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Abstract: One of the most promising approaches to reduce the amount of energy consumed in
manufacturing systems is the switch off policy. This policy reduces the energy consumed when the
machines are in the idle state. The main weakness of this policy is the reduction in the production
rate of the manufacturing systems. The works proposed in the literature do not consider the design
of the production lines for the introduction of switch off policies. This work proposes a design model
for production lines that include a targeted imbalance among the workstations to cause designed idle
time. The switch-off policy introduced in such designed production lines allows for a reduction in
the energy consumed with any production rate loss. Simulation tests are conducted to verify the
benefits of switch off policies in production lines designed for its. The simulation results show that
the proposed line design allows for a reduction in energy consumption, with a defined loss in the
throughput. The application of switch-off policies in the proposed flow line leads to a significant
reduction in the energy used in unproductive states controlling the production loss.
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1. Introduction and Motivations

Nowadays, the industrial manufacturers study energy-efficient models because of the costs and
environmental impact of energy consumption [1,2].

The manufacturing activities are characterized by a relevant demand from around 40% with
relevant growth expectations between 2018 and 2050 across all cases. Increases in industrial energy use
from increasing shipments are partially offset by efficiency gains [3].

Studies by the European Association of the Machine Tool Industries [4,5] on the discrete part
manufacturing discussed the importance and environmental impacts of electrical energy consumption.

The main models proposed in the literature, for the design of manufacturing systems, focused
primarily on the performance in regards to productivity, quality, and work in process, etc. Recently,
the models proposed include the energy efficiency issue, but Gahm et al. [6] emphasized how the
scheduling models that include energy-saving may reduce the other goals of the manufacturing
systems. Then, it is more important to propose a model that reduces energy consumption without
reducing the productivity performance of manufacturing companies.

The works proposed regarding machining energy consumption [7,8] identified three main energy
shares: start-up operations (computers and fans, coolant pumps, etc.), runtime operations (tool change,
Jog axis, etc.) and material removal operations (machining). The first and second parts are constant and
independent of the operation, while the third part is variable and depends on the machining operation.

Gutoski et al. [8–10] underlined how the constant independent of the operation is the major part
of the energy consumed by the machining machines and this trend has grown in past years.

The reduction in the energy consumption of these parts can be obtained without studying the
effect on the particular machining operation as: roughness, cutting paths, cutting time, etc. Therefore,
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it is more simply to extend a model that reduces the constant energy to several machining systems and
other production systems.

A promising approach proposed in the literature to reduce the constant energy consumed by
the machining machines is the switch-off policy [11]. Reducing the idle time is a good approach to
realize energy-efficient production [12]. One example is the suppliers for small-parts in aircrafts, where
the idle periods accounted for 16% of the total production time, and about 13% of the total energy
consumption could be saved if the idle machines were switched off [13]. Another study by Weinert and
Mose [14] highlighted how almost 50% to 60% of energy consumption could be reduced by turning the
standby machines into energy-saving states.

The switch-off policies switch off when the machine is in the idle state, which reduces the constant
energy consumed during this state. When there are a determined number of parts waiting for the
operation, the machine switches on, subject to a warm-up period to be operative. The decision of the
switch on is crucial to maintain the productivity level of the production line. Some approaches have
been proposed, by Frigerio and Matta [15,16], with a significant reduction in energy consumption in a
flow lines context. The switch-off models proposed works on a flow line designed following classical
objectives that solve the simple assembly line balancing problem [17,18]. An extensive survey of the
flow line production system balancing was discussed in References [19,20].

Mathematical models to support the decision towards the switch off/on, which works off-line,
have been proposed by Mashaei and Lennartson [21] and Jia et al. [22]. These models did not handle the
uncertainty of the production system and the optimization can lead to high computational complexity
when the number of machines is higher; this reduces the potential application in real industrial
manufacturing systems.

Su et al. [23] and Frigerio and Matta [16] studied upstream, downstream, and mixed policies in
a single machine, and the extension to a production line, assuming stochastic arrivals, and constant
warm-up under to stock control. These models did not consider how the control of the machines may
reduce the production performance of the manufacturing system.

