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Abstract: The review covers achievements and developments in the field of probiosis and prebiosis
originating from sources other than dairy sources, mainly from plant material like cereals. The actual
definitions of probiotic microorganisms, prebiotic, and postbiotic compounds and functional food
are discussed. The presentation takes into account the relations between selected food components
and their effect on probiotic bacteria, as well as effects on some health issues in humans. The review
also focuses on the preservation of cereals using probiotic bacteria, adverse effects of probiotics and
prebiotics, and novel possibilities for using probiotic bacteria in the food industry.
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1. Introduction

Food that improves human’s life and cures diseases is a concept that has many faces. One of the
most complicated loops is: nutrient (prebiotic), which is treated by specific bacteria (probiotic) and
products (postbiotic) that are biologically active. The probiotics, their nutrients–prebiotics and derived
from the latter postbiotics attract considerable attention of clinicians, microbiologists, dieticians and
nutritionists as well as food technologists and agriculture. A number of recent contributions covers
problems of probiotics and prebiotics in general [1,2], functional, healthy foods and beverages [3–8],
effects of processing upon some sources [9], consumer preferences [10,11], mathematical models
for probiotic fermentation [12] and curing infectious diarrhoea [13]. They perfectly underline the
significance of the problem. This review presents novelties in the field of probiotics and then focuses on
cereals—a relatively new type of prebiotics. As a main food component, cereals contain a considerable
amount of insoluble and soluble fibre utilised as nutrients by probiotics and deliver several interesting
postbiotics. Cereal prebiotics are also a healthy alternative for humans who do not tolerate dairy
products. However, there is also a group of consumers who do not tolerate cereals. Therefore, in this
review, prebiotics originating from other plants are briefly mentioned.

2. Probiotics

In 2013, a panel of experts slightly modified the World Health Organisation/Food and Agriculture
Organisation (WHO/FAO) definition of probiotics into “live microorganisms that, when administered
in adequate amounts, confer a health benefit on the host” [14]. Currently, the research in this field
focuses mainly on the gastrointestinal (GI) tract. However, bacteria also colonise the skin, urogenital
tract, and airways. New microbial niches have been discovered in, thus, far considered sterile organs
and tissues, such as the placenta, amniotic fluid, mammary gland and human milk. Very sensitive
genetic techniques have confirmed the presence of microbes in the blood. They are Proteobacteria
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phylum (more than 80%) but also from Actinobacteria, Firmicutes, and Bacteroidetes [15,16]. These findings
changed the frontiers of in vivo probiotics research [16–20].

Lactobacillus species are the most commonly utilised fermentative bacteria [21,22]. Although
suitability of lactic acid bacteria for fermentation of maize and amaranth has been reported [23], some
Lactobacilli, for instance, Lactobacillus acidophilus, poorly grow in cereal products. Therefore, in such
applications, it is combined with Rhizopus oryzae [24]. Among fermentative bacteria, these assigned
to the genus Weissella of the group of lactic acid bacteria, are particularly interesting. Weissella spp.
occur in a wide range of habitats, e.g., on the skin and in the milk and faeces of animals, saliva, breast
milk, human faeces and vaginas, plants and vegetables as well as a variety of fermented foods, such
as European sourdoughs, Asian and African traditional fermented foods. These microorganisms
are receiving attention as potential probiotics delivering novel non-digestible oligosaccharides and
extracellular polysaccharides, mainly dextran. Potentially, as bioactive compounds, they might be
useful in a wide range of industrial applications, predominantly for bakeries and production of
cereal-based fermented functional beverages [25].

Generally, microbes which are recognised as beneficial are called probiotic bacteria. The positive
effect of those bacteria is local and distant, involving the whole body.

