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Featured Application: We propose a novel model to perform attributed graph clustering, which
exploits heat kernel to enhance the performance of graph convolution and adopts adaptive
architecture to work on different graph datasets. The model proposed in this paper can be
deployed to a product recommendation system, where users with specific preferences can be
classified precisely and recommended satisfactory products. It can be applied to citation networks
to analyze the categories of different articles without prior knowledge. It can be deployed into
business forecasting, where the proposed model can identify the operating situation of enterprises
significantly by analyzing their business data and investment relationships jointly.

Abstract: Attributed graphs contain a lot of node features and structural relationships, and how to
utilize their inherent information sufficiently to improve graph clustering performance has attracted
much attention. Although existing advanced methods exploit graph convolution to capture the
global structure of an attributed graph and achieve obvious improvements for clustering results,
they cannot determine the optimal neighborhood that reflects the relevant information of connected
nodes in a graph. To address this limitation, we propose a novel adaptive graph convolution using a
heat kernel model for attributed graph clustering (AGCHK), which exploits the similarity among
nodes under heat diffusion to flexibly restrict the neighborhood of the center node and enforce the
graph smoothness. Additionally, we take the Davies–Bouldin index (DBI) instead of the intra-cluster
distance individually as the selection criterion to adaptively determine the order of graph convolution.
The clustering results of AGCHK on three benchmark datasets—Cora, Citeseer, and Pubmed—are all
more than 1% higher than the current advanced model AGC, and 12% on the Wiki dataset especially,
which obtains a state-of-the-art result in the task of attributed graph clustering.

Keywords: graph convolution; attributed graph clustering; heat kernel; Davies–Bouldin index

1. Introduction

With the rapid developments of social networks, communication networks, biological networks,
and other applications in various fields, the scale of graph data grows sharply. Attributed graphs as
the basic data representation contain a large number of node attributes and connection relationships,
but it is difficult to perform node classification due to the massive nodes and complicated topology.
How to mine the inherent information hidden in the attributed graph without the prior knowledge is a
challenging task.

Attributed graph clustering aims to group nodes into different clusters by exploiting node
attributes and graph structures sufficiently, where relevant nodes are assigned to the same cluster and
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the difference between clusters is maximized. By leveraging node attributes and structural information,
attributed graph clustering is mainly summarized in three main categories as follows.

Attribute-based clustering such as spectral clustering only respects node attributes and performs
clustering on the similarity matrix with node attributes directly. In comparison, structure-based
clustering just explores vertex connectivity by manipulating the adjacency matrix of the attributed
graph, e.g., random walk [1], Laplacian eigenmaps [2]. However, the above two kinds of graph
clustering methods lack incorporated node features and a mining topological structure.

In recent years, generative models based on graph convolutional network (GCN [3]) has been
widely studied for attributed graph clustering, where GCN [3] updates the node representation by
incorporating neighbor node features to construct graph embedding. Classic generative models
include variational graph auto-encoder (VGAE) [4], marginalized graph autoencoder (MGAE) [5], and
adversarially regularized graph autoencoder (ARGE) [6]. These methods have been demonstrated as
being very practical for performing clustering by unifying graph structures and attributing information.
However, graph clustering via GCN [3], such as VGAE [4] or MGAE [5], simply employs shadow
two-layer or three-layer graph convolution respectively, which only leverages two or three-hop
neighborhood features, and it is hard to capture global structural information. On the contrast, stacking
too many layers may lead to over-smoothing and complex computation.

Zhang et al. [7] adopt adaptive graph convolution (AGC) as a low-pass graph filter to make node
features smoother. Nevertheless, AGC [7] might not determine the appropriate neighborhood that
reflects the relevant information of connected nodes represented in graph structures.

To overcome the above difficulty, we propose an adaptive graph convolution model using heat
kernel (AGCHK) to obtain an appropriate neighborhood of the center node and enhance the ability to
capture graph smoothness. Our contributions can be summarized as follows:

• We replace the weak linear low-pass filter in standard AGC [7] by heat kernel to enhance the
low-pass characteristics of the graph filter.

• We leverage the scaling parameter to restrict the neighborhood of the center node, which is flexible
to exploit distant-distance nodes while excluding some irrelevant close-distance nodes.

