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Abstract: Traditional Simultaneous Localization and Mapping (SLAM) (with loop closure detection), 
or Visual Odometry (VO) (without loop closure detection), are based on the static environment 
assumption. When working in dynamic environments, they perform poorly whether using direct 
methods or indirect methods (feature points methods). In this paper, Dynamic-DSO which is a 
semantic monocular direct visual odometry based on DSO (Direct Sparse Odometry) is proposed. 
The proposed system is completely implemented with the direct method, which is different from 
the most current dynamic systems combining the indirect method with deep learning. Firstly, 
convolutional neural networks (CNNs) are applied to the original RGB image to generate the pixel-
wise semantic information of dynamic objects. Then, based on the semantic information of the 
dynamic objects, dynamic candidate points are filtered out in keyframes candidate points extraction; 
only static candidate points are reserved in the tracking and optimization module, to achieve 
accurate camera pose estimation in dynamic environments. The photometric error calculated by the 
projection points in dynamic region of subsequent frames are removed from the whole photometric 
error in pyramid motion tracking model. Finally, the sliding window optimization which neglects 
the photometric error calculated in the dynamic region of each keyframe is applied to obtain the 
precise camera pose. Experiments on the public TUM dynamic dataset and the modified Euroc 
dataset show that the positioning accuracy and robustness of the proposed Dynamic-DSO is 
significantly higher than the state-of-the-art direct method in dynamic environments, and the semi-
dense cloud map constructed by Dynamic-DSO is clearer and more detailed. 

Keywords: SLAM; VO; static environment assumption; CNNs; semantic segmentation; dynamic 
environments; direct method; sliding window optimization 

 

1. Introduction 

SLAM (Simultaneous Localization and Mapping, with loop closure detection) and VO (Visual 
Odometry, without loop closure detection) are the key technologies of robot autonomous operation 
in unknown environments. In cases where prior information about the environment is unknown, 
SLAM and VO can establish an environment map when the robot is in motion and simultaneously 
provide the position of the robot in the map by using the camera mounted on the robot [1]. Due to 
the advantages of low hardware cost, not having to arrange the scene in advance, and making full 
use of the texture information of the environment [2,3], SLAM and VO have already become the focus 
of current research, and are widely used in unmanned driving, augmented reality, virtual reality and 
other fields [4,5]. According to the number and type of cameras, SLAM and VO can be divided into 
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monocular, stereo and RGB-D configuration. As the monocular camera has the characteristics of 
simple structure and low hardware cost, the monocular SLAM or VO has captured significant 
attention from researchers. 

According to different feature association methods, SLAM and VO can be divided into indirect 
methods (feature point methods) and direct methods. Indirect methods—represented by Mono-SLAM 
[6], PTAM [7] and ORB-SLAM2 [8], which rely on multi-view geometry—conduct feature point 
extraction and matching firstly, and then complete the state estimation by minimizing the 
reprojection error. These approaches achieve decent positioning accuracy and stability in rich-texture 
environments, and demonstrate a high robustness to light changes. However, the significant 
dependence on the number of feature points brings about low positioning accuracy and poor 
robustness in weak-texture environments. Feature extraction and matching are very time-consuming. 
Different from indirect methods that separate feature association and state estimation independently, 
direct methods represented by LSD-SLAM [9], SVO [10] and DSO [11] put them into a joint nonlinear 
optimization model. By constructing and minimizing the photometric error, feature association and 
state estimation are solved at the same time. Although indirect methods have been in the mainstream 
for a long time, the recent research progress in direct methods shows better accuracy and robustness, 
especially when there are not enough feature points due to the weak texture environment. The 
robustness in direct method comes from the joint estimation of system state and feature association 
as well as the ability to use non-corner pixels, corresponding to edges, or even smooth image regions 
(as long as there is sufficient image gradient).  

However, most of the current SLAM or VO systems, whether direct methods or indirect methods 
have the assumption that the environment is static, meaning that the geometric distribution of objects 
in the scene should keep static when camera is in motion. Dynamic objects in the scene, such as 
pedestrians and driving cars, will destroy the feature association and state estimation, reduce the 
positioning accuracy and system robustness or even cause system failure. Since, in most fields—such 
as automatic driving and intelligent robots—where SLAM system works in reality, dynamic objects 
are ubiquitous. How to improve the positioning accuracy and robustness of SLAM or VO systems in 
dynamic environments has become a hot issue in recent years.  

Several scholars combine the traditional indirect method with deep learning [3,12–16], which 
significantly improves the positioning accuracy and robustness of the indirect visual SLAM or VO 
system in the dynamic environments. However, the direct method, which is another branch of SLAM 
or VO in parallel with the indirect method and shows better accuracy and robustness in the weak 
texture environment, is also interfered by dynamic objects. In direct methods, feature association and 
state estimation are jointly solved, which is entirely different from the independent solution strategy 
in indirect methods. 