3. Modern Probiosis

A considerable number of clinical studies confirm the positive effect of probiotics and prebiotics
in maintaining health and therapy. They cure diseases of some organs or alleviate their symptoms, for
instance irritable bowel syndrome, Helicobacter pylori gastritis, inflammatory bowel disease, diarrhoea,
non-alcoholic fatty liver disease, and atopic dermatitis. Clinical studies suggest the effectiveness of
probiotics in the treatment of diseases involving the whole body, such as obesity, insulin resistance
syndrome, and type 2 diabetes [26,27]. Probiotics also increase body immunity (immunomodulation).
Benefits of the prophylactic use of probiotics in different types of cancer and cancer-associated side
effects have also been reported [28]. The influence of probiotics on allergy remains unclear. Long-time
follow-up of infants fed with cereals containing probiotic L. paracasei spp. paracasei F19 and a control
group fed with probiotic free cereals showed no difference in the allergy risk in both groups [29,30]. A
supplementation of cereals with probiotics had no effect on caries in children [31].

Maintaining the skin in good condition with relevant probiotic bacteria appears very promising.
Skin bacteria prevent skin irritation, including sun irritation, topical allergy, inflammation, acne,
dandruff, alopecia, psoriasis and likely skin cancer [32–34]. Following these results, the cosmetic
industry introduced a wide range of topical products enriched with probiotics and more commonly
with prebiotics specific for beneficial skin bacteria. Such an approach to curing vagina, urinary tract,
and respiratory tree disorders with their bacterial microflora is less common.

A personalised microbiome is a novel emerging concept [35]. Such an approach is based on
personalised diets, individual-specifically composed. Cereals as common components of a diet, are
stable in commercial and home-made processing and are very promising.

4. Prebiotics, Functional Food, Bioactive Ingredients and Nutraceuticals

The old but still valid FAO definition of prebiotics states that ‘a prebiotic is a non-viable (in
opposition to probiotics) food component that confers a health benefit on the host associated with
modulation of the microbiota’ [36]. However, in December 2016, experts of the International Scientific
Association for Probiotics and Prebiotics (ISAPP) recommended the new definition of a prebiotic,
‘a substrate that is selectively utilised by host microorganisms conferring a health benefit’. Thus, a
prebiotic may not be a food component. This new definition expands to a wide range of inorganic and
organic substances stimulating microorganisms in all niches of the body and not only in the GI tract. It
has an essential implication for microbiomes outside of the gastrointestinal tract, especially in the skin,
urinary tract, vagina, and so on [37]. In addition, the definition requires documented beneficial health
effects of potential prebiotics.
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However, that definition evokes some doubts as a number of medications clearly fit this definition.
Some antibiotics are utilised by pathogenic bacteria, and the expected effect of those drugs is beneficial
for health. Should they be recognised as prebiotics?

These definitions leave apart biological processing involving probiotic bacteria outside the
human/animal body (in vitro). Likely, compounds processed outside living organisms using probiotic
bacteria, and ingested/used by humans/animals with beneficial effect, should also be accounted
for prebiotics.

There is neither a regulation nor any obligatory definition for healthy food, functional food,
nutraceuticals, or nutraceutical supplements. Depending on countries, companies, and scientific and
consumer societies, various definitions are followed. For instance, functional food is most commonly
defined as a food improving health, and nutraceuticals are described as special, pharmaceutical-grade,
and standardised nutrients. Another definition states that functional food contains bioactive ingredients,
which can be chemical compounds, and the others include also probiotic bacteria. The latter approach
implies four main active compounds of functional food: (i) probiotic bacteria, (ii) substrates for
their growth (clear prebiotics), (iii) substrates for bacteria metabolism, resulting in biologically active
compounds beneficial for the host (could also be called prebiotics), and (iv) biologically active chemical
compounds, called recently postbiotics.

4.1. Prebiotic Compounds

Formerly, prebiotics were considered as non-digestible dietary fibre that exert some biological
effects involving selective stimulation of growth and bioactivity of beneficial microorganisms either
present or therapeutically introduced to the intestine. Probiotics in functional food reside mostly
in dairy products. Nevertheless, there is a need for the development of non-dairy probiotics and
non-fibre prebiotics.

According to the new definition of prebiotics, polyphenols and fatty acids could be included in
this group together with some peptides catabolised by bacteria into active ingredients. Even inorganic
materials (i.e., micronutrients necessary for the development of bacteria) used externally and internally
could be considered as prebiotics.