• We choose the Davies–Bouldin index (DBI) as the criterion to evaluate the cluster quality, which
can exactly determine the order of adaptive graph convolution.

• Experimental results show that AGCHK is obviously superior to other compared methods in
the task of attribute graph clustering on benchmark datasets such as Cora, Citeseer, Pubmed,
and Wiki.

2. Preliminary

2.1. Problem Formalization

2.1.1. Graph Definition

An undirected graph is represented as G = {V, E, X}, where V = {vi}
N
i=1 consists of a set of nodes

with |V| = N. A graph signal x : V → R is a real-valued function on the nodes regarded as a vector
x ∈ RN, where xi is the value of x at the ith node. E is a set of edges, and A =

{
ai, j

}
∈ RN×N is the

adjacency matrix with ai, j = a j,i representing the connection relationships between node vi and node
v j. The graph Laplacian matrix is denoted as L = D −A, where D is the diagonal degree matrix

with Di,i =
∑

j Ai, j, and the normalized graph Laplacian is defined as L = IN −D−
1
2 AD−

1
2 . Since L

is a real symmetric positive semidefinite matrix, it can be eigendecomposed as L = UΛUT where
U = [u1, u2, . . . , uN] ∈ RN×N is a complete set of orthonormal eigenvectors known as graph Fourier
modes and Λ = diag{λi}

N
i=1 are ordered real nonnegative eigenvalues associated with {ui}

N
i=1, which

are identified as the frequencies of the graph.
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2.1.2. Goal

Given an attributed graph G, graph clustering aims to partition nodes V into m disjoint clusters
C = {ci}

m
i=1 so that nodes within the same cluster are more likely to have similar features and be close

to each other, while nodes distributed in different clusters have dissimilar features and are distant to
each other.

2.2. Graph Convolution

Here, we briefly review the notions and evolutions of graph convolution. The graph Fourier
transform of a graph signal x is defined as x̂ = UTx, and the inverse graph Fourier transform is
x = Ux̂ [8]. According to the convolution theorem [8], the graph convolution operator represented as
∗G is defined as

x ∗G f = U
((

UT f
)
�

(
UTx

))
, (1)

where f denotes the graph convolution kernel in the spatial domain and � is the element-wise
Hadamard product.

Spectral CNN [9] replaces UT f by a diagonal matrix gθ so that the Hadamard product can be
written as matrix multiplication,

y = x ∗G f = UgθUTx, (2)

where L is the normalized graph Laplacian matrix and gθ = diag
(
{θi}

N
i=1

)
defined in the spectral

domain denotes the frequency response function of the graph filter gθ(L).
However, there are two limitations with the above convolution kernel: (i) it does not have the

spatial localization and (ii) it is computationally expensive [10]. To circumvent these issues, gθ is
well-approximated by a Chebyshev polynomial in ChebyNet [10], which is defined as

gθ(Λ) =
P−1∑
p=0

θpΛp, (3)

where P is a hyper-parameter and θp ∈ RN is the vector of polynomial coefficients. Correspondingly,
the graph convolution of ChebyNet [10] is defined as

y = UgθUTx = U

P−1∑
p=0

θpΛp

UTx =
P−1∑
p=0

θpLpx. (4)

GCN [3] only considers the first-order polynomial by setting P = 2 and θ = θ0 = −θ1; thus, the
simplified graph convolution is defined as

y = UgθUTx = θU(I −Λ)UTx = θ(I − L)x, (5)

where GCN [3] constrains the number of parameters further to address overfitting and accelerate
computation.

To strengthen the low-pass performance of the graph filter and improve graph smoothness,
AGC [7] modifies the frequency response function of GCN [3] as

y = UgθUTx = θU
(
I −

1
2

Λ
)
UTx = θ

(
I −

1
2

L
)
x. (6)

3. Clustering via Adaptive Graph Convolution Using Heat Kernel

Our basic assumption is that connected nodes tend to have similar features or same labels i.e.,
the graph smoothness. Although previous graph convolution methods gain success by capturing the
smoothness of connected nodes, we still need a new methodology to enhance the low-pass performance
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of graph filter. In this section, we prove that graph smoothness is associated with the eigenvalues of
the normalized graph Laplacian matrix, this is, it is relevant to the frequency of graph signal. Next, we
analyze previous graph filters from the perspective of signal frequency response and propose AGCHK
to circumvent the existing problem of previous filters.