In this paper, Dynamic-DSO is proposed. We focus on reducing the impact of dynamic objects 
in direct visual odometry by combining semantic segmentation networks with DSO [11], which are 
the state of the art of current direct methods. We applied convolutional neural networks to the input 
image to generate the pixel-wise semantic information of dynamic objects. Then, we filtered out the 
dynamic candidate points in the process of keyframes candidate points extraction based on semantic 
information of dynamic objects. In pyramid motion tracking model, the photometric error calculated 
by the projection points in dynamic region of subsequent frames are removed from the whole 
photometric error. In order to obtain the precise camera pose, the sliding window optimization which 
neglects the photometric error calculated in dynamic region of each keyframe is applied. The 
proposed Dynamic-DSO exploits the semantic information in the image, significantly improves the 
positioning accuracy and robustness of direct method in dynamic environments. The contributions 
of this work are as follows: 

 The proposed system is entirely based on the direct method. We exploited the semantic 
information of dynamic objects and eliminated the dynamic candidate points from keyframes, 
which ensured that only static candidate points were reserved in the tracking and optimization 
process. 
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 In the pyramid motion tracking model and sliding window optimization, the photometric error 
calculated by the projection points in the image dynamic region are removed from the overall 
residuals, resulting in more accurate pose estimation and optimization. 

 We evaluated the proposed system on the public TUM dynamic dataset and the modified Euroc 
dataset, and achieved robust and accurate results. 

The rest of this paper is organized as follows. Section 2 introduces the related work. Section 3 
introduces the framework of Dynamic-DSO. In Section 4, the main work is described and 
demonstrated in detail. In Section 5, a series of comparative experiments are reported to analyze the 
performance of the proposed method in dynamic environments. Finally, conclusions and future work 
are discussed in Section 6. 

2. Related Work 

Before deep learning was widely used in SLAM and VO, several researchers applied geometric 
constraints or statistic methods to deal with the problem of SLAM or VO systems working in dynamic 
environments. In 2007, Charles et al. [17] proposed a method that integrating the least-squares 
formulation and sliding window optimization with generalized expectation maximization. Both 
dynamic and static objects are directly incorporated into the estimation to maintain a consistent 
estimate. In 2012, Walcott-Bryant et al. [18] presented Dynamic Pose Graph SLAM (DPG-SLAM), 
which uses incremental smoothing and mapping (iSAM) as the underlying SLAM state estimation 
engine to maintain an up-to-date map even though the environment is changing. In the same year, 
Zou et al. [19] proposed a novel CoSLAM. By equipping multiple cameras on different platforms 
which move independently but work together, the system completes the intercamera pose estimation 
and intercamera mapping in dynamic scenes. It works robustly, but the video data must be processed 
offline. Kerl et al. [20] presented a probabilistic formulation in 2013, which employs sensors and 
motion models with custom probability distributions to complete the camera motion estimation from 
RGB-D images robustly and directly. In 2015, a dense 3D SLAM using Kinect in dynamic scene was 
presented by Bakkay et al. [21]. Based on a constant motion model, pixels whose absolute velocity 
exceeds the threshold probably belong to moving objects and are taken as seed segmentation. Then 
a region growing procedure is performed to identify dynamic regions by adapting these seeds. Li et 
al. [22] proposed a RGB-D SLAM method based on depth edge for dynamic environments in 2017. 
Only depth edge points are used to estimate the camera motion. The static weight, which represents 
the possibility of a point belonging to the static region, is combined with the intensity assisted 
iterative closest point (IAICP) algorithm to handle highly dynamic environment. In 2018, Bahraini et 
al. [23] presented a novel method to segment and track dynamic objects in dynamic environments. 
By using ML-RACSAC, the states which include velocity and the position of multiple moving objects 
can be robustly estimated in an unknown environment. 

With the rapid development of deep learning technology in various fields, especially in the field 
of computer vision such as object detection and semantic segmentation, quite a few researchers have 
tried to make use of the image semantic information extracted by deep learning technology to 
improve the performance of SLAM or VO in dynamic environments in recent years, especially in the 
past two years. In 2017, Chen el al. [12] combined CNN objection detection with feature-based 
monocular SLAM. The system adopts YOLOv2 [24] to detect the dynamic objects in the scene. Then 
the feature points belonging to dynamic objects are eliminated and static features are remained for 
further data association and graph optimization. In 2018, Bescos et al. [13] proposed a front end to 
segment dynamic content by using multi-view geometry and Mask R-CNN [25]. They combined this 
front end with ORB-SLAM2 [8] to improve the robustness of SLAM in monocular, stereo and RGB-D 
configurations. In the same year, DS-SLAM was presented by Yu et al. [14]. The system integrates 
SegNet [26] and moving consistency check to detect dynamic objects and build a dense semantic 3D 
octo-tree map. Zhang et al. [15] also proposed a semantic SLAM for dynamic environments based on 
object detection and an improved octo-tree map in 2018. In 2019, there are also some researchers 
carrying out some superior work. Cui et al. [3] proposed Semantic Optical Flow SLAM (SOF-SLAM), 
which is built on RGB-D mode of ORB-SLAM2 [8]. The pixel-wise semantic segmentation obtained 
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from SegNet [26] is used as a mask in the semantic optical flow to calculate a credible fundamental 
matrix, then the dynamic features are removed on the basis of the matrix. Xiao et al. [16] presented a 
semantic monocular method combining the object detection. SSD object detector [27] is constructed 
to detect dynamic objects in detection thread at semantic level. 