Renna [24] studied a dynamic and adaptive control strategy to switch-off the machines on a
production line under the pull control policy. The policy proposed uses the information of the buffers
and the level of customer satisfaction. The results also underlined the potential application of the
switch-off policies in production lines under pull control.

Duque et al. [25] studied one machine with one buffer with a fuzzy controller that includes the
information about the buffer, the machine state and the production rate required, considering the
warm-up energy. The controller was tested through simulation experiments and it was observed that a
large amount of energy could be saved without affecting the throughput significantly.

Wang et al. [26,27] proposed a method based on a fuzzy controller that includes the information
of the upstream, downstream buffer and the status of the machine. They proposed a set of fuzzy
rules to take the decision to the switch off/on policy. The simulation experiments show that the
proposed approach can be a simple, practical way towards the energy saving operation with accepted
throughput loss.

Marzano et al. [28] proposed a model that controls the machine on-line acquiring data and
estimating the risk of the control policy actions. The model has several limitations because it is tested
for a specific distribution for the estimation of the parameters and the tests are conducted considering
a production line composed of two machines.

The discussion of the past works highlights the following issues:

- The switch-off policies are mainly proposed for a single machine and some works considered a
flow line with the introduction of buffers;

- Few works evaluate the reduction of the performance level due to the introduction of the switch-off

policy, but only energy consumption;
- Works were proposed to consider the possibility of a switch-off policy and were considered from

the design step of the production line.
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In response to the limits in the literature, this paper proposed a design model that includes the
switch-off policy by first asking:

RQ1: what is the impact of the design model proposed on the performance of the production line
in terms of energy saving maximizing the production rate?

Some previous works show how the switch-off policy causes production loss, then our second
research question asks:

RQ2: can the constraint of a limited reduction loss improve significantly the energy saving of the
production line obtaining an adequate trade off?

The research proposed concerns about the development of a design model of the flow lines that
includes the possibility of the switch-off already in this design step. Then, the switch-off policy is
introduced in the flow line designed by the proposed model. The proposed design and switch-off

policy is compared to a flow line designed with the classical objectives with the same switch-off policy.
Simulation experiments will be used to answers our two research questions. The simulations

were conducted by considering different levels of production rates in the design model and different
levels of the buffers (upstream and downstream) that control the switch-off policy.

The paper is organized as follows. Section 2 described the design model of the flow line, while
Section 3 introduces the switch-off policy used. Section 4 introduces the reference context investigated
with simulation scenarios, while Section 5 discussed the numerical results. Section 6 provides the
conclusions and a future research path.

2. Flow Line Design Model

The problem deals with the designing of a flow line composed by M stations that manufactures
one product type. The product consists of N operations to process; these operations should be assigned
to the M workstations, following the precedence constrains. The variables of the model are the
assignments of the operations to the workstations of the flow line. The operation assignment binary
variable xij is defined as follows (Equation (1)):

xi j =

1 i f the i− th operation is assigned to the j− th station

0 otherwise
(1)

The precedence constrains binary variable ensures that the i-th operation must be completed
before the k-th operation, and it is computed as (Equation (2)):

vik =

1 i f the i− th operation preceds the k− th station

0 otherwise
(2)

The processing time Tj of the j-th station is the sum of the processing time of the operations
assigned to j-th station, as follows (Equation (3)):

T j =
∑N

i
tixi j (3)

The cycle time C of the production line is equal to the maximum of the stations’ processing times,
as shown in Equation (4)

C = MAX j
{
T j

}
(4)

The j-th station idle time is defined as follows (Equation (5)):

Td, j = C− T j (5)
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The idle time for each cycle is given by Equation (6):

TTd =
M∑

j=1

(
Td, j

)
(6)

The difference of processing time between nearby stations is called distance dj and it is defined as
follows (Equation (7)):

d j = T j+1 − T j (7)

A positive value of the distance dj forms a couple of workstations when the first has a higher
velocity than the second workstation. Then, the first workstation can fill the downstream buffer and
goes into the off state, reducing energy consumption. Therefore, the flow line consists of a couple of
workstations to facilitate the off state of the first workstation of the couple. Figure 1 shows the concept
of the distance of a couple of workstations. In the following figure, the term WSj has been used to
identify the j-th workstation; the distance between two stations has been obtained as the difference of
the processing time of the second workstation (with higher working time) and the first workstation
of the couple. In Figure 1, the processing time is linked to the stations with, respectively, lower and
higher productivity per couple, as represented in blue and green.
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Figure 1. Distance between stations.