3.1. Motivation

A graph signal x can be linearly represented by the bases of the spectral domain, which are denoted
as x = α1u1 + α2u2 + . . .+ αNuN, where {αi}

N
i=1 is the coefficient of the eigenvector. The smoothness

of a basis vector uq corresponding to the graph smoothness is measured by the Laplacian–Beltrami
operator Ω(·) [11], i.e.,

Ω
(
uq

)
=

1
2

∑
(vi,v j)∈E

ai j‖
uq(i)√

di
−

uq( j)√
d j

2

2

‖ = uT
q Luq = λq, (7)

where uq(i) means the ith element of the basis signal uq, di denotes the degree of node vi, and ai j
represents the connected weight between nodes vi and v j. Equation (7) verifies that the basis signals
associated with smaller eigenvalues (lower frequencies) are smoother concerning graph structures.
Hence, to make the graph signal smoother, graph filters should highlight low-frequency signals by
assigning larger weights to low-frequency basis signals, acting as a low-pass filter.

Based on the above principle, we analyze the weakness of previous graph filters in Section 2.2.
The frequency response function in ChebyNet [10] is g

(
λq

)
=

∑P−1
p=0 λ

p
q , which assigns weight λp

i to

uiuT
i . Since λq is in ascending order, i.e., 0 ≤ λp

1 ≤ λ
p
2 ≤ . . . ≤ λ

p
N, ChebyNet [10] assigns higher

importance to high-frequency basis signals and discounts graph smoothness. GCN [3] defines graph
convolution based on the frequency function g

(
λq

)
= 1 − λq [12], which cannot perform better

low-pass characteristics as g
(
λq

)
is negative for 1 < λq ≤ 2. The frequency response function in

AGC [7] is g
(
λq

)
= 1 − 1

2λq, which exploits a linear low-pass filter to suppress the high-frequency
signal; however, it might not highlight low-frequency signals adequately and cannot determine the
appropriate neighborhood that reflects the relevant information of smoothness.

3.2. Adaptive Graph Convolution Using Heat Kernel

3.2.1. Graph Convolution Using Heat Kernel

We propose a novel graph convolution model based on heat kernel to enhance low-frequency
signals and suppress high-frequency signals, which can capture the smoothness of node features or
labels sufficiently [13]. The heat kernel is defined as

f
(
λq

)
= e−sλq , (8)

where the scaling parameter s > 0 determines the range of heat diffusion. The frequency response

function based on heat kernel is defined as gθ =
∑P−1

p=0 θpΛp
s [13], where Λs = diag

{
e−sλq

}N

q=1
, and graph

convolution via heat kernel denotes

y = UgθUTx = U(
P−1∑
p=0

θpΛp
s )U

Tx =
P−1∑
p=0

θpe−psLx. (9)
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To preserve the locality of graph convolution based on heat kernel and keep the tradeoff between
low-pass performance and computational complexity, the frequency response function g

(
λq

)
= 1+ e−sλq

is obtained by setting P = 2, and the associated graph filter is

y =
(
I + e−sL

)
x. (10)

The above graph filter can preserve more low-frequency signals by assigning the weight e−sλq to
the basis signal uiuT

i , and e−sλq decreases exponentially as λq increases. Furthermore, for datasets with
different node connection structures, we can dynamically regulate the allocation strategy of various
basis signal weights by adjusting the scaling coefficient s of the heat kernel.

From the perspective of heat diffusion, (e−sL)i j reflects the similarity metric, which captures the
amount of energy from node vi to node v j, and a target node v j can be regarded as the neighboring
node of the center node vi when the similarity metric (e−sL)i j between nodes vi and v j is higher than the
threshold ε, which offers us a more flexible approach to define neighboring nodes of the center node
and accelerates the computation by setting the threshold ε. Figure 1 depicted by the Graph Signal
Processing toolbox [14] illustrates that the range of heat diffusion controlled by the scaling parameter s
becomes larger as s increases. Different from the graph convolution methods in Section 2.2, which
constrain neighboring nodes via the shortest path distance, graph convolution based on heat kernel
leverages a continuous manner to determine the neighborhood, which can utilize high-order neighbor
nodes sufficiently and discard some irrelevant low-order neighbor nodes [13].

