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Abstract: Driven by the layout design of devices arranged on the spine of quadruped robot which has
a symmetry spine with a flexible joint, we explore the effect of mass-center position of spinal segment
(MCPSS) on dynamic performances of quadruped bounding. A simplified model is introduced with
MCPSS set as an independent parameter. Periodically quadruped bounding motions are generated
to calculate different dynamic performances related to different MCPSS at the low, medium, and
high horizontal speeds, respectively. The results indicate MCPSS corresponding to the optimal or
suboptimal dynamic performances mainly gather at two positions: the hip joint and the geometric
center of spinal segment. MCPSS near the hip joint leads to the largest stride period, stride length, and
spinal oscillation-margin at all speeds. The smallest duty factor can also be obtained at the medium
and high speeds. These improved inherent characteristics offer advantages in leg-orientation control
and fast movement effectively. MCPSS near the geometric center of spinal segment brings the best
self-stability, the smallest mass-center vertical fluctuation, and the smallest maximum foot-end force
at all speeds, which should greatly enhance resistances to vertical jitters and reduce torque-demands
of joint-drivers. This study should give useful suggestions to robot designs in reality.

Keywords: quadruped bounding; flexible spine; articulated; mass-center position of spinal segment;
dynamic performances

1. Introduction

The previous researches have revealed that some terrestrial quadruped mammals adopt their
flexible spines to improve motion performances, especially in asymmetrical gait [1,2]. For example, the
spinal motion can increase stride length, provide auxiliary power to legs, improve energy efficiency, etc.
Inspired by these biomechanical discoveries, the flexible spines are introduced into quadruped robots
such as Planar-quadruped [3], Kitty-robot [4], MIT-cheetah I [5,6], Bobcat-robot [7], Lynx-robot [8],
etc. Among them, the quadruped robot with a flexible-articulated spine is a special type because its
easiness for modeling and calculating.

As we all know, the simplified model is an effective tool for theoretical research without a fine
platform. The simplified model of a quadruped robot with a flexible-articulated spine is introduced
to analyze the effect of the spine on performances of quadruped motion popularly. For example,
Wei et al. [9] compared two quadruped models, one with a rigid spine and another with a passively
flexible-articulated spine, to find that the flexible spine is superior to a rigid spine in decreasing the
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mass-center vertical fluctuation, foot-end force and energy consumption. Callen Fisher et al. [10]
adopted sagittal simplified models of quadruped robot to compare different spine morphologies in
terms of stride average acceleration, and it is found that the articulated spine is not superior to the
prismatic spine with respect to this performance. Yesilevskiy and Remy [11] adopted similar models to
support that the flexible-articulated spine can increase maximum possible speed and improve energy
efficiency for quadruped robot in asymmetrical gaits.

In addition, some researches show that the spinal structural parameters are important factors of
spinal benefits to dynamic performances. Cao and Poulakakis [12] established a passively quadruped
model in dimensionless form and pointed out that the self-stability of quadruped bounding benefits
from certain stiffness combinations of leg and spine, larger moment-inertia about the mass-center of
spinal segment and longer spinal segment. Their subsequent study [13] has further shown that the
increased spinal stiffness leads to a higher stride frequency, and the larger ratio of spinal mass to the
total mass of quadruped robot benefits to higher horizontal speed and energy efficiency. Nie et al. [14]
found that the appropriately decreasing ratio of front body-mass to rear body-mass can enhance the
locomotion performance of quadruped bounding with an articulated spine without scarfing motion
stability. Phan et al. [15] discovered that the asymmetric segmented spine helps the quadruped robot
run more efficiently than the symmetric segmented spine. Pouya et al. [16] compared two quadruped
models, one with a passive spine and another with an active spine, to find that decreasing spinal
stiffness benefits to higher energy efficiency only when the spine is actuated.

To the best of the author’s knowledge, the mass-center position of spinal segment (MCPSS, not the
mass-center position of the whole spine) was preset as constant in almost all researches on quadruped
robots with a flexible-articulated spine. However, different arrangements of devices such as actuators,
batteries, and transmission components on spinal segments can lead to different MCPSS, which would
change the natural behavior and dynamics performance of this type of quadruped robots. Zou’s
research [17] indicates that the mass-center position of the spine has important influences on dynamic
performances of quadruped bounding. Although the quadruped model in his study has a rigid spine,
the result shows that the mass-center position of the spine is a very important factor to dynamic
performances of quadruped bounding. Nie’s study [14] obtains similar discoveries in quadruped
bounding with a flexible-articulated spine. Moreover, inspired by nature, where neither of the anterior
and posterior spinal segment of almost terrestrially quadruped mammals is evenly mass-distributed,
we guess that MCPSS may also have important influences on dynamic performances. In addition,
the effect of MCPSS on dynamic performances of quadruped bounding is still lacking of research
at present.