All of the above proposed methods based on deep learning are aimed at indirect method (feature 
points method), which achieve accurate camera pose estimation and high robustness of the indirect 
visual SLAM or VO system in the dynamic environments. As far as the current research progress is 
concerned, research into problems about direct methods in dynamic environments is still rare. 

3. Framework of Dynamic-DSO 

The framework of Dynamic-DSO is composed of an image preprocessing model and a direct 
VO. In the image preprocessing stage, we use the semantic segmentation technology in deep learning 
to segment the dynamic objects, and obtain the prior information of the dynamic objects in the input 
image. The prior information of the dynamic objects is then used to enhance the candidate point 
extraction, frame tracking, and back-end optimization in VO. VO is responsible for tracking the 
camera motion and constructing a semi-dense map of the environment. Details of VO are provided 
in Section 3.1. Figure 1 shows the overall framework of the proposed Dynamic-DSO. 

  

Figure 1. Framework of Dynamic-DSO (Direct Sparse Odometry), color parts and the content in the dotted box 
show our contributions. 

3.1. Direct Visual Odometry 

Dynamic-DSO is based on DSO [11], which is the state of the art in direct visual odometry. DSO 
adopts the direct sparse model to jointly optimize the camera pose, camera internal parameters, 
inverse depth of points by a sliding window. It includes a front-end and a back-end. The front-end is 
responsible for initialization, camera pose tracking, and the back-end is used for sliding window 
optimization. The details of the front-end and back-end are described as follow. 

3.1.1. Front-End 

The front-end part handles the following:  
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Candidate point extraction: DSO extracts candidate points from the first frame in initialization 
process and the keyframes selected in frame tracking process. These candidate points will be 
continuously tracked during the movement of the camera and participate in the pose solving process.  

In dynamic environments, if points in the dynamic area and in the static region participate in 
the calculation and optimization of photometric error together, it will break the optimization 
direction, resulting in the decline of pose estimation and mapping accuracy. Dynamic-DSO uses the 
method described in Section 4.1 to extract candidate points in dynamic environments. 

Frame tracking: The current frame adapts the nearest reference keyframe for motion tracking. 
The constant velocity model and the traditional two frame image alignment method are used to 
achieve the course-to-fine tracking on the multi-scale pyramid model, and the pose of current frame 
is obtained by minimizing the photometric error between current frame and reference keyframe. 

In Section 4.2, we apply image semantic information to the traditional pyramid motion tracking 
model to reduce the impact of dynamic objects on tracking accuracy. 

Candidate point tracking: The process exists in both keyframes and non-keyframes. For an 
immature point obtained from the keyframe, DSO projects it to the current frame according to the 
relative pose and the initial inverse depth, and calculates the direction of epipolar line. The position 
of the projection point with the smallest photometric error in the current frame is obtained by epipolar 
search, then the best matching is obtained by minimizing the photometric error with the Gauss–
Newton method. After obtaining the best match, the inverse depth and co-variance of the immature 
point are calculated to constrain the search interval of subsequent frames, as described in [11]. 

For dynamic environments, since the prior information of dynamic objects has been obtained in 
Dynamic-DSO, if the best match position of the immature point is in the dynamic area of current 
frame, the inverse depth of this point will not be recovered. Then the point will be set as the outer 
point, as described in Section 4.3. 

Keyframe Creation: Similar to ORB-SLAM2, we take many keyframes (around 5-10 keyframes 
per second), then sparsify them afterwards through the early marginalization of the redundant 
keyframes. Three terms are calculated to determine if a new keyframe is required: mean square 
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tf f t a kfw f w f w a T+ + >  (1) 

where fw , 
tf

w and aw are the weighting terms. 

Marginalization: The step decides which frames and points should be marginalized. A keyframe 
will be marginalized if the number of points which are visible in the latest frame is less than 5%. If 
the number of keyframes exceeds fN  (always fixed at 7), then the keyframe, which is far from 

current frame and close to any other keyframes should be marginalized. 

3.1.2. Back-End 

The back-end performs a continuous sliding window optimization which usually contains 5–7 
keyframes. The full photometric error photoE is optimized using the Gauss–Newton method. The 

calculation of photoE is described as follows: 

For a single point p in the reference frame iI , the photometric error when it is projected onto the 

target frame jI is: 
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where p′ is the projection of point p on frame jI , it and jt are the exposure time for iI and jI , . γ
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The projection process can be described as: 
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where pd is the point’s inverse depth of point p , iT  and jT are the poses of the involved frames iI
and jI . 

The full photometric error photoE over all keyframes and points can be given by: 

( )∈ ∈ ∈

= 
i

photo pj
i F p P j obs p

E E  (5) 

where F is the set of all keyframes in the sliding window, iP  is the set of all the points in keyframe

iI , ( )obs p is the set of the keyframes in which the point p is visible. 
In order to reduce the impact of dynamic scenes, Dynamic-DSO modifies the photometric error 

model by using the prior information of dynamic objects obtained from the sematic images of all 
keyframes. It is described in Section 4.4 in detail. 

4. Methodology 

4.1. Candidate Points Extraction Based on Image Semantic Information 

Different from DSO uniformly extracting candidate points from the image, we extract candidate 
points—taking into account the prior information of the dynamic objects in the image. Based on the 
candidate points extraction result of DSO, we first use CNNs to complete the semantic segmentation 
of the input image. Then the dynamic region of the image is determined by the semantic information 
of each segmented region, meaning that the prior information of the dynamic objects is obtained. 
Finally, the candidate points in dynamic regions are filtered out, and only the candidate points in 
static regions are preserved. 

