine-grained
approach entailing sequence-to-sequence learning for more accurate long-term prediction.
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