4.2. Cereals and Their Derivatives as Prebiotics

Cereals constitute a relatively new group of prebiotics. The most common prebiotics are identified
as vegetables and fruit fibres, and dairy products act as probiotic carriers [38]. Grain-based prebiotics,
which are a part of a natural everyday diet for most of the human population, are very promising.
Cereals are rich in insoluble fibre, soluble fibre (β-glucans and arabinoxylan), galactooligosaccharides
(GOSs), fructooligosaccharides (FOSs) and resistant starch [39]. Whole grains are also sources of
many phytochemicals, including phytoestrogens, phenolic compounds, antioxidants, phytic acid, and
sterols [21,40]. It was shown [41–43] that dietary fibre prepared from maize starch are well tolerated
by the human organism. They activate the growth of Bacterioidetes and Actinobacteria inhibiting
simultaneously the growth of Firmicutes responsible for obesity, similarly, they act also as potato
dextrins [44,45].

Products of the lactic acid fermentation of cereals and their derivatives are safe, they enhance
the nutritional value of cereals, either improve or change their taste and help to preserve the food.
This kind of processing, very common in Asia and Africa is employed in manufacturing beverages,
gruels, pancakes, and porridge from fermented rice, sorghum, maize, millet, non-cereal cassava, and
wild legume seeds [46]. That food has relatively long shelf life under ambient temperature, and is
widely accepted by consumers including expectant/breastfeeding mothers, and sick and recovering
persons [47]. Also, in the Western dietary culture, cereals either fermented in vitro or treated by bacteria
in vivo used to be added to a variety of functional foods. Frequently, it is a rediscovery of procedures
known for centuries, for instance, kvass (a soft drink) containing living bacteria.
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Below, the novel impact of prebiotics, especially cereals and their modifications, on probiosis and
health of the main body systems will be briefly discussed.

4.2.1. Gastrointestinal Tract

Numerous studies indicated that in contrast to conventional dairy products, cereal products may
offer healthier options for the delivery of probiotics. Probiotics are common in dairy products, but
cereals are more commonly accepted and consumed [48]. Required cold storage and transportation
limit the use of dairy products. A dry food matrix is also a good carrier for probiotic bacteria. The
intake of the probiotic Bifidobacterium lactis Bb-12 in an oat-based cereal bar resulted in colonisation in
five of the nine subjects, lasting one week after cessation of B. lactis Bb-12 feeding [49]. Fermented
oat milk-like beverages could be a compromise between cereal and milk diets. It is rich in probiotic
bacteria and has a reasonable ratio of oat β-glucans [50]. Cereal β-glucans improve probiotic-enterocyte
adhesion. It could inhibit intestinal colonisation by unfavourable bacteria and, therefore, promote the
settlement of probiotic strain [51].

The feeding of a cereal containing Streptococcus thermophilus, B. lactis, L. acidophilus, and zinc
reduced the severity and duration of acute gastroenteritis in young children. However, whether this
combination is better than either the addition of probiotics or zinc alone is yet to be determined [52].

Cereal-based fermented food products should be taken into account as a promising source of new
probiotics. In Nigerian traditional fermented food, Pichia kluyveri LKC17, Issatchenkia orientalis OSL11,
Pichia kudriavzevii OG32, Pichia kudriavzevii ROM11, and Candida tropicalis BOM21 were found. They
are potentially promising new probiotic strains [53].

4.2.2. Skin

In cosmetology, prebiotics, such as FOSs (mainly extracted from fruits and vegetables),
mannooligosacharides, synthetic or lactose-derived lactulose and mainly cereal β-glucans are widely
used [54,55]. These prebiotics restore and stimulate the skin beneficial probiotic bacteria and fungi.
Moreover, balancing skin pH with prebiotics in cosmetics improves the hydration of surface layers of
the skin and normalises its keratinisation and exfoliation. Oligosaccharide probiotics of hairy skin
limit the growth of Malassezia furfur responsible for dandruff and maintain the production of sebum.
Possibly a stimulation of dermatophytes and blastomycetes is involved. “Fermented” cosmetics,
naturally processed synbiotics, mainly from Asia, design new trends in cosmetology. The technology
of their production is different, but the final effect resembles that of the use of extracted compounds.