The contributions of this study are exploring the effect of MCPSS on dynamic performances of the
quadruped bounding with a flexible-articulated spine. A large number of periodic bounding motions
with different MCPSS are generated at the low, medium and high horizontal speeds, respectively. The
dynamic performances calculated subsequently are to be related to different MCPSS. The analyses
consider the resulting diversity due to different horizontal speeds. This study should provide
suggestions to the layout design of devices arranged on spinal segments of quadruped robots in
reality. The remainder of this paper is organized as follows. The simplified model and dynamics
model of quadruped bounding in the dimensionless form are established in Section 2. The periodically
quadruped bounding with different MCPSS at different horizontal speeds are generated in Section 3.
The relations between MCPSS with dynamic performances are analyzed in Section 4. The paper is
discussed and concluded in Section 5.

2. Quadruped Bounding Model with a Flexible-Articulated Spine

To explore the effect of MCPSS on dynamic performances, the quadruped bounding model is
established mathematically based on a simplified sagittal-plane model with a flexible-articulated
spine. MCPSS is set as an independent structural parameter in this model. In addition, in order to
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improve the calculating efficiency and result-universality of this study, all parameters are normalized
in dimensionless form.

2.1. Sagittal Simplified Model

A quadruped bounding model with a flexible-articulated spine is introduced in the sagittal plane,
as shown in Figure 1. In this model, the spine consists of two equal rigid segments: one anterior
segment and another posterior segment. The two rigid spinal segments are connected by a massless
linear-rotational spring which intends to introduce flexibility in the spine, and MCPSS is set as an
independent structural parameter. In addition, three hypotheses are set up. The first is that the two
legs are replaced by the same massless linear springs; the second is that there are no slippages of legs
in contact with the ground; the third is that no inputs and controls are added, that is, the model is
passive. Despite the simplicity of this model, this model is capable of capturing the natural behaviors of
quadruped bounding and is advantageous to reflect the effect of structural characteristics on dynamic
performances centrally [12].

Figure 1. A sagittal simplified model of quadruped bounding with a flexible-articulated spine.

For every leg, the stiffness and nominal length of leg are denoted by kl and l0, respectively. The
anterior and posterior legs are configured by the real-time length la, lp, the real-time angle γa, γp with
respect to the ground, and the real-time angle ϕa, ϕp with respect to the corresponding spinal segment,
respectively. For every spinal segment, the stiffness, the total length, the mass, and the moment of
inertia about its mass-center are denoted by ks, d, m, and Jc, respectively. The pitch angles of the anterior
and posterior spinal segments are denoted by θa and θp, respectively. The spinal joint is located by
coordinates xs and zs. In addition, the distance between the mass-center of every spinal segment with
the spinal joint is dc. MCPSS is defined as the ratio of dc to d, and denoted by λ. So

λ = {dc/d|0 ≤ dc ≤ d, 0 < d } (1)

where it can be seen that λ ∈ [0, 1] in this study. In particular, values 0, 0.5, 1 of λ correspond to MCPSS
being at the spinal joint, the geometric center of spinal segment, and the hip joint, respectively.

2.2. Hybrid Dynamics of Quadruped Bounding

Only a suitable combination of movements of continuous states and the renewals of discrete
states can generate periodically quadruped bounding. The hybrid dynamics of quadruped bounding
are shown in this section, which is presented by the dynamics equation of continuous states and
event-function-based renewal formulas of discrete states together.
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2.2.1. Dynamics Equation of Continuous States

The modeling method proposed by Remy [18] is adopted to obtain a uniform dynamics equation
of continuous states. In this model, the continuous states chosen as generalized coordinates are
the same and are denoted by qcon, whatever the phase of quadruped bounding is. In this study,
qcon = [xs, zs,θa,θp].

The dynamics equation of continuous states is established completely according to the phase
transitions of the leg shown in Figure 2 [18,19], but not the phase transitions of the quadruped robot [12],
which makes the dynamics calculation more simple and convenient. Based on the Newton–Euler
method, the dynamics equation of continuous states in state space can be presented as

M(qcon)
..
qcon + V(qcon,

.
qcon)

.
qcon + G(qcon) = Fl(qcon) (2)

where M, V, G, and Fl represent mass matrix, vector of centrifugal force and Coriolis force, vector of
gravitational forces, and vector of foot forces, respectively. In this model, the continuous states are
denoted by Qcon

Qcon = [qcon,
.
qcon] (3)

Figure 2. Phase transitions of every leg. The anterior and posterior legs are distinguished by subscript
‘a’, ’p’, respectively. The motion of the whole period of every leg is divided into two stages (stance stage
and swing stage) or three phases (flight phase, stance phase, and climbout phase). The leg-phase (blue
blocks) which can be identified by ‘1’, ‘2’, and ’3’ transits with the event-trigger (purple words) which
can be identified by ‘01’, ’02’, and ’03’.

2.2.2. Trigger of Events and Renewal of Discrete states

That the trigger of events alternates with the renewal of related discrete states constantly is an
important characteristic of the quadruped motion. Based on Figure 2, the event functions and renewal
formulas of discrete states of quadruped bounding are to be presented in this section.