To achieve an unbalanced flow line, the objective function is achieved by maximizing the sum of
the distance between stations (Equation (8)):

MAX
(∑

j
d j

)
with j = 1, 3, 5, . . . (8)

This is subject to the following constrains (Equations (9)–(11))∑M

j=1
xi j = 1 with i = 1, . . . , N (9)

∑M

j=1
j xi j ≤

∑M

j=1
j xkj ∀ vik = 1 (10)∑N

i=1
ti xi j ≤ C max with j = 1, . . . , M (11)

Equation (9) ensures that each operation is only assigned to one machine. Equation (10) ensures
that the constraints on the precedence of operations are respected. Finally, Equation (11) ensures
that the station processing times are below the maximum fixed cycle time. By setting the cycle time,
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maximizing the objective function achieves an unbalanced line that respects the targeted productivity.
Equation (8) results in an unbalanced flow line with high idle times between sequential stations. In
order to achieve more downtime, and therefore higher energy saving, this research proposes a different
objective function from past literature, where the focus instead is on obtaining the minimum cycle
time [17], the minimum number of stations, and the minimum idle time [18].

Figure 2 shows the framework used for the design of unbalanced flow lines. First, using the
mathematical model, the flow line with maximum productivity and minimum cycle time has been
achieved. The obtained maximum productivity flow line and the minimum cycle time has been
calculated as the bottleneck station processing time. The minimum cycle time has been used as a
parameter to design unbalanced flow lines using the maximization of the sum of distances as the
objective function according Equation (8). Then, increasing and fixing the cycle time, the maximization
of the sum of the distance results in several unbalanced flow lines (in this paper, three unbalanced flow
lines have been obtained). Then, the simulation will be studied if the increment of the cycle time can
lead to important energy reduction.
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Figure 2. Framework for flow line designs.

3. Switch off Policy

As described in the literature [23], switching off policies based on buffer level information can lead
to significant energy savings without reducing productivity. The proposed policies are upstream (UP),
downstream (DP), and upstream and downstream (UDP). In the upstream policy, the machine switches
off when the upstream buffer is empty and switches on when the upstream buffer level is NU

on. The
level of downstream buffer controls the state in the downstream policy. The machine switches off when
the threshold ND

off is reached and turns on when the number of pieces in the buffer is equal to ND
on.

According to Reference [15], the state of machine sj is defined as follows (Equation (12)):
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s j =


1 i f out− o f − service
2 i f idle
3 i f in start− up
4 i f working

(12)

The states 1, 2 and 3 are unproductive, i.e., no pieces are being processed when a machine is in one
of these states. The states 1 and 2 are called inactive states. According to Reference [23], the upstream
and downstream combines the UP and DP policies as follows (Equation (13)): Switch−O f f i f s j = 2 AND (n j = 0 OR n j+1 ≥ ND

o f f )

Switch−On i f s j = 1 AND (n j = NU
on AND n j+1 ≤ ND

on)
(13)

Figure 3 summarizes the states of the generic machine and the transition from one state to another.
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4. Reference Context and Simulation Scenarios

Using the mathematical model described in Section 2, four production lines with 10 stations and
20 tasks to complete have been designed. The flow line only produces one product type.

The operation processing times and the precedence constraints are described in Table 1 and
have been obtained from the simple assembly line balancing problem dataset (SALBP) according to
Reference [29].

Table 1. Operation processing time [s].

Operations Processing Time (s) Precedence Operation Processing Time (s) Precedence

1 142 - 11 97 7
2 34 - 12 132 8
3 140 - 13 107 10, 11
4 214 - 14 132 12
5 121 - 15 69 12
6 279 1 16 169 13
7 50 2 17 73 13
8 282 4 18 231 13
9 129 5 19 120 15

10 175 6 20 186 14

The basic assumptions for the line design are the following:
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Figure 4. Precedence graph.