4.1.1. Dynamic Objects Segmentation Based on CNNs 

We use CNNs to segment the input image and obtain the pixel-wise semantic information. In 
this paper, we choose Mask R-CNN [25], which is the state of the art in the field of image instance 
segmentation. It can obtain high quality pixel-wise semantic information and the instance label of 
each segmentation region. In the process of candidate points extraction, we only use the pixel-wise 
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semantic information. In future work, the instance labels may be used for tracking different dynamic 
objects in the image. We adapt the TensorFlow version implemented by Matterport [28]. 

According to the prior experience of human life, we score the possible dynamic degree of an 
object in the real scene from 0 point (static) to 10 point (dynamic), and set a threshold artificially. 
When the score exceeds the threshold, meaning that it is a dynamic object, otherwise we consider it 
as a static object. The idea is to segment objects that may be dynamic or movable (e.g., people, 
bicycles, cars, motorcycles, airplanes, buses, trains, trucks, boats, birds, cats, dogs, horses, sheep, cattle). 
We consider that for most scenes, dynamic objects that may appear are included in the above list. Figure 
2 shows the approximate score of common objects. 

 
Figure 2. Based on life experience, the dynamic degree of common objects is scored. Only a few 
common objects are listed. The threshold is set to 5. If the detection score of an object is higher than 
the threshold, it is considered as a dynamic object, otherwise we think it as a static object. 

The input of Mask R-CNN is an RGB image with 3× ×m n dimension, and the output of the 
network is a matrix with × ×m n l dimension, where l represents the number of objects to be detected 
in the image. For each output channel, we will get a binary mask. By synthesizing the output of all 
channels into one, the pixel-wise semantic results containing all the dynamic objects in the input 
image are obtained. Figure 3 shows the segmentation results for indoor pedestrians. 

 
Figure 3. The upper line is the RGB images in TUM dynamic dataset [29], and the bottom line is the 
indoor pedestrians segmentation results by Mask R-CNN, where the black parts are dynamic regions. 
The pixel value of black regions (dynamic regions) is 0. The pixel value of white regions (static 
regions) is 1. 

4.1.2. Candidate Points Extraction 

For each input image I , the corresponding semantic image semI containing dynamic objects 
information can be get according to Section 4.1.1. For candidate points extraction from keyframes, the 
image is split into ×d d  blocks firstly. Then, we calculate a region adaptive threshold for each block, 
and select the points with the largest gradient and exceeding the gradient threshold as the candidate 
points. In order to obtain information from weak intensity changes, such as smooth changes in 
lighting on white walls, some points with smaller gradients from areas without high gradient points 
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are selected. We follow the approach as DSO [11] described and select pixels with a lower gradient 
threshold and an increasedd . 

For the candidate point p extracted from image I , we map it to the semantic image semI . If the 
mapping position is in the dynamic region, then the point p will be discarded, otherwise we reserve 
it. Since the edge of image segmentation results maybe not very accurate, we not only consider the 
position of point p , but also judge the four adjacent points of p . Only when these five points are 
not in the dynamic region, p is reserved as a candidate point. A summary of the whole extraction 
method is given in Algorithm 1. 

Algorithm 1: Candidate points extraction based on image semantic information 

Input: The original image I, the semantic image Isem, the number of points required: N; 

Output: The set S of candidate points, the number of selected points Nsel; 

Initialize: S = { }∅ , Nsel = 0, k = 1; 

while Nsel < N do 

    for k <= 4 do 

        Split image I into kd × kd blocks; 

        for each block do 

            Select a point p with the highest gradient which surpass the gradient threshold; 

            if no selected point in this block then 

                   Select a point p with the highest gradient which surpass the lower gradient 

threshold; 

                end if 

                if Isem [p] != 0 then  

                    Find the points p1, p2, p3, p4, where they are distributed above, below, left 

and right at p with the pixel interval D; 

                    if ( Isem [p1] != 0 && Isem [p2] != 0 && Isem [p3] != 0 && Isem [p4] != 0 ) then 

                        Append point p to set S; 

                    end if 

                end if 

            end for 

            k = 2 × k; 

    end for 

        Nsel = Nsel + the number of selected points; 

end while 

4.2. Pyramid Motion Tracking Model Based on Image Semantic Information 

The image pyramid is composed of images with different resolutions, obtained by scaling the 
original image. Taking the original image as the bottom of the pyramid, the image of the upper layer 
is obtained by scaling the image of the lower layer at a certain rate. 

When solving the camera pose by minimizing the photometric error, the optimization is started 
from the top layer of the pyramid, and then the optimization result of the previous layer is used as 
the initial value of the optimization of the next layer. Due to the upper layer image being relatively 
coarse, this process is called the coarse-to-fine strategy. Direct visual odometry requires the camera 
motion between two adjacent frames to be as small as possible, which avoids encountering a local 
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minimum during optimization. The advantage of using the image pyramid is that when the motion 
between two adjacent frames is large, the pixel motion is still in a small range in the top image of 
pyramid, which is shown in Figure 4. 