• Trigger of the touchdown-event and renewal of related discrete states

When the vertical distance between foot-end with ground decreases to zero monotonously, the
touchdown-event is triggered. The touchdown-event functions of the anterior and posterior legs are
denoted by f 01

a and f 01
p , respectively. The corresponding trigger condition can be expressed as

f 01
i = 0,

.
f

01
i < 0, phasei = 1, i ∈ [a, p], (4)

where
f 01
a = (zs + d sin(θa)) − l0 cos(γtd

a ) (5)

f 01
p = (zs − d sin(θp)) − l0 cos(γtd

p ) (6)

where γtd
a and γtd

p are the touchdown angle of the anterior and posterior legs, respectively. phasea and
phasep denote the current phase of the anterior and posterior legs, respectively.



Appl. Sci. 2020, 10, 1491 5 of 17

The related discrete states including the phase and the horizontal coordinate of touchdown position
of leg renew at the moment the touchdown event is triggered. The renewal formulas corresponding to
the anterior and posterior legs are

phasea ⇒ 2 , xtd
a ⇒ xs + d cos(θa) + l0 sin(γtd

a ) (7)

phasep ⇒ 2 , xtd
p ⇒ xs − d cos(θp) + l0 sin(γtd

p ) (8)

respectively, where xtd
a and xtd

p denote the horizontal coordinate of touchdown position of anterior
and posterior legs, respectively. The symbol ‘⇒’ represents the transition of discrete states, and the
following are all the same.

• Trigger of liftoff-event and renewal of related discrete states

When the gap between the current length with the nominal length of a leg increases to zero
monotonously, the liftoff-event is triggered. The liftoff-event functions of the anterior and posterior
legs are denoted by f 02

a and f 02
p , respectively. The corresponding trigger condition can be expressed as

f 02
i = 0,

.
f

02
i > 0, phasei = 2, i ∈ [a, p] (9)

where
f 02
a = (zs + d sin(θa))/cos(γa) − l0 (10)

f 02
p = (zs − d sin(θp))/cos(γp) − l0 (11)

The related discrete states including the phase and the termination time of following climbout
phase of leg renew at the moment the liftoff event is triggered. The renewal formulas corresponding to
anterior and posterior leg are

phasea ⇒ 3 , tsa ⇒ tra + ∆tr (12)

phasep ⇒ 3 , tsp ⇒ trp + ∆tr (13)

respectively, where tsa and tsp are the termination times of climbout phase of the anterior and posterior
legs, respectively. tra and trp are the termination times of stance phase of the anterior and posterior
legs, respectively. ∆tr is the duration of climbout phase of every leg.

• Trigger of flying-event and renewal of related discrete states

When the gap between the current time and the termination time of climbout phase of a leg
increases to zero monotonously, the flying-event is triggered. The flying-event functions of the anterior
and posterior legs are denoted by f 03

a and f 03
p , respectively. The corresponding trigger condition can

be presented as

f 03
i = 0,

.
f

03
i > 0, phasei = 3, i ∈ [a, p] (14)

where
f 03
a = t− tsa (15)

f 03
p = t− tsp (16)

where t is the real time.
The related discrete state including the phase of leg renews at the moment the flying-event is

triggered. The renewal formulas corresponding to the anterior and posterior legs, respectively, are

phasea ⇒ 1 (17)

phasep ⇒ 1 (18)
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2.3. Parameters Normalization in a Dimensionless Form

In this study, the system parameters include structural parameters, timing parameter, motion
states and their derivatives to time. These parameters are normalized in a dimensionless form to
reduce parameter dimension and make the target results available to quadruped robots with different
sizes. The total length L(L = 2d), the total mass M(M = 2m) of the spine, and the acceleration of gravity
g are selected as the geometric scale, the mass scale, and the acceleration scale of gravity, respectively.
The timing scale can be derived as τ =

√
L/g. In this paper, all the parameters in a dimensionless form

can be identified by the superscript ‘*’. For example, m∗, d∗, x∗s,
.
x∗s,

..
x∗s, and tr∗a are the dimensionless

form of m, d, xs,
.
xs,

..
xs, and tra, respectively.

3. Periodically Quadruped Bounding with Different MCPSS

To explore the effect of MCPSS on dynamic performances, a large number of periodically quadruped
bounding with different MCPSS need to be obtained at different horizontal speeds respectively. It is
worth noting that adding the conditions of different horizontal speeds aims to consider the possibly
greatly potential diversity of target result due to different horizontal speeds. At first, the combination
of the structural parameters including m∗, d∗, J∗c, l∗0, k∗s, k∗l , and total mechanical energy E∗ should be
preset separately at different horizontal speeds. However, m∗, d∗, J∗c, and l∗0 are given in this paper, but
the combination of k∗s, k∗l , and E∗ need to be determined separately at different horizontal speeds. The
determination is also based on the generation method of periodically quadruped bounding with k∗s, k∗l ,
and E∗ set as parameters to be optimized.