Four flow lines are obtained in order to get respectively:

1. Minimization of total idle time for each cycle with minimum Cycle Time (MinTTd);
2. Maximization of distance between stations with a 2.5% increment of minimum Cycle Time (2.5%

loss production rate, MaxD_2.5%);
3. Maximization of distance between stations with a 5% increment of minimum Cycle Time (5% loss

production rate, MaxD_5%);
4. Maximization of distance between stations with a 10% increment of minimum Cycle Time (10%

loss production rate, MaxD_10%).

The solution of the mathematical model, considering the previous constrains, gives the following
flow line designs (Table 2); moreover, the station processing times and the station idle times have been
reported in Table 2.

The first production line is considered to be the benchmark of the other production lines, because
it gives a balanced production line with 10 stations and the minimum cycle time.

A discrete event simulation, implemented in Arena, has been used to evaluate the performances
of the four flow line designs and to analyze the application of switch off policies in unbalanced
production lines.
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Table 2. Stations processing and idle times [s].

MinTTd MaxD_2.5% MaxD_5% MaxD_10%

Station
Station

Processing
Time [s]

Station Idle
Time [s]

Station
Processing

Time [s]

Station Idle
Time [s]

Station
Processing

Time [s]

Station Idle
Time [s]

Station
Processing

Time [s]

Station Idle
Time [s]

1 298 6 248 63 248 70 214 119
2 282 22 311 0 313 5 282 51
3 272 32 282 29 282 36 263 70
4 274 30 298 13 298 20 333 0
5 279 25 274 37 279 39 279 54
6 287 17 306 5 315 3 329 4
7 304 0 279 32 236 82 269 64
8 293 11 304 7 304 14 333 0
9 304 0 276 35 289 29 276 57
10 289 15 304 7 318 0 304 29

TTd 158 228 298 448

Each model has been simulated by considering machines in the “always on” (AO) state and the
UPD switch off policy.

The basic assumptions of the AO model are:
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Each station has a buffer;
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The buffer capacity is fixed, and equal to K;
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The buffer of the first station is always full, that is the raw material is always available;
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The power absorbed in each state is equal for all machines.

In addition, for the models with switch off policies, the following conditions apply:
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Each station is controlled by a switch off policy;
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The control policy parameters (NU
on, ND

off, ND
on) are the same for stations from 2 to 9;
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The first station has only DP policy;
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The last station has only UP policy.

As described by Frigerio and Matta [15], the production line machines can be in the following
states:

– Working state: the machine is processing a piece and absorbs the power Pw;
– Idle state: the machine is ready to work a part, and absorbs the power Pi;
– Out-of-service (Inactive) state: the machine is not ready to process a part. In this state the machine

absorbs the minimum amount of power Poff;
– Warmup state: the machine changes its state from Out-of-service in idle or working state,

consuming the power Pwu for the time to complete the warmup twu.

According to [23], the power required by a generic machine in each state is:

– Pw = 12 kW;
– Pi = 5.35 kW;
– Poff = 0.52 kW;
– Pwu = 6 kW for twu = 20 s.

To determine the best switch off control parameters, a full factorial design has been developed.
The factors considered are NU

on, ND
off, ND

on, and three levels for each factor are evaluated as follows:

– NU
on = [1, 2, 3];

– ND
on = [4, 5, 6];

– ND
off = [7, 8, 9];
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According to Reference [23], the levels of buffer to switch off or switch on machines respect the
following constraints (Equations (14)–(16)):

ND
o f f , j ≥ ND

on, j (14)

ND
o f f , j ≥ NU

on, j+1 (15)

ND
on, j ≥ NU

on, j+1 (16)

Figure 5 reports on the experiment results for model 1. The design with the lowest inactive time
has a value of 0, the design with the highest inactive time has a value of 1. These results are used to set
these parameters for the simulation tests.
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The results of the other experiments for models MaxD_2.5%, MaxD_5%, and MaxD_10% are
reported in Appendix A.