Figure 1. Heat diffusion comparison as s increases on an example graph. The center node is represented
in yellow, and the similarity between the neighbor nodes and the center node decreases as the node
color becomes darker. The range of heat diffusion increases from a small scale (a) to a large scale (b).

Compared with the linear frequency response function g
(
λq

)
= 1− 1

2λq proposed in AGC [7], we

leverage the exponential frequency function g
(
λq

)
= 1 + e−sλq based on heat kernel, which highlights

low-frequency signals exponentially to make the graph smoother. Figure 2 illustrates g
(
λq

)
= 1 + e−sλq

assigns larger weights to low-frequency basis signals compared with g
(
λq

)
= 1− 1

2λq so that connected
nodes have more similar features, which indicates that graph convolution based on heat kernel might
perform graph clustering better.
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Figure 2. The linear low-pass filters in adaptive graph convolution (AGC) [7] and heat
kernel comparison.

3.2.2. K-Order Adaptive Graph Convolution

First-order graph convolution is not sufficient to capture graph smoothness, since it updates the
center node through aggregating a 1-hop neighborhood only, which might not suitable for large and
sparse graphs. To make full use of node features and global structural information, we exploit k-order
graph convolution, which is defined as

X =
(
I + e−sL

)k
X, (11)

where k > 0 is the order of graph convolution. Figure 2 shows that g
(
λq

)
=

(
I + e−sλq

)k
becomes more

low-pass as k increases; that is, the filtered graph will be smoother. In particular, we normalize the
node features at each iteration (l1 or l2), which scales the input vector to the unit norm.

3.2.3. Cluster Evaluation Index

According to Equation (11), the representation of connected nodes will be more similar as k
increases, and we perform spectral clustering on node features X filtered by graph convolution in each
iteration. In detail, the pairwise similarity between nodes is measured as S = 1

2

(
|K|+ |K|T

)
[15], where

K = XX
T

denotes a linear kernel. Since K is symmetric and nonnegative, learning the eigenvectors of
K is equivalent to computing the left singular vectors of X via singular value decomposition (SVD).
Thus, we perform k-means on the left singular vectors associated with the m largest eigenvalues of X
directly to obtain cluster partitions. Moreover, we do multiple spectral clustering in each iteration to
preserve stable cluster partitions.

As the iteration goes on, the features of connected nodes will become more and more similar; this
is, the intra-cluster distance is getting smaller. Figure 3 illustrates that nodes with different labels are
mixed together when iteration number k is smaller, while node features will be over-smoothing when
iteration number k is larger. To determine an appropriate iteration number k comprehensively, we
adopt Davies–Bouldin index (DBI) [16] as the criterion to evaluate cluster quality, which is defined as

DBI
(
Ck

)
=

1
m

m∑
i=1

max
i, j

di + d j

ri j
. (12)

Denote by m the number of clustering partitions, di the average distance between each point of a
cluster and the cluster centroid i, and ri j the distance between cluster centroids i and j. The score is
defined as the average similarity measure of each cluster with its most similar cluster, and clusters that
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are farther apart and less dispersed will result in a better (smaller) score. To stop iterating in time, we
choose k corresponding to the first local minimum of DBI

(
Ck

)
as the most appropriate iteration number.

More intuitively, considering d_DBI(k) = DBI
(
Ck+1

)
−DBI

(
Ck

)
, we stop iterating immediately once

d_DBI(k) > 0 as the iteration number k increases and obtain the final cluster partition Ck. By leveraging
the above strategy, AGCHK is able to capture the representation of graphs with different structures
adaptively and avoid over-smoothi

Figure 3. Spectral clustering visualization of k-order graph convolution for dataset Cora. Colors of
different nodes represent various labels, and the representation of nodes with the same label is closer as
the value of k increases. Low-order graph convolution makes node features indistinguishable, while
high-order graph convolution might cause node features over-smoothing.