3.1. Generation Method of Periodically Quadruped Bounding

Based on the generation method of periodically quadruped bounding proposed by Remy et al. [16],
the periodically quadruped bounding with a flexible-articulated spine can be generated. In this method,
the parameters preset and the parameters to be optimized in a dimensionless form are denoted by X∗pre
and X∗opt, respectively. The solution of dynamics equations of quadruped bounding is the main core.
The periodicity of quadruped bounding can be judged by adopting the Poincare mapping [20], and the
Poincare section in this study is selected at the moment the posterior leg just lifts off the ground. The
relationship of continuous states of two continuous periods at the Poincare section can be expressed by

k+1Q∗con = P(kQ∗con) (19)

where P represents the Poincare mapping function. The periodically quadruped bounding is generated
only if the motion states of two continuous periods at the Poincare section are the same, that is,

kQ∗con − P(kQ∗con) = 0 (20)

The aforementioned generation of periodically quadruped bounding can be implemented through
numerical optimization which adopts the function named ode45 and Particle Swarm Optimization
(PSO) [21] in MATLAB.

3.2. Determination of Preset Parameters

In this paper, the remaining preset parameters including k∗s, k∗l , E∗ are determined based on the
generation of periodically quadruped bounding. In this optimization work,

X∗pre = [m∗, d∗,λ, J∗c, l∗0,
.
xin∗

s ] (21)

X∗opt = [k∗s, k∗l ,γ
td∗
a ,γtd∗

p , ∆tr∗, xin∗
s , zin∗

s ,θin∗
a ,θin∗

p ,
.
zin∗

s ,
.
θ

in∗
a ,

.
θ

in∗
p ] (22)
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It is worth noting that MCPSS is fixed at the geometric center of spinal segment (d∗c = 0.25,λ = 0.5)
in this part of work. In addition, different horizontal speeds of the spinal joint are adopted to distinguish
different horizontal speeds of the quadruped robot, which is feasible because the larger horizontal
speed of the quadruped robot corresponds to the larger horizontal speed of spinal joint approximately
in the Poincare section. In this paper, the numerical values of

.
xin∗

s constitute an arithmetic series which
is from 1.8 to 3.0 with a tolerance of 0.1. E∗ can be obtained by the formula

E = m∗x∗s + 2m∗g∗z∗s +
1
2 J∗c((

.
θ
∗

a)
2
+ (

.
θ
∗

p)
2
) + m∗g∗(sinθ∗a − θ∗p)

+ 1
2 k∗s(θ∗a − θ∗p)

2
−

1
2 m∗d∗c(

.
θ
∗

p sinθ∗p −
.
θ
∗

a sinθ∗a)
(23)

The given values of m∗, d∗, J∗c, and l∗0 are shown in Table 1. Through optimization calculation,
a large number of periodically quadruped bounding are generated at different horizontal speeds
respectively. Different combinations of k∗s, k∗l , and E∗ obtained are shown in Figure 3. However, only
one combination of k∗s, k∗l , and E∗ is needed with respect to every horizontal speed in the following
target work. In this paper, the combination with the best self-stability is chosen. For the following
target work, the values 1.8, 2.4, and 3.0 are chosen to represent the low, medium, and high horizontal
speeds, respectively. The corresponding combinations of k∗s, k∗l , and E∗ are shown in Table 2.

Table 1. The given values of m∗, d∗, J∗c, and l∗0.

Parameters Values

m∗ 0.5
d∗ 0.5
J∗c 0.0878
l∗0 0.6522
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Table 2. The chosen combination of k∗s, k∗l , and E∗ at the low (
.
xin∗

s = 1.8), medium (
.
xin∗

s = 2.4), and high

(
.
xin∗

s = 3.0) horizontal speeds, respectively.

Parameter Value
.
xin∗

s 1.8 2.4 3.0
k∗s 1.41 1.02 0.62
k∗l 22.09 31.97 33.43
E∗ 2.34 3.63 5.30

3.3. Periodically Quadruped Bounding with Ddifferent MCPSS

To generate the periodically quadruped bounding with different MCPSS, the other structural
parameters and the total mechanical energy are preset as fixed values. The combination of the stiffness
of leg, the stiffness of spinal joint and the total mechanical energy are given in Table 2 at the low (1.8),
medium (2.4), and high (3.0) horizontal speeds, respectively. To the optimization itself, the parameters
preset and to be optimized are

X∗pre = [m∗, d∗,λ, J∗c, l∗0, k∗s, k∗l ,
.
xin∗

s ] (24)

X∗opt = [γtd∗
a ,γtd∗

p , ∆tr∗, xin∗
s ,θin∗

a ,θin∗
p ,

.
zin∗

s ,
.
θ

in∗
a ,

.
θ

in∗
p ] (25)

where zin∗
s is not included in X∗opt because of the supplementary constraint as Equation (23). The values

of λ constitute an arithmetic series from 0 to 1 with a tolerance of 0.1, which represents MCPSS varies
from the spinal joint to hip joint. After the parameters to be optimized (X∗opt) are obtained, all the initial
conditions including the continuous and discrete states, with the structural parameters, can generate a
periodically quadruped bounding.