As shown in Figure 2, and in the figures (Figures A1–A3) in Appendix A, for all the four design
models, the set NU

on = 3, ND
on = 4, ND

off = 9, gives the maximum time spent in the idle and inactive
state. Therefore, the simulation scenarios and the evaluation of the performances have been obtained
by considering the best control parameters. According to Reference [23], the discrete event simulation
length is 107 s, and the initial transient is 105 s.

Figure 6 shows the setting of simulation scenarios and performance evaluations. Using
mathematical optimization, the flow line design and the operations assignment to the stations
have been achieved. Using discrete event simulation, the best set of switch off-parameters have been
obtained. Finally, by employing this set, the performances of the four lines have been evaluated
and compared.
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Figure 6. Simulation process and performances evaluation.

5. Numerical Results

As shown in the following figure (Figure 7), an increment of the cycle idle time for each station
has been achieved by choosing the maximization of the distance between stations as the objective
function, instead of the minimization of idle time. The maximum increment of TTd has been obtained
in the case where the cycle time has been increased by 10%.
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The discrete event simulation results, as compared to the model MinTTd, are shown in Figure 8.
The results in the figure only consider the effects of the unbalanced line on the idle time, so the
simulations have been made by considering machines with an always on control policy. It can be
noticed that the higher the idle time, the lower the throughput. Indeed, by increasing the distance,
stations are in the idle state for longer than in a balanced flow line. Increased cycle time allows for
mathematical optimization, which aims to maximize the distance between station process times and
to have greater freedom in assigning operations to the machines. The 10% increase in cycle time
(MaxD_10%) results in a flow line where the idle time has grown by 159%, but productivity has
decreased by only 9%.
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Figure 8. Results with always on policy.

However, the increase in downtime leads to more energy consumption in a non-productive
state. In order to reduce energy consumption, switch-off policies should be in place. The UDP policy
achieves a significant reduction in energy consumption in non-productive states. In Figure 9, the
energy consumption in unproductive states (Idle, Out-of-service, Warmup) of the four lines (MinTTd,
MaxD_2.5%, MaxD_5%, MaxD_10%) are compared to a case with machines that are always on and
those applying switch off policies. In all the cases analyzed, adopting a shutdown policy allows for a
significant reduction in energy consumption in non-productive states, ranging from 86% to 89%.

For these reasons, switch-off policies in unbalanced flow lines are necessary and achieve a
reduction in unproductive state energy consumption. If the machines are in always on states, the
unbalancing flow line leads to a reduction in throughput and energy consumption due to more time
being spent in the idle state. Staying for a long time in the idle state is detrimental, since in this state,
the machine is ready to work and then absorbs power without producing. The switch-off policies
warrant energy saving due to the lower energy consumption during warmup.

Designing an unbalanced flow line and controlling the machines state with a switch-off policy can
lead to a reduction in total energy consumption, not only in unproductive states. Figure 10 shows
the increment of energy consumption for an unbalanced flow line design with switch-off policies,
compared to an always on balanced flow line. For this reason, designing a flow line to achieve a high
unbalance under cycle time constraints, and applying a machine shutdown policy, leads to a reduction
in total energy consumption.
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Figure 10. Total energy reduction.

Figure 11 shows the total time that stations hold in the inactive state and the number of warmups.
Like the number of pieces in the buffer, the number of times that machines switch on depends on

the position of the bottleneck. Machines turn on fewer times when using model MaxD_5% than model
Max_2.5%, even if the total inactive time is longer, because the last station is the bottleneck. It can be
seen that, if the bottleneck is among the first machines on the line, it can lead to a reduction of the work
in process and storage costs. However, this leads to more switch-ons and higher energy consumption
during warmup.
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Figure 12 reports the switch-off mean times. It can be noticed that the model MaxD_5% gives the
maximum value of the mean inactive time. Thus, this configuration leads to a high inactive time for
each switch off. Instead, in the model MaxD_2.5%, the mean time in the inactive state is the lowest; the
machines turn into off-state since there are only few pieces in the buffer. The UP policy achieves a
reduction in the machine energy consumption removing resource starvation. Indeed, the machine
turns off when the upstream buffer is empty and then does not wait in the idle state using a high
quantity of energy.
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Figure 12. Mean switch off time for the four lines design with UPD policies.
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The following figure (Figure 13) shows the mean of the pieces in the buffers of the four models
with the switch off policy. It can be noticed that the number of pieces in the buffers does not depend on
the chosen objective function. Indeed, the number of elements in the buffers depends on the position
of the bottleneck. In fact, in model MaxD_2.5%, as written in Table 2, the bottleneck is the second
machine on the line. For these reasons, if the elements in the buffers are lower than NU