3.2.4. Architecture and Algorithm

Based on the design and analysis of the previous chapter, we summarize the proposed AGCHK
algorithm as follows. Firstly, we construct a low-pass filter based on the heat kernel, which is defined as(
I + e−sL

)k
, where k = 1. Next, we exploit the low-pass filter to filter the original graph signals to obtain

a smoother graph representation. Then, we can obtain the left singular vectors U of X
k

by the singular
value decomposition and perform k-means on U 10 times, getting the cluster partition Ck. Finally, we
calculate the DBI of the cluster partition Ck; if the DBI decreases, we set k = k + 1 and continue the
above loop, else, we stop the loop, and the final cluster partition is Ck. Figure 4 is the architecture of
the novel AGCHK model. Algorithm 1 describes in detail the algorithm of obtaining the better cluster
partition by performing AGCHK. We utilize the low-pass filter based on heat kernel in the adaptive
graph convolution architecture to enhance the smoothness of the graph representation, which can
adaptively determine the order of graph convolution and does not require training parameters, unlike
the other methods based on graph neural network [4–6].

Figure 4. The architecture of proposed adaptive graph convolution using heat kernel model for
attributed graph clustering (AGCHK).
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Algorithm 1 AGCHK

Input: Node features X, adjacency matrix A, and maximum iteration number max_iter.
Output: Cluster partition C.

1. Initialize k = 0, rep = 0, REP = 10, Compute the normalized graph Laplacian L = IN −D−
1
2 AD−

1
2 .

2. Compute graph filter I + e−sL.
3. repeat
4. Set k = k + 1.

5. Calculate k-order graph convolution by Equation (11) and obtain filtered features X
k
.

6. X
k
= normalize

(
X

k
)
.

7. Obtain the left singular vectors U of X
k

by SVD.
8. repeat
9. Set rep = rep + 1

10. Perform k-means on U and obtain clustering partition Ck.

11. Calculate DBI
(
Ck

)
[rep] by Equation (12).

12. until rep = REP

13. Compute the mean of REP partition scores DBI
(
Ck

)
[0 : rep].

14. until d_DBI(k) > 0 or t > max _iter

15. return final clustering partition Ck.

3.3. Algorithm Time Complexity

According to Algorithm 1, denote by D the number of node features, m the number of clusters, N
the number of nodes, and rep the number of clustering in each iteration. The graph filter I + e−sL can
be efficiently approximated by Chebyshev polynomials without requiring the eigendecomposition
of the graph Laplacian matrix [17], and the computational complexity is O(P|E|), where P is the
order of Chebyshev polynomial and |E| is the number of edges. Such a linear complexity makes
methods based on heat kernel applicable to large-scale networks [3]. After k iterations, the time
complexity of calculating Equation (11) k times is O(P|E|+ NDk), performing spectral clustering
on Xk is O

(
N2Dk + N2mk

)
, and computing DBI

(
Ck

)
is O

(
1
m N2Dk + m2k

)
. Note that for a spare A,

m� D, m� N2, the overall time complexity of AGCHK is O
(
P|E|+ NDk + N2Dk

)
. AGCHK is more

time-efficient than the clustering methods based on graph neural networks, since AGCHK does not
need to train parameters.

4. Experiments

4.1. Datasets

To verify the effectiveness and benefit of the proposed AGCHK for attributed graph clustering,
we conduct experiments on four benchmark datasets. The dataset details are demonstrated in Table 1.
Cora, Citeseer, and Pubmed [4] are citation networks whose nodes represent documents and edges are
citation links. Wiki [17] is a webpage network, whose nodes are webpages and edges are link relations.
The node features of Cora and Citeseer are binary word vectors, and the node features of Pubmed and
Wiki are computed by the term frequency–inverse document frequency.
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Table 1. Statistics of datasets.

Dataset Nodes Edges Features Classes

Cora 2708 5429 1433 7
Citeseer 3327 4732 3703 6
Pubmed 19,717 44,338 500 3

Wiki 2405 17,981 4973 17

4.2. Baselines and Evaluation Metrics

To highlight the performance of AGCHK, we choose the same benchmark methods as AGC [7].

1. Methods that only exploit node features: classic spectral clustering methods such as k-means and
spectral-f, which perform clustering on the similarity matrix constructed by node features directly.

2. Clustering methods that only handle graph structures: spectral-g clustering on the graph adjacency
matrix simply, Deepwalk [2], and graph neural networks for graph representations (DNGR) [18].

3. Attributed graph clustering methods utilize graph structures and graph node features jointly:
AGC [7], which does not need to train graph neural network parameters, Graph neural
network methods based on autoencoder such as graph autoencoder (GAE) and graph variational
autoencoder (VGAE) [4], marginalized graph autoencoder (MGAE) [5], adversarially regularized
graph autoencoder (ARGE), and variational graph autoencoder (ARVGE) [6].