An instance of periodically quadruped bounding in one whole period with ‘λ = 0.5’ and ’
.
xin∗

s = 2.4’
is shown in Figure 4. The snapshots of quadruped bounding in the whole period are shown in Figure 4a.
These snapshots correspond to the triggers of leg events. That is, the quadruped bounding motion
experiences these events successively: liftoff of anterior legs (a), touchdown of posterior legs (b), liftoff

of posterior legs (c), flying of anterior legs (d), flying of posterior leg (e), touchdown of anterior (f ), and
liftoff of anterior legs (g). Through further calculations, the evolution of the spinal pitch angles, the
foot-end force, and the position and speed of the mass center can be obtained, as shown in Figure 4b–g.

Figure 4. Cont.
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Figure 4. (a) Snapshots of quadruped bounding during a whole period. From (a) to (g): liftoff of
anterior legs, touchdown of posterior legs, liftoff of posterior legs, flying of anterior legs, flying of
posterior legs, touchdown of anterior legs, liftoff of anterior legs. (b) Evolution of the pitch angles of
the anterior spinal segment (green dotted), the posterior spinal segment (blue dotted), and the spinal
joint (red solid) of quadruped bounding in the whole period; letters correspond to the snapshots in (a).
(c) Evolution of the foot-end forces of the anterior and posterior legs. (d) Evolution of the mass-center
horizontal position. (e) Evolution of the mass-center horizontal speed. (f) Evolution of the mass-center
vertical position. (g) Evolution of mass-center vertical speed. The vertical dotted line signifies the same
events in (a).

In this instance of periodically quadruped bounding, the pitch angle of the spinal joint is found
to be about 0, when the anterior legs touchdown the ground or the posterior legs liftoff the ground,
as shown in Figure 4b. This reveals that almost all the spinal elastic potential energy is released to
absorb the impact energy between the anterior legs with the ground, or make the quadruped robot
obtain the maximum forward speed after the posterior legs lift off the ground. Probably due to the
symmetrical structure of the quadruped bounding model about the spinal joint, the foot-end force of
the anterior and posterior legs varies same, as shown in Figure 4c, except their touchdown and liftoff

times are different. The mass center of the quadruped robot surely moves forward, but its vertical
position increases first and then decreases periodically, as shown in Figure 4d,f, respectively. The
mass center undergoes two horizontal accelerations and decelerations, most likely due to the separate
interaction between the anterior and posterior legs with the ground, with the coordination of the spinal
flexion and extension, as shown in Figure 4e. The mass center fluctuates vertically with one single peak
and valley nearly, and a special phenomenon also present small jitters before and after the posterior
legs touchdown the ground. It is very sure that different initial conditions will generate different
instances of quadruped bounding motions. At least ten instances are obtained at every MCPSS at the
low, medium, and high horizontal speeds, respectively.
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4. Results and Discussion

A large number of the periodically quadruped bounding motions with different MCPSS are
generated at the low, medium, and high horizontal speeds, respectively. Then, large amounts data
about dynamic performances which includes the motion stability, gait characteristics, the spinal
oscillation, the energy distribution of the total mechanical energy, the mass-center vertical fluctuation
and the maximum foot-end force can be quantified numerically. Subsequently, the relation between
every dynamic performance with different MCPSS can be analyzed at different horizontal speeds. The
analyses are hoped to capture the obvious advantages and disadvantages of dynamic performances at
certain MCPSS, and it is best to form a certain collection of some similar performances.

4.1. Motion Stability

The motion stability analyzed in this study refers to the method ever adopted by Cao and
Poulakakis [12]. When the fixed point Q̂∗con (the generated continuous states at the Poincare section) is
subjected to a small disturbance at the Poincare section, the increments of the continuous states kQ∗con
and k+1Q∗con (the Left superscripts ‘k’ and ‘k+1’ correspond to the kth and (k+1)th period, respectively)
to the fixed point Q̂∗con can be related by

k+1Q∗con − Q̂∗con = A(kQ∗con − Q̂∗con) (26)

at the Poincare section, where A is the Poincare matrix. The maximum eigenvalue ρ(A) of the matrix
A is calculated to reflect the motion stability. The smaller ρ(A) is, the more stable the quadruped
bounding is. It is worth noting that this motion stability reflects self-stability in fact because of no
external inputs and controls in all joints of this model. As mentioned earlier, this simplified model is
used to capture the motion stability of the natural behavior of quadruped bounding.