4.2.3. Urogenital Tract

Little is known about the role of prebiotics in maintaining vaginal microflora although vaginal
and women lower urinary tract infections are extremely common. Only a few older studies about the
positive effects of FOSs and GOSs in vaginal treatment are available [56]. The urogenital tract could
be colonised by bacteria administered orally with or without prebiotics [57]. Gut microflora interacts
with the urogenital tract, the so-called gut-urogenital axis. It is known that proper gut microbiome
stimulated by oral delivery of prebiotics reduces the level of some uremic nephrovascular toxins in
patients with chronic kidney diseases. Gut dysbiosis is responsible for the progression of kidney
disease [58]. It leads to new therapeutic opportunities for prebiotic and probiotic supplementation
preventing kidney diseases and limiting their progress.

Prebiotics and probiotics could also be helpful in men during reproduction. Half-year treatment
with orally delivered synbiotic composition of lactic acid bacteria (LAB) and arabinogalactan, FOS and
L-glutamine increases the volume of the ejaculate and the quality/quantity of spermatozoa in patients
suffering from idiopathic oligoasthenoteratospermia [59]. Likely, such an effect could also be seen in
healthy men.
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4.2.4. Metabolic Diseases

The dysbiotic gut is linked to obesity, type 1 and type 2 diabetes, and non-alcoholic fatty liver
disease. The transfer of gut microflora from obese animals induces their metabolic disease and obesity
in followed animals. Conversely, the transfer of pathogen-free microbiota from lean healthy human
donors to patients with metabolic disease can increase the sensitivity to insulin [60].

A diet based on rich in prebiotic-fermentable fibre, β-glucans, and plant polyphenols whole-grain
cereals, vegetables, and legumes significantly reduces glycaemia, HbA1c, and insulinaemia. It also
lowers blood cholesterol and low-density lipoprotein cholesterol. The ratio of low-density lipoprotein
cholesterol/high-density lipoprotein cholesterol, triglycerides, blood urea, microalbuminuria, body
weight, and body fat in type 2 diabetes patients also decrease [61].

Excessive consumption of red meat increases the risk of cardiovascular diseases. Intestinal
microbiota metabolise metabolites of choline, phosphatidylcholine, and L-carnitine into proatherogenic
trimethylamine-N-oxide (TMAO) [62].

5. New-Quality—Processing of Foodstuff by Probiotic Bacteria In Vitro

Malting of cereal grains and probiotic lactic acid fermentation of plant-based media increase
the nutritional quality of final products. Fermentation is one of the oldest technologies in food
processing. LAB are commonly used for the fermentation of a large variety of foods. Most of the
commercialised lactic acid fermented products originate from dairy sources. Although they are good
matrices for probiotics, their consumption is limited because of growing both veganism and the number
of lactose-intolerant individuals and propagation of various restricted diets. Thus, the development
of non-dairy probiotic products, such as fruits, vegetables, and cereals as food matrices, is very
promising [63]. Particularly, products from cereals fermented with probiotic bacteria pay considerable
attention as a cheap way to nutritionally rich food either with or without probiotic bacteria. The most
common fermented products of grain origin are presented in Table 1. In many cultures, including
Western countries, many fermented products are heated and cooked prior to consumption. These
procedures kill probiotic microorganisms [9].

Table 1. Products from fermented cereals.

Dish Fermented Source Country Fermentig Species

Beverages

Non-alcoholic

Amazake rice Japan Aspergillus spp.

Boza various cereals Balkan countries
Leuconostoc spp.,
Lactobascillus spp.
Saccharomyces spp.

Bhaati jaanr rice Himalaya countries Saccharomycopsis
fibuligera, Rhizopus spp.

Bushera sorghum, millet Central Africa Lactobacillus spp.
Streptococcus spp.

Haria rice India Bifidobacterium,
Saccharomyces spp.