 
Figure 4. Assuming that the original image resolution is 6 × 8 (row × column), the pixels projected 
from P to the two frames F1 and F2 are p1 and p2, and the distance between p1 and p2 is 4 pixels. The 
original image is scaled with a 0.5 scaling factor, and the scaled image size is 3 × 4, the distance 
between the two projection points p1’ and p2’ is reduced to 2 pixels. The size of an actual image is much 
larger, and the image in the top layer of the pyramid can limit the pixel motion to a small range. 

According to Section 4.1, when the candidate points are extracted from the keyframe, points in 
dynamic region are removed. However, when the candidate points in the keyframe are projected to 
the subsequent frame for photometric error calculation, due to the changing relative pose in the 
optimization process and occlusion caused by dynamic objects, candidate points in static region of 
keyframe may still be projected to the dynamic region of the subsequent frame, thus affecting the 
optimization process. Our basic idea is to remove the photometric error calculated by the projection 
points in a dynamic region. As shown in Figure 5. These residuals will not participate in the solution 
of the optimization equation. 

 
Figure 5. F1 is a keyframe. p1, p2 and p3 are candidate points extracted according to Section 4.1. F2 is the 
subsequent frame of F1. Three points are projected to F2 to form three residuals. If the projection point 
falls in the dynamic region of F2, the corresponding residual will be removed. 

For the keyframe, the image pyramid is constructed with the scale factor 0.5. According to Section 
4.1, candidate points are extracted from the image of each pyramid layer, as shown in Figure 6a. For the 
subsequent frame, the same pyramid model is constructed (Figure 6b), and the semantic image of 
each layer containing the prior information of dynamic objects is obtained, as shown in Figure 6c. 
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Figure 6. (a) and (b) show the image pyramids constructed by the keyframe and subsequent frame. 
(c) shows the semantic image of each layer in subsequent frame pyramid. 

Taking the k-th layer of the pyramid model as example, for a candidate point p in keyframe k
iI , the 

photometric error
k
pjE generated by projecting p onto subsequent frame k

jI can be described follows: 

( [ ] ) ( [ ] )
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where k
iI and k

jI are images of iI and jI at the k-th pyramid layer, p′ is the projection of point p on k
jI

, it and jt are the exposure time for iI and jI , . γ represents the Huber norm, ia , ja , ib , jb are 

brightness transfer function parameters, pN is the residual pattern with eight surrounding 

neighbors and pw represents the weighting factor. 

For each candidate point p in k
iI , a label k

pjC  is calculated according to the position of the 

projection point 'p to determine whether the corresponding residual is removed or not: 

( )
sem

k k
pj jC I p′=  (7) 

where
sem

k
jI is the binary semantic image of k

jI . In the binary semantic image, the pixel color of the 

dynamic region is black, and the pixel value is 0, and the pixel color of the static region is white with 
the value 1. 

Accumulate the projection residuals of all candidate points in k
iI : 

k
i

k k k
photo pj pj

p P

E C E
∈

=   (8) 

where k
iP is the set of candidate points in k

iI . 

The relative pose between frame iI and jI can be obtained by applying Gauss–Newton method 

to optimize k
photoE . The optimization result of the k-th pyramid layer is used as the initial value of the 

k + 1-th pyramid layer optimization, until the optimization of the bottom pyramid layer is completed. 

4.3. Candidate Point Tracking Based on Image Semantic Information 
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After the relative pose between the keyframe and the subsequent frame is obtained, the 
candidate points in the keyframe are tracked in the subsequent frame. Epipolar search and 
optimization of photometric error are adopted to find the best matching position in the subsequent 
frame for a candidate point in the keyframe, and inverse depth of this point is updated. 

Due to the occlusion and repetitive areas, there will be mismatches, outlier and occlusion detection 
is required. Two traditional rules are applied to handle with it. Firstly, points for which the minimum of 
is not sufficiently distinct are discarded when doing the epipolar search. Secondly, point observations for 
which the photometric error pjE calculated by Equation (2) exceeds a threshold are removed.  

In addition to the above two traditional rules, we take the semantic information of dynamic 
objects in the image into account. Candidate points in the keyframe for which the best matching 
position is in dynamic regions of the subsequent frame are considered as outlier. 

4.4. Sliding Window Optimization Based on Image Semantic Information 

For a single point p in keyframe iI , its projection to another keyframe jI in the sliding window 

is 'p , and the photometric error between pand 'p is defined by Equation (2). 
Similar to Section 4.2, we define a label for each point to eliminate the residual formed by the 

point projected in the dynamic region: 

( )
sempj jC I p′=  (9) 

where
semj
I is the binary semantic image of keyframe jI . 

The full photometric error over all keyframes in the sliding window and points is given by: 

( )i

photo pj pj
i F p P j obs p

E C E
∈ ∈ ∈

=   (10) 

where F represents the set of all keyframes in the sliding window, iP is the set of all the points in 

keyframe iI , and ( )obs p is the set of the keyframes where the point p is visible. 
The pose of each keyfame and depth of each selected point can be obtained by applying Gauss-

Newton method to photoE . 