To measure the ability of the model comprehensively, we adopt the following three cluster
evaluation indexes [19]: graph clustering accuracy (Acc), normalized mutual information (NMI), and
macro F1-score (F1).

4.3. Parameter Settings

For AGCHK, we set the maximum number of iterations max_iter to 20. According to Section 3.2.1,
the range of heat diffusion becomes larger as the scaling parameter s increases. Cora and Citeseer
might have similar parameter settings since they have the close node and edge sizes, and the parameter
s might be smaller due to their lower quantity. Pubmed has more nodes and edges; thus, its parameter
s might be larger. Since Wiki has more edges and fewer nodes, we set s very small so that AGCHK can
leverage a fine structure. In view of the above analysis, for Cora, s = 3.3 and ε = 10−4, for Citeseer,
s = 2 and ε = 10−5, for Pubmed, s = 8 and ε = 10−5, and for Wiki, s = 0.5 and ε = 10−5.

For other baseline methods, we keep the same parameter settings as the original papers. For
AGC [7], we set max_iter to 60. For Deepwalk [2], denote by 10 the number of random walks, 128 the
number of latent dimensions of each node, and 80 the path length of each random walk. For DNGR [18],
the autoencoder is constructed by three layers, where the hidden layers are 512 neurons and 256 neurons
respectively. For GAE and VGAE [4], we construct encoders with 32-neuron hidden and 16-neuron
hidden layers respectively, and we use the Adam optimizer to train the encoders for 200 iterations
with a learning rate 0.01. For MGAE [5], denote by 0.4 the degree of corruption level p, 3 the number of
layers, and 10−5 the coefficient λ. For ARGE and ARVGE [6], we build encoders with 32-neuron and
16-neuron hidden layers respectively, and their discriminators consist of two hidden layers, which are
composed of 16 neurons and 64 neurons, respectively. On Cora, Citeseer, and Wiki, we use Adam
optimizer to train ARGE and ARVGE [6] for 200 iterations, where their encoder and discriminator
learning rate are both 0.001. On Pubmed, we train ARGE and ARVGE [6] for 2000 iterations, where the
learning rates of the encoder and the discriminator are 0.001 and 0.008, respectively.

4.4. Result Analysis

To obtain stable clustering results, we repeat 10 experiments for each method, and the average
clustering results are shown in Table 2. Since autoencoder-based methods make use of node features
and graph structures jointly, they perform better than classic spectral clustering methods that exploit
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node features or graph structures independently. Unfortunately, these autoencoder-based methods
only utilize the 2-hop or 3-hop neighborhoods of the center node to update node representation, which
is insufficient to capture global structures.

Table 2. Clustering performance. The best score is in bold, while the second best score is underlined.
DNGR: graph neural networks for graph representations, GAE: graph autoencoder, VGAE: variational
graph auto-encoder, MGAE: marginalized graph autoencoder, ARGE: adversarially regularized graph
autoencoder, ARVGE: variational graph autoencoder, AGC: adaptive graph convolution.

Methods Input Cora Citeseer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51

Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20

Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21

Deepwalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.38

DNGR Graph 49.24 37.29 37.29 32.59 18.02 44.19 45.35 15.38 17.90 37.58 35.85 25.38
GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35

VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49
MGAE Both 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98 50.14 47.97 39.20
ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27

ARVGE Both 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80
AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36

AGCHK Both 70.56
± 0.18

55.44
± 0.35

67.09
± 0.24

68.35
± 0.00

42.25
± 0.00

63.89
± 0.00

70.82
± 0.01

32.40
± 0.01

69.95
± 0.01

60.13
± 0.05

55.47
± 0.03

46.27
± 0.02

AGC [7] achieves better clustering results since it exploits adaptive graph convolution to select
k-hop neighbors to aggregate information and update the central node representation. However, for
Wiki that is more densely connected than other datasets, AGC [7] cannot perform well because of its
weaker ability to capture smoothness.