Koko pearl millet Ghana Weissella confusa,
Lactobacillus fermentum

Kvass rye bread, rye and barley
malt/flour Russia, Ukraine

Lactobacillus casei,
Lactobacillus mesenteroides,

Saccharomyces spp.

Mahewu maize Central Africa Lactate producing
bacteria

Malta barley, hops Denmark, Germany,
Caribbean Saccharomyces spp.
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Table 1. Cont.

Dish Fermented Source Country Fermentig Species

Beverages

Mangisi millet Zimbabwe yeast and mould
Podpiwek grain coffee, hops Poland, Lithuania Sacharomuyces cerevisia

Pozol maize Mexico

Lactococcusus lactis,
Lactobacilli alimentarium,

casei and delbruekii,
Enterococcus, Lactol

Supermalt malt Worldwide Saccharomyces spp.

Tongwa maize Central Africa Lactobacilli, Saccharomyces
spp.

Low-alcoholic beverages

Chhang rice, barley, millet Tybet Lactobacillus spp.,
Saccharomyces spp.

Malt beer barley malt syrup, hops Worldwide yeast
Average-alcoholic beverages

Malt beer barley malt syrup, hops Worldwide yeast
Malt liquor Worldwide Saccharomyces spp.

High-alcoholic beverages

Malt whisky malted barley Saccharomyces spp.
Sake rice Japan Aspergillus oryzae + yeast

Spiritus (vodka) rye, barley, maize Worldwide Saccharomyces spp.
Tesgüino Sprouted corn Mexico yeast

Fermented food a

Appam rice batter + coconut milk India, Sri Lanka
Bread cereal flours Worldwide
Brem rice Indonesia

Chakuli pitha rice and black gram India
Dhokla rice India

Dosa rice India
Enduri pita rice and black gram India

Injera a sourdough-risen flatbread
made out of teff flour Ethiopia

Kenkey White maize grits Africa
Khanom chin rice noodles Thailand

Mageu porridge South Africa
Ogi cereal pudding Nigeria

Pesaha appam Fermented bread India
Puto Rice cake Philippines

Sowan starch remaining on the inner
husks of oats after milling Scotland

Tapai Rice or starch Southeast Asia
Zhur Rye flour Poland

a Various fermenting species are in use.

Fermentation of cereals provides products of longer shelf life, less allergy and higher nutritional
value (vitamins and essential amino acids), and appreciated organoleptic properties.

6. Postbiotics

Recently a new term “postbiotic” was introduced [64]. It is defined as a combination of all
bioactive components generated by bacteria, for instance, on fermentation, which acts beneficially
when introduced into the human organism (Figure 1). Postbiotics can include bacterial lysates with
cell surface proteins, bacterial enzymes and peptides, metabolites produced by bacteria such as
teichoic acids, peptidoglycan-derived neuropeptides, polysaccharides, and lower organic acids, for
instance, lactic acid. Postbiotics can stimulate the immunological system, likely involving bowel
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and intestine developing anti-inflammatory, immunomodulatory, anti-obesogenic, antihypertensive,
anti-proliferative, antioxidative, and hypocholesterolemic activity.
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In the food, as well medical technology, fermentation is the most common source of postbiotics.
An increase in the B vitamins content in cereal grains presents another spectacular example of

postbiotic fermentation. Grains contain considerable levels of the B group vitamins. Frequently, these
vitamins are removed upon milling or destroyed on thermal processing. Fermentation of cereals, as
well as their pre-treatment with LAB, supports bacterial synthesis elevating the content of vitamins B1,
B2, B3, B9, B11, and B12. Potentially it is a strategy for increasing the B vitamin content in cereal-based
products [65,66].

LAB fermentation of grains significantly enhanced levels of total lysine, protein fractions, sugars,
soluble dietary fibre in vitro, and bioavailability of Ca, Fe and Zn. Also, LAB fermentation of wheat
could provide antihypertensive angiotensin I converting enzyme (ACE)-inhibitory peptides and
α-aminobutyric acid (GABA) and antioxidant peptides [67,68]. There are attempts to use enzymes
instead of probiotic bacteria to get more specific effects. Purified phytases from Bifidobacterium longum
spp. infantis and Bifdobacterium pseudocatenulatum reduced the content of phytates in cereal mixtures
and led to increased levels of myo-inositol triphosphate. They also increased the solubility of zinc [69].