The effect of MCPSS on the motion stability is presented at the low, medium and high horizontal
speeds, respectively, as shown in Figure 5. It can be seen that the quadruped bounding shows better
stability with faster horizontal speed. The stability gets worsen as MCPSS moves from the geometric
center of spinal segment (λ = 0.5) to hip joint (λ = 1) at all speeds, and the worsen trend increases
gradually obviously. Moreover, when MCPSS moves from the spinal joint (λ = 0) to the geometric
center of spinal segment, the motion stability remains a small change at the medium or high speeds,
but the stability gets better evidently at the low speed. That is, the motion stability corresponding
to MCPSS being at the geometric center of spinal segment can be used as the optimal or suboptimal
solution at all speeds.
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4.2. Gait Characteristics

The effect of MCPSS on the gait characteristics are investigated in this section. The gait
characteristics include the stride period, the stride length, the average horizontal speed, and the
duty factor in this study. The relation of every gait characteristic with MCPSS is analyzed at the low,
medium, and high horizontal speeds, respectively.

The stride period is the duration of a complete period. It can be obtained by calculating the time
difference between two continuous periods at the Poincare section, as shown in Figure 6a. When the
horizontal speed is low, the stride period gets shorter first until λ = 0.4 and then increases, and the
changes remain small. When the horizontal speed is medium and high, the shorter distance between
MCPSS and hip joint causes a monotonic increase of stride period, and this trend gets very obviously
when MCPSS is near the hip joint. For example, the stride period as MCPSS being at the hip joint is
44%, 28%, and 15% than that as MCPSS being at the geometric center of spinal segment at the high,
medium, and low horizontal speeds, respectively. These so longer stride periods are more beneficial to
leg-orientation control for the following step.
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The stride length can be calculated by the horizontal movement distance of the spinal joint in a
whole period. It can be seen from Figure 6b that the stride length keeps increasing as MCPSS moves
from the spinal joint towards the hip joint, and the increasing trend gets more obviously gradually. In
particular, the effect of MCPSS on the stride length becomes more significant as speed increases. For
example, stride length corresponding to MCPSS being at the hip joint is 14.8%, 36.24%, and 50.32%
than that with MCPSS being at the spinal joint at the low, medium, and high speeds, respectively. The
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stride length corresponding to MCPSS being at the hip joint is 1%, 6%, and 8.5% than that with MCPSS
being at the spinal joint at the low, medium and high speeds, respectively. Adjusting MCPSS towards
the hip joint is favorable for faster quadruped bounding.

The average horizontal speed can be obtained easily by dividing stride length and stride period,
as shown in Figure 6c. It can be found that the average horizontal speed maintains a small increase
as MCPSS moves from the spinal joint towards the hip joint at all speeds. The average horizontal
speed corresponding to MCPSS being at the hip joint is about 7.2%, 2.7%, and 1.2% higher than that
corresponding to MCPSS being at the spinal joint at the low, medium and high speeds, respectively.
Although the stride length increases obviously, but the increasing amount of the average horizontal
speed is always small on the whole, which is probably due to the obviously increased stride period.
These findings indicate that the effect has a light influence on the average horizontal speed of quadruped
bounding at all speeds.

The duty factor is defined as the ratio of the duration of leg contacting with the ground to the
whole stride period. The smaller duty factor is more beneficial to faster motion and better acceleration
performance. Figure 6d shows the effect of MCPSS on the duty factor of leg at the low, medium, and
high horizontal speeds, respectively. The anterior and posterior legs are found to have the same duty
factor due to the asymmetric structure of the quadruped robot. So, only the effect of MCPSS on the
anterior leg is presented. It can be seen that the duty factor with respect to different MCPSS show a
single peak at all speeds. MCPSS being at peaks of duty factor are all near the geometric center of
spinal segment. In particular, considering the duty factor for faster quadruped bounding and better
acceleration characteristics, the MCPSS being near the spinal joint is a better choice at low speed, but
the MCPSS being near the hip joint at medium and high speeds.

Based on these analyses, it can be seen that horizontal speed is an important factor in the effect of
MCPSS on duty dynamics, such as the different optimal MCPSS at different speeds. Moreover, on the
whole, MCPSS being near the hip joint is beneficial to leg-orientation control and faster movement,
especially when quadruped bounding is fast relatively.

4.3. Spinal Oscillation

The spinal oscillation is an important characteristic of quadruped bounding with a
flexible-articulated spine. It is defined as the positive difference between the maximum and minimum
spinal pitch angles. It has been known that MCPSS influences greatly on gait characteristics such as
stride period, stride length and duty factor. The spinal motion is coupled with the gait characteristics,
so the spinal oscillation should be influenced obviously by MCPSS.