5. Experiment and Analysis 

In order to verify the positioning accuracy and robustness of the proposed method, we carry out 
experiments in the public TUM dataset [29], Euroc dataset [30] and dataset collected by ourselves. It 
is worth noting that there are few public available high dynamic datasets with pose groundtruth. 
Therefore, we synthesize three dynamic image sequences based on Euroc dataset. Euroc dataset is 
collected in a static scene, we consider dynamic objects as noise which is added into images in Euroc 
dataset artificially. After adding dynamic objects, the Euroc dataset is changed from a static scene to 
a dynamic scene, which can be used to evaluate the performance of Dynamic-DSO in high dynamic 
environments. Dynamic-DSO is based on the direct method. In order to show the effectiveness and 
superiority of the proposed system, we compare it with DSO, which is the state of art in direct methods. 

In Section 5.1, the TUM dynamic dataset is used to compare the candidate points extraction 
between Dynamic-DSO and DSO in high dynamic environments. In Section 5.2, We use TUM 
dynamic dataset, the modified Euroc dataset and the self-collected image sequence to evaluate the 
positioning performance of Dynamic-DSO in dynamic scenes. In Section 5.3, the comparison of semi-
dense point cloud maps of Dynamic-DSO and DSO is conducted. 

All experiments are conducted on a workstation equipped with an Intel Xeon E5-2690v4 CPU 
(14 cores, 2.6GHz), 128GB memory and an NVIDIA Titan V GPU with 12GB video memory. The 
operating system version is Ubuntu 16.04.5 LTS. 
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5.1. Evaluation of Candidate Point Extraction 

The TUM RGB-D dataset [29] contains several dynamic image sequences with an image 
collection frequency of 30Hz and resolution of 640 × 480. Each image matches the high-precision pose 
groundtruth provided by the motion capture system. For the traditional direct visual odometry based 
on the assumption of static environment, the dynamic objects in the scene will affect the final 
positioning results. 

Figure 7 shows the comparison of Dynamic-DSO and DSO for extracting candidate points in 
keyframes. Two pedestrians walk around in front of the camera. The candidate points extracted by DSO 
(Figure 7c) include pedestrians. The proposed method segments dynamic pedestrians (Figure 7b) and 
only extracts candidate points from the static area (Figure 7d), which ensures that interference from 
dynamic objects is avoided when calculating photometric error. 

 
Figure 7. Comparison of Dynamic-DSO and DSO for extracting candidate points in keyframes. (a): 
Keyframes containing dynamic objects. (b): Semantic images containing dynamic objects obtained by 
Dynamic-DSO. (c): Candidate points extracted by DSO. (d): Candidate points extracted by Dynamic-DSO. 

5.2. Evaluation of Position Performance 

5.2.1. Evaluation on the Public TUM Dynamic Dataset 

Three dynamic sequences including fr3_walking_xyz, fr3_walking_rpy, and 
fr3_walking_halfsphere in TUM dataset are used to evaluate the positioning result of Dynamic-DSO. 
In the three sequences, two pedestrians walk around the table quickly in front of the camera, which 
is the typical indoor high dynamic scene and has high requirements for the robustness of the direct 
visual odometry. 

DSO cannot complete initialization in these three dynamic sequences, so it cannot give 
positioning results. In this paper, after removing the interference of dynamic objects by combining 
the image semantic segmentation, Dynamic-DSO can initialize successfully in these dynamic 
sequences, and gives decent positioning results, which improves the practicability and robustness of 
visual odometry based on direct method in dynamic scenes. 

Figure 8 shows the heat maps of the positioning trajectory of Dynamic-DSO in three sequences, 
where the gray dotted line is the trajectory groundtruth, the colorful solid line is the estimated 
trajectory of Dynamic-DSO. The color indicates absolute pose error (APE) for the translation part 
between the estimated trajectory and groundtruth. The color bar represents that the error gradually 
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increases from the cold color to the warm color. From three heat maps, it can be seen that the 
trajectory estimated by Dynamic-DSO fits well with the groundtruth (note that in Figure 8b, due to 
the small motion amplitude of camera, it seems that the deviation between the estimated trajectory 
and the groundtruth is large, but the maximum error is only 0.129 m). 

(a) (b) (c) 

Figure 8. Heat maps of the positioning trajectory of Dynamic-DSO in three sequences. (a): The 
estimated trajectory heat map on fr3_walking_xyz. (b): The estimated trajectory heat map on 
fr3_walking_rpy. (c): The estimated trajectory heat map on fr3_walking_halfsphere. DSO cannot 
complete initialization in these three dynamic sequences, so it cannot give positioning results. 

Table 1 gives statistics on the APE for the translation part of the Dynamic-DSO and DSO in three 
TUM fr3_walking dynamic sequences. Since the current published methods are based on indirect 
method (feature point method), in addition to the comparison with DSO, we also compared the 
proposed method with several systems based on indirect method in the public TUM dynamic dataset, 
including SOF-SLAM [3], DS-SLAM [14], Dynamic-SLAM [16] and Semantic SLAM [15]. It is worth 
noting that since our system is based on a direct method, the positioning accuracy is slightly lower 
than that of the systems based on the feature point method in the texture-rich dataset such as TUM 
dynamic dataset, which can be explained in more detail in [31]. However, as the parallel branch to 
the feature point method in the SLAM and VO field, the direct method has the advantages of better 
positioning accuracy and system robustness than the feature point method when there are not 
enough feature points due to the weak texture environment [1,31], and can construct the semi-dense 
map. 