The new approach is not only connected with enriching food in postbiotics, but also with the
deletion of some potentially harmful components of the food during probiotic-induced fermentation.
It was found that fermentation with probiotic bacteria L. paracasei CBA L74 decreases the concentration
of harmful gliadin peptides in celiac patients [70]. The mechanism involves LAB proline-specific
peptidase systems. As α-gliadins in gluten are rich in proline, they are hindered from hydrolysis by
enzymes of the GI tract. A joint action of peptidase from LAB strains and GI enzymes could offer a
solution for celiac patients. A recently exhausted review on the potential application of postbiotics in
early life nutrition and beyond was published [71]. That review considers postbiotics as an efficient
and safe way of improving health conditions, is also suitable as a more safe alternative in case of
immunocompromised or severely ill new-borns.

6.1. Better Taste—An Extension to the “Beneficial” Action of Probiotics

Flavour is one of the most important organoleptic property of food. Sourdough fermentations
employ complex and diverse microflora consisting of yeasts and LAB, mainly Lactobacillus. These
complex fermentations add characteristic sensory attributes to the baked bread. Because probiotic
microorganisms are killed upon baking, bread is not symbiotic [4]. Therefore, the fermented
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unbaked/uncooked cereals are the most interesting for their unique sour with mild sweet and
malty taste.

The industry seems to be focused on cereal beverages. Fermentation of malt, barley, and
barley-malt media by potentially probiotic L. paracasei and L. delbrueckii resulted in better conservation
of processed beverages [72]. In Eastern Europe, soft drinks and sour rye soups based on fermented
bread, wheat or cereals are common for centuries. Japanese cuisine is particularly rich in fermented
foods. It includes fermented fruits and vegetables, fish, soy beans, and other sources. The common
Japanese soup, miso is based on soy beans fermented with koji malt rich in Aspergillus orizaee. The
same microorganism is utilised in the production of traditional soy sauce (shoyu). Soybean sprouts are
fermented with Bacillus subtilis into traditional Japanese appetizer – natto. A traditional fermented
dish involves pickles, carrots, daikon, turnip, eggplant, and rice bran all pickled together in vinegar.
Umeboshi is prepared from Japanese plums through lactic acid fermentation [73,74]. In China,
particularly in Taiwan, stinky tofu made by fermentation chiefly involves LAB, although stinky tofu
fermentation does not have a fixed formula and wide regional and individual variations exist in its
manufacture and preparation [75]. Lactobacillus spp. is specially blended with vegetables, chiefly a
Peking cabbage, into a traditional Korean dish called kimchi. Also, Indian regional cuisines are rich in
fermented foods [39].

These new tastes are based chiefly on well-known fermentative bacteria strains such as
Bifidobacterium breve, although new or unusual probiotic microorganisms like yeast are used [76].
The probiotic yeast Pichia kudriavzevii OG32 improved the sensory and some functional properties,
such as an increase in viscosity [77].

6.2. Probiotics in the Grain Preservation

In the agricultural industry, probiotic microorganisms hinder the colonisation of sorghum grains
and peanuts [78]. For instance, LAB reduces the content of phytate, an anti-nutrient in cereals and
inhibits moulding [79,80]. Also, Saccharomyces cerevisiae var. boulardii, S. cerevisiae UFMG 905, and L.
delbrueckii UFV H2b20 reduce aflatoxin and spore production by Aspergillus parasiticus IMI 242695 in
peanuts [81]. What is more, fermented food contains some antimicrobial agents, mostly bacteriocins.
The subject is still explored as interesting for the agricultural industry.