The relation between the spinal oscillation with MCPSS is shown in Figure 7 at the low, medium, and
high horizontal speeds, respectively. It can be seen that the spinal oscillation decreases monotonously
as MCPSS moves from the spinal joint towards the hip joint at all speeds. In particular, for quadruped
bounding at low and medium speeds, the decreasing trend of spinal oscillation becomes slower
gradually, especially after MCPSS crosses over the geometric center of spinal segment. For quadruped
bounding at high speed, the decreasing trend maintains almost constantly. Based on these finds, it can
be obtained that the spinal oscillation with respect to MCPSS being at the spinal joint and the hip joint
is about 1.07 and 0.20, respectively, at high speed. The latter is 81% less than the former. Similarly, the
corresponding ratio is about 58% and 61% at the low and medium speeds, respectively. Therefore, the
effect of MCPSS on spinal oscillation is very obvious at any speed. Significantly, the decreased spinal
oscillation can provide enough margin of spinal oscillation for faster and more efficient quadruped
bounding. So, adjusting MCPSS from the spinal joint towards the hip joint is greatly meaningful,
especially when the quadruped bounding moves fast relatively.
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4.4. Energy Distribution

In this study, we observe that the horizontal speed of quadruped bounding is also maximum
exactly at the Poincare section in a complete period. The distribution change of total mechanical energy
can be seen as the internal cause of the changes of average maximum speed and other observable
motion states. In this section, the effect of MCPSS on dynamic performances is to be explored from an
energy perspective. The relation between MCPSS with the distribution of the total mechanical energy
at the Poincare section is presented in Figure 8. The total mechanical energy consists of horizontal
kinetic energy, vertical kinetic energy, rotational kinetic energy, spinal elastic potential energy, legged
elastic potential energy, and the gravitational potential energy. The legged elastic potential energy is
preset zero because the lengths of legs are all nominal at the Poincare section, so it is not presented in
this figure.
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It can be seen that, wherever MCPSS is, the horizontal kinetic energy and gravitational potential
energy account for almost the main of the total mechanical energy; moreover, although the gravitational
potential energy and rotational kinetic energy present observably monotonic decrease as the MCPSS
moves from the spinal joint towards hip joint, but the changes are both very small. Therefore, it indicates
that the varied MCPSS shows a light influence on the energy distribution of the total mechanical energy
at the Poincare section.

4.5. Mass-Center Vertical Fluctuation

The mass-center vertical fluctuation is defined as the difference between the maximum with the
minimum mass-center height of quadruped robot in the whole period of quadruped bounding. The
smaller mass-center vertical fluctuation leads to more stable vertical motion, which represents a better
resistance to vertical jitter.

The relation between MCPSS with mass-center vertical fluctuation is shown in Figure 9. It can be
seen that the effect of MCPSS on mass-center vertical fluctuation is obvious at high speed, but implicit
at low and medium speeds on the whole. Moreover, the mass-center vertical fluctuation presents the
single valley variation as MCPSS moves from spinal joint to hip joint. The valley value of mass-center
vertical fluctuation corresponds to MCPSS being near the geometric center of spinal segment at all
speeds. In more detail, MCPSS with respect to the smallest mass-center vertical fluctuation corresponds
to λ = 0.4 at low speed, and λ = 0.6 at medium and high speeds. Significantly, when the quadruped
bounding is very fast horizontally, MCPSS being at the hip joint will cause considerable mass-center
vertical fluctuations at all speeds. On the whole, MCPSS near the geometric center of spinal joint is an
attractive choice with respect to mass-center vertical fluctuation, which can maintain a better resistance
to the vertical jitter.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18 

segment at all speeds. In more detail, MCPSS with respect to the smallest mass-center vertical 

fluctuation corresponds to 0.4 =  at low speed, and 0.6 =  at medium and high speeds. 

Significantly, when the quadruped bounding is very fast horizontally, MCPSS being at the hip joint 

will cause considerable mass-center vertical fluctuations at all speeds. On the whole, MCPSS near the 

geometric center of spinal joint is an attractive choice with respect to mass-center vertical fluctuation, 

which can maintain a better resistance to the vertical jitter.  

 

Figure 9. Relation between MCPSS with the mass-center vertical fluctuation at the low (red circle), 

medium (green triangle), and high (blue quadrilateral) horizontal speeds, respectively. 

4.6. Maximum Foot-End Force 

The maximum foot-end force is an important performance of quadruped bounding, which 

indirectly relates to the torque cost of joint drivers. The relation between MCPSS with maximum foot-

end force is shown in Figure 10. It can be seen that the maximum foot-end force presents a single 

valley change, when MCPSS moves from the spinal joint towards the hip joint. In particular, MCPSS 

with respect to the valley value of maximum foot-end force are all near the geometric center of spinal 

segment at all speeds. Moreover, as the horizontal speed gets larger, MCPSS near hip joint leads to 

larger foot-end forces. Especially when the quadruped bounding is relative fast, the maximum foot-

end force corresponding to MCPSS at the hip joint is almost 25% larger than that corresponding to 

MCPSS at the geometric center of spinal joint. On the whole, MCPSS near the geometric center of 

spinal joint is an ideal choice, which should decrease the high torque-demand for joint-drivers in 

reality. 