Table 1. Comparison of absolute Pose Error (APE) for translation part in public TUM dynamic 
dataset. (Unit: m). 

High Dynamic 
Sequence 

Dynamic-
SLAM 

[16] 

SOF-
SLAM 

[3] 

DS-
SLAM 

[14] 

Semantic 
SLAM 

[15] 
DSO [11] Dynamic-DSO 

Rmse Rmse Rmse Rmse Rmse Mean Std Rmse Mean Std 
fr3_walking_xyz 0.013 0.018 0.025 0.034 \ \ \ 0.032 0.033 0.011 
fr3_walking_rpy 0.060 0.027 0.444 - \ \ \ 0.061 0.062 0.034 
fr3_walking_half 0.021 0.029 0.030 0.064 \ \ \ 0.063 0.055 0.042 

“\” means initialization failed. ‘’-’’ denotes no available data. 

As shown in the table, due to the failed initialization, DSO which is the state of the art system of 
direct method, cannot output positioning results. It can be seen from the root mean square error 
(RMSE) that the trajectory error of Dynamic-DSO is less than 6cm by combining image semantic 
segmentation, which significantly improves the positioning accuracy and robustness of direct 
method in dynamic environment. 
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5.2.2. Evaluation on the Modified Euroc Dynamic Dataset 

The existing public indoor small-scale dynamic dataset is relatively small, we have conducted 
the comparative experiment in the public TUM indoor dynamic dataset. To further evaluate the 
performance of the proposed method and DSO in the indoor small-scale dynamic scenes, we inserted 
dynamic objects into the static Euroc indoor dataset. In the public Euroc dataset, each image is 
matched with a high-precision pose groundtruth obtained from the professional optical motion 
capture system, so after inserting the dynamic object into Euroc dataset, we can get the dynamic 
image sequence matching the high-precision pose groundtruth. Then we can make quantitative 
analysis by comparing the estimated results with the groundtruth. 
 Data Preprocessing 

The Euroc dataset [30] is collected in static scene. The collection frequency is 20Hz, and the 
resolution is 752 × 480. Each image matches the high-precision groundtruth provided by the motion 
capture system. We consider moving pedestrian as the noise, which is artificially synthesized into the 
Euroc image sequences. The image sequences are changed from a static scene to a dynamic scene 
after adding dynamic objects. 

As shown in Figure 9, the device that records the dynamic pedestrian video sequence is an Intel 
ZR300 camera containing a color global shutter camera, and a laptop with Intel Core i7-7000 CPU 
and 8GB memory. Firstly, we fix the acquisition device on the indoor desktop, and a person walks 
around as dynamic object in front of the camera. A video sequence containing the dynamic pedestrian 
is recorded at the same frequency and image resolution as the Euroc dataset. Then, the dynamic 
pedestrian in each frame is segmented by using Mask-RCNN [25]. Finally, the segmented continuous 
moving pedestrian is added to each image in the Euroc image sequence to synthesize the Euroc 
dynamic scene dataset. We add dynamic objects to the image sequences in the Euroc dataset 
including V1_01, V2_01 and V2_02, and record the names of these modified sequences as V101_syn, 
V201_syn and V202_syn. By using V101_syn, V201_syn and V202_syn, the performance of DSO and 
Dynamic-DSO can be evaluated in dynamic scenes. 

  

(a) (b) 

Figure 9. The acquisition equipment includes a laptop and an Intel zr300 camera, which are fixed on 
the desktop. 

Figure 10 shows the processing of the V202_syn sequence. Figure 10a shows images in the 
original V2_02 sequence. It can be seen that these images do not contain any moving objects. Figure 
10b shows images collected by ourselves in the indoor environment, which contain a moving 
pedestrian. Mask-RCNN is used to segment the pedestrians in Figure 10b, and the result of 
segmentation is shown in Figure 10c. By using the semantic image as mask, the pedestrian in Figure 
10b is extracted and synthesized into the V2_02 sequence in Figure 10a, which generates the synthetic 
V202_syn sequence shown in Figure 10d. 
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Figure 10. The processing of the V202_syn sequence. (a): Images in original Euroc V2_02 sequence. 
(b): Images collected by ourselves, containing a pedestrian. (c): Sematic images obtained by Mask-
RCNN. (d): Images in the modified V202_syn sequence. 

 Comparative Analysis of Positioning Performance 
Figure 11 shows the heat maps of the positioning trajectory of DSO (Figure 11a,b,c) and Dynamic-

DSO (Figure 11d,e,f) in V101_syn, V201_syn, and V202_syn respectively. From three heat maps, it can 
be seen that the trajectory estimated by Dynamic-DSO is closer to the groundtruth than DSO in three 
image sequences, and the maximum, minimum and average values of trajectory error are less than 
DSO. 

(a)                            (b)                             (c) 
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(d)                            (e)                             (f) 

Figure 11. Heat maps of the positioning trajectory of Dynamic-DSO and DSO in three sequences. (a), (b), 
(c): Positioning results of DSO in V101_syn, V201_syn and V202_syn respectively. (d), (e), (f): Positioning 
results of Dynamic-DSO in V101_syn, V201_syn and V202_syn respectively. 