7. The Recognition and Uptake of Prebiotics among Consumers

Modern consumers pay considerable attention to their lifestyle. It generates increased demand
for food promoting health and wellness through busting immune system providing a reduced risk
of certain cancers and cardiovascular diseases, balanced metabolism and proper weight, improved
eyesight, memory and physical efficiency [82]. Motivations depend on age and gender. Young
men, as opposed to women and older men, pay less attention to the consequences of consuming
functional food [83]. Other study indicates that only 20% and 7% of patients could correctly define
probiotics and prebiotics, respectively. More patients consumed probiotics (53%) than prebiotics
(38%). Among the most frequently consumed probiotic and prebiotic products were yogurts (72%) and
cereals/granola bars (55%). Patients considered probiotics and prebiotics most beneficial for ‘digestion
or gut health’, but the most common reason to consume these products was ‘to taste or try’ (36% and
43%, respectively) [84].

In Europe, a high percentage of the population consumes functional food. Women, older people
(35–60 years), and those with university educations pay attention to natural and eco products, nutritional
value, freshness, food safety, and quality guarantees. Fibre-rich breads/cookies were consumed, first
of all, by individuals with medium education. Females more often consumed soy milk, fibre-rich
bread/cookies and teas; males and females with a medium income preferred breakfast cereal. Obese
individuals less likely consumed breakfast cereals and fibre-rich bread/cookies [85]. Older persons
commonly consumed functional foods such as yogurts with probiotics (56.0%), eggs with omega-3
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fatty acids (37.0%), and bread with fibre (35.5%). Young consumers are more open to high-technology
food processing.

8. Limitations of Functional Food

Several papers document benefits from the use of probiotics and prebiotics and their generally
positive role. However, recent, extended metagenomic study of the human GI microbiome indicates
that person-, region-, and strain-specific mucosal colonisation by supplemented bacteria is not obvious.
Probiotics have a transient and individualised impact on the mucosal microbiome [86]. After antibiotic
therapy, the colonisation of the GI tract by exogenous probiotics is markedly delayed and persistently
incomplete. It appears that the best way to promote the long-term improvement of GI microflora is the
opposite way of supplementation, that is, faecal microbiome transplantation [87]. However, this kind
of therapy seems to be much less acceptable than oral supplementation. Enhancing the number of
supplemented bacteria is not the best solution. An excess of probiotic supplementation is unfavourable.
An excess of LAB can result in some local problems such as belching, bloating, discomfort or even
stomach ache as well as rectal sensations, including gases and loose stools [88]. Likely, such effects
could also be distant and generally associated with lactic acidosis. This metabolic disturbance is
connected with brain fogginess, a complex of cognitive dysfunction involving memory problems, lack
of mental clarity, poor concentration, and mental fatigue [89]. Recent data indicate that Bifidobacterium
might also have an adverse effect on glucose metabolism by reducing butyrate-producing microbes [90].

It should be taken into account that probiotics are sold as medications and/or food supplements,
and they are usually well defined and their dosage is known. Prebiotics are a common component
of food and rarely a partially purified supplements. So, the knowledge of the adverse effects of
overdosing of prebiotics is very limited. This subject is ignored even in serious well-composed scientific
studies, such as the effects of formulae supplemented with prebiotics upon the health of infants [91].
However, some reports demonstrate an adverse effect. It could be related to an overgrowth of probiotic
bacteria induced by excessive supplementation of prebiotics [92]. Moreover, also straight effects can
be observed. For instance, an excess of inulin aggravates atherosclerosis in hypercholesterolemic
mice and supplementation with fibre could limit access to microelements [93,94] should be taken
under consideration.

In Summary

In modern pre- and pro-biosis, non-dairy products did not meet yet sufficient attention. Particularly,
cereals offer new intriguing prospects. They are commonly consumed all over the World for their
availability and nutritional valour. Recent research points to them as prebiotics. Among others,
prebiotic of non-dairy origin are efficient in preventing atherosclerotic disease and cardiac incidences,
prevents intestinal disorders, including cancer, reduces high blood sugar, and improves the course
of some metabolic diseases. A variety of cereals, specific bacteria used for fermentation, and finally
thousands of mid- and final biologically active products called postbiotics offer a huge potential of this
part of nutrition and stimulate future scientific research in this area.
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