 

Figure 10. Relation between MCPSS with the maximum foot-end force at the low (red circle), medium 

(green triangle), and high (blue quadrilateral) horizontal speeds, respectively. 

Figure 9. Relation between MCPSS with the mass-center vertical fluctuation at the low (red circle),
medium (green triangle), and high (blue quadrilateral) horizontal speeds, respectively.

4.6. Maximum Foot-End Force

The maximum foot-end force is an important performance of quadruped bounding, which
indirectly relates to the torque cost of joint drivers. The relation between MCPSS with maximum
foot-end force is shown in Figure 10. It can be seen that the maximum foot-end force presents a single
valley change, when MCPSS moves from the spinal joint towards the hip joint. In particular, MCPSS
with respect to the valley value of maximum foot-end force are all near the geometric center of spinal
segment at all speeds. Moreover, as the horizontal speed gets larger, MCPSS near hip joint leads to
larger foot-end forces. Especially when the quadruped bounding is relative fast, the maximum foot-end
force corresponding to MCPSS at the hip joint is almost 25% larger than that corresponding to MCPSS
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at the geometric center of spinal joint. On the whole, MCPSS near the geometric center of spinal joint is
an ideal choice, which should decrease the high torque-demand for joint-drivers in reality.
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4.7. Discussion

The results show that considering different horizontal speeds in target results is surely necessary.
The change laws of some dynamic performances vary greatly at different horizontal speeds, even
though the change of MCPSS remains same. For example, when MCPSS moves from the spinal joint to
the geometric center of spinal segment gradually, the motion stability presents a monotonous decrease
obviously at the low speed, but maintains a minor increase nearly at the medium and high speeds.
For another example, when MCPSS moves from the geometric center of spinal segment to the hip
joint gradually, the decrease of the spinal oscillation is more obviously at the high speed than at the
low speed. In a word, the effect of the MCPSS on dynamic performances of quadruped bounding is
significantly influenced by the horizontal speeds.

More importantly, the results at different horizontal speeds together make the optimal or
suboptimal MCPSS more prominent with respect to the dynamic performances. That is, a certain
MCPSS benefits a set of dynamic performances at any horizontal speed, and another MCPSS benefits
another set of dynamic performances at any horizontal speed. With MCPSS near the hip joint, the
stride period facilitates the leg-orientation control best, and the stride length, average horizontal speed,
and horizontal kinetic energy benefit the fast horizontal bounding the most, and the minimum spinal
oscillation also gives the largest margin of spinal pitch angle. They are satisfied at any horizontal
speeds. The smallest duty factor is also obtained at the medium and high horizontal speeds when
MCPSS is at the hip joint, which also support the fast horizontal bounding. All these show that
MCPSS near the hip joint is best for the fast horizontal movement and leg-orientation control of the
quadruped bounding. However, when MCPSS is near the geometric center of spinal segment, the
smallest maximum foot-end force and the smallest mass-center vertical fluctuation are both obtained
at any horizontal speeds, which can significantly enhance the resistance to the vertical jitter and reduce
the high torque-demand of joint-drivers. The above results make the hip joint and the geometric center
of spinal segment as two best positions for the corresponding dynamic performances.

Furtherly, for most real quadruped robots similar to the simplified quadruped model in this paper,
the best MCPSS should be between the spinal joint and the geometric center of spinal segment, because
most dynamic performances usually need to be met with equal importance. More simulations and
experiments are needed to determine the best MCPSS for real quadruped robots.
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5. Conclusions

In this paper, the effect of MCPSS on dynamic performances of quadruped bounding with
a flexible-articulated spine is studied. A sagittal simplified model of the quadruped bounding is
introduced to capture its dynamics characteristics, and MCPSS is set as an independent parameter. All
the system parameters are normalized in a dimensionless form to make the target results available
to this type of quadruped robots with different sizes. A large number of periodically quadruped
bounding are generated to calculate the relations between dynamic performances with MCPSS at the
low, medium, and high horizontal speeds, respectively.

The results show that the effect of MCPSS on dynamic performances of quadruped bounding is
obviously influenced by the horizontal speeds. More importantly, the results indicate that MCPSS
corresponding to the optimal or suboptimal dynamic performances mainly gather at two positions:
the hip joint and the geometric center of spinal segment. MCPSS near the hip joint is best for the fast
horizontal movement and leg-orientation control of the quadruped bounding, but MCPSS near the
geometric center of spinal segment can significantly enhance the resistance to the vertical jitter and
reduce the high torque-demand of joint-drivers. In addition, for a real quadruped robot, the optimal
MCPSS should be between the hip joint and the geometric center of spinal segment.

This study can give helpful suggestions to the layout design of devices arranged on the flexible
spine of this type of quadruped robot. Further research can consider more general quadruped robots
with an asymmetrically segmented spine and two independent MCPSS. The comparisons of the effect
mechanism of MCPSS on dynamic performances between the bounding and galloping gaits are also
worth investigating.
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