As for our AGCHK model, it outperforms all the baseline methods, achieving state-of-the-art
results on the four datasets, especially on Wiki. AGCHK implements such a smooth adaptive graph
convolution by enhancing low-frequency basic filters and discounting high-frequency basic filters that
it makes the representation of connected nodes smoother. Furthermore, the scaling parameter s of the
heat kernel is flexible to adjust the diffusion range to suit different applications and different networks.
Especially for Wiki, AGCHK achieves its superiority significantly because it sets the scaling parameter
s smaller to leverage fine graph structure information.

To verify the reliability of the proposed cluster evaluation index d_DBI(k) > 0, we plot d_DBI(k)
and the clustering performance w.r.t. k on Cora and Wiki respectively in Figure 4. The intra-cluster
distance decreases and the inter-cluster distance increases in the early iteration, which is corresponding
to d_DBI(k) < 0. However, too many iterations will make node features over-smoothing, which leads
to the inter-cluster distance rises. The cluster evaluation d_DBI(k) takes intra and inter-cluster distance
comprehensively, and it can select the most appropriate k to stop iterating, as shown in Figure 5. One
can see that the Acc, NMI, and F1 scores evaluating clustering performance are the best or close to the
best when d_DBI(k) is greater than zero the first time, which demonstrates the validity of the proposed
selection evaluation index d_DBI(k) > 0. The selected iteration number k for Cora, Citeseer, Pubmed,
and Wiki is 9, 9, 13, and 8 respectively, which are all values that are lower than the respective k values
on these datasets in AGC [7]—12, 55, 60, and 8.
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Figure 5. d_DBI(k), intra(k), inter(k) and clustering performance Acc, NMI, and F1 w.r.t. k on datasets
Cora and Wiki.

AGCHK performs very stable on benchmark datasets, and the standard deviations of Acc, NMI,
and F1 are 0.18%, 0.35%, and 0.24% on Cora, 0.00%, 0.00%, and 0.00% on Citeseer, 0.01%, 0.01%, and
0.01% on Pubmed, and 0.05%, 0.03%, and 0.02% on Wiki, which are more stable than AGC [7].

We compare the time efficiency of several baseline methods as Table 3, and the best score is in bold,
while the second best score is underlined. We can see that the running time of AGCHK and AGC are
comparable, while AGCHK is more than three times faster than the other methods. Since AGCHK does
not need to train parameters, it is more efficient than the baselines based on graph neural networks.

Table 3. The running time of related methods performing on benchmark datasets. For other baselines,
we follow the parameter settings in the original papers. Hardware configuration: Intel(R) Core(TM)
i7-7700K CPU, 16.0 GB RAM and no GPU.

Methods Cora Citeseer Pubmed Wiki

GAE 38.72 s 57.95 s 2265.55 s -
VGAE 41.66 s 61.34 s 2433.76 s -
ARGE 48.49 s 68.59 s 2021.94 s -

ARVGE 43.16 s 62.33 s 1850.21 s -
AGC 17.46 s 111.04 s 151.71 s 22.09 s

AGCHK 8.23 s 22.92 s 854.55 s 23.64 s

4.5. Influence of Hyper-Parameters s and ε

To demonstrate the flexibility of the scaling parameter s and the threshold ε, we perform
experiments on Cora as shown in Figure 6. For the fixed threshold ε, Acc scores first increase and then
decrease as the scaling parameter s rises, i.e., sufficient neighborhood information cannot be employed
when s is small. On the contrast, the range of heat diffusion is large and different clusters cannot be
well distinguished when s is comparatively large.
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Figure 6. The Acc scores of clustering performance using the different scaling parameter s and threshold
ε on Cora.

For the fixed threshold s, good clustering results can be obtained with s in a large range when ε is
small, as many neighbors with weak relationships are excluded. However, as ε becomes larger, a large
number of neighbor nodes with strong relationships are dropped, resulting in poor clustering. Briefly,
by setting a smaller threshold ε, noise nodes will be ignored and computation can be accelerated.

5. Conclusions

In this paper, we improve AGC [7] by utilizing heat kernel instead of the original weak linear
kernel, which makes the low-pass performance of the graph filter better. The scaling parameter s of
heat kernel can adjust the range of heat diffusion effectively so that it is suitable for various datasets
with different node and edge sizes. Besides, we redesign the clustering criterion to achieve the best
clustering results in fewer k-order graph convolution. Our proposed method AGCHK has reached
advanced levels in all four baseline datasets.
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