on, then the
UPD policy degrades for the machines below the bottleneck in the upstream policy. Future work may
investigate the effect of changing the bottleneck position in an unbalanced flow line in order to obtain
the best compromise between WIP (Work in Process) and the machines switch-off mean times.
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6. Conclusions

A design model of flow lines to improve the efficiency of the switch-off policy has been proposed.
The model is based on the introduction of a couple of workstations; the first is more rapid than the

second in order to facilitate the switch-off of the first machine. Moreover, the proposed model allows
for the evaluation of the potential benefit of energy consumption with a determined reduction in the
production rate. In unbalanced flow lines, the higher idle times lead to a reduction in the total energy
required for the production. However, in the idle state, stations absorb energy without working. For
these reasons, applying the switch-off policy in an unbalance flow line is necessary to reduce energy
consumption in the unproductive state.

The design model is used with the discrete event simulation to highlight the energy saving with
the different levels of production loss fixed. In response, our first research question asked: what is the
impact of the design model proposed on the performance of the production line in terms of energy
saving maximizing the production rate?

Using the simulation, we have demonstrated that the model proposed could improve the reduction
of energy consumption of the flow line more than the design model that does not consider the possibility
of introducing the switch-off policy.

However, in response to our second research question: can the constraint of a limited reduction
loss improve significantly the energy saving of the production line obtaining an adequate trade off?

Our results have demonstrated that the model can support the decision about the better trade-off

between the production rate level and energy consumption reduction. Moreover, the results highlighted
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the better choice, if the objective is also the reduction in the number of on/off activities that can affect
the maintenance of the machines. The results show that the number of warmups can be reduced by
properly choosing the bottleneck position, respecting the precedence constraints, in order to achieve
further energy saving.

From a managerial viewpoint, the study was motivated by the important issue of energy
consumption of flow lines. Our results suggests that: (i) the design model should be adapted to
introduce the switch-off policy to obtain a higher benefit from the switch-off policies; (ii) it is possible
to evaluate, with the use of the simulation, the effect of a targeted reduction of production rate (for
example in a determined production planning period) to improve the energy consumption reduction;
and (iii) the model proposed can be extended to different flow lines to support the decision making
about the design and potential energy reduction.

A limitation of our study is that the machines were not affected by failures and the processing
times are deterministic. Machine failures have a significant impact on productivity. For this reason,
integrating maintenance during scheduled machine downtime can lead to a reduction in production
losses. Therefore, future works will consider the unbalance flow line design in a pull system that also
considers machine failures and stochastic processing times. Furthermore, different switch-off policies,
for example, that also consider demand fluctuations for shutdowns, and their effect on throughput and
on energy consumption, will be investigated.
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and revised the paper. All authors have read and agreed to the published version of the manuscript.
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Nomenclature

C Cycle time
Cmax Maximum fixed cycle time
dj Distance between nearby stations
i = 1,.., N Operation index
j = 1,.., M Station index
Kj j-th buffer capacity
nj Number of parts in j-th buffer
ND

off Downstream buffer level to switch off

ND
on Downstream buffer level to switch on

NU
on Upstream buffer level to switch on

Pi Power in idle state
Poff Power in out-of-service state
Pw Power in working state
Pwu Power in warm up state
sj State of the j-th station
Td,j j-th station idle time
ti i-th operation processing time
Tj j-th station processing time
twu Time in warm-up state
TTd Cycle idle time
vik Precedence constrains binary variable
WSj j-th station
xij Operation assignment binary variable
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