Figure 12 compares the trajectory error with time of Dynamic-DSO and DSO in three synthetic 
sequences. The trajectory error of DSO exceeds 1m for quite a long time and the fluctuation is obvious. 
The maximum error in the V202_syn sequence exceeds 4 m, which cannot meet the accuracy 
requirements in indoor positioning. The trajectory error of Dynamic-DSO is much lower than DSO. 
The maximum value is 0.557 m in the V202_syn sequence, and the error fluctuation of the whole 
positioning process is small. Figure 13 shows the positioning results of DSO and Dynamic-DSO in 
three axes x, y, z. Compared with DSO, the positioning results of the proposed method are closer to 
the groundtruth in each axes in dynamic environments. 

Figure 12. Comparison of the trajectory error with time between Dynamic-DSO and DSO in three 
synthetic sequences. Comparison in V101_syn, V201_syn and V202_syn is shown from left to right. 



Appl. Sci. 2020, 10, 1467 17 of 21 

Figure 13. Positioning results comparison of DSO and Dynamic-DSO in three axes x, y, z. GT means 
the groundtruth. Comparison in V101_syn, V201_syn and V202_syn is shown from left to right. 

Figure 14 is the boxplot of the trajectory error between Dynamic-DSO and DSO, which is used 
to analyze the discrete distribution of the error. The box of Dynamic-DSO is flatter, meaning that the 
trajectory error of the proposed system is more concentrated. Compared to DSO, the upper and lower 
limiting values of Dynamic-DSO are lower, the median, the upper and lower quartiles are smaller, 
and the outliers are very few—verifying that the positioning accuracy and robustness of Dynamic-
DSO are more superior than those of DSO in three dynamic sequences. 

 
Figure 14. Boxplot of the trajectory error between Dynamic-DSO and DSO in V101_syn, V201_syn 
and V202_syn. 

Table 2 shows statistics for the trajectory error of the DSO and Dynamic-DSO in V101_syn, 
V201_syn and V202_syn. Comparing the RMSE of the two methods, the positioning accuracy of the 
proposed method in the dynamic environment is significantly higher than that of DSO. 

Table 2. Comparison of Absolute Pose Error (APE) for translation part in modified Euroc dataset. 
(Unit: m). 

High dynamic  
sequence 

DSO Dynamic-DSO Rmse 
Improvement Rmse Mean Std Rmse Mean Std 

V101_syn 1.06 0.83 0.65 0.17 0.16 0.07 84% 
V201_syn 0.51 0.39 0.34 0.15 0.13 0.08 71% 
V202_syn 1.72 1.52 0.81 0.24 0.21 0.11 86% 
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5.2.3. Evaluation on the Self-Collected Sequence 

In Section 5.2.2, in order to add dynamic objects to the original Euroc dataset, we fix the camera 
in an indoor environment and record a sequence, including a pedestrian walking in front of the 
camera. In this section, we will use this sequence to evaluate the performance of Dynamic-DSO and 
DSO in the actual dynamic environment by comparing the point cloud maps and camera trajectories. 

The camera trajectories and point cloud maps estimated by Dynamic-DSO and DSO are shown 
in Figure 15. Although the camera remains stationary, there is relative motion between the pedestrian 
and the camera. As shown in Figure 15a, DSO is cheated by the dynamic pedestrian, which leads to 
the wrong judgment of the camera state and the large drift of the estimated trajectory. Compared 
with DSO, the camera trajectory estimated by Dynamic-DSO is almost at a point without large-scale 
drift after suppressing the interference of the pedestrian. 

  
(a) (b) 

Figure 15. The camera trajectories and point cloud maps estimated by Dynamic-DSO (a) and DSO (b). 
The red triangle represents the camera orientation, the red curve is the estimated camera trajectory 
and the black area is the 3D point cloud map. 

In order to further explain the impact of dynamic object on algorithm, some keyframes selected 
during the algorithm running are shown in Figure 16. As shown in Figure 16a, due to the interference 
of dynamic objects, most of the points that DSO chooses to track fall on the dynamic pedestrian. 
Although the camera is fixed on the desktop, DSO mistakenly judges that the camera is moving due 
to the relative motion between the camera and the pedestrian. In contrast, Dynamic-DSO successfully 
detects the position of the pedestrian and selects points in static region to track. 

 
(a) 

 
(b) 

Figure 16. Keyframes selected by DSO (a) and Dynamic-DSO (b). The colorful points are selected and 
tracked by the algorithm, and the color represents the depth information. 
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5.3. Evaluation of Mapping Performance 

Figure 17 shows the 3D point cloud map of indoor scene constructed by Dynamic-DSO and DSO 
in V101_syn sequence and the partial enlarged map of the calibration board and the room corner. The 
map of DSO (Figure 17c) is obviously disturbed by the pedestrian, the map is unclear, and the overall 
position and part of the structure show serious ghosting and drift. Comparing the enlarged 
calibration board maps of Dynamic-DSO and DSO (upper right of Figure 17c,d), the map constructed 
by Dynamic-DSO, which removes the interference of dynamic objects, has clearer outlines and richer 
details than DSO. The room corner maps constructed by Dynamic-DSO and DSO are shown in the 
bottom right of Figure 17c,d. The map of DSO obviously has drift and ghosting, that is, the contents of the 
two blue boxes in the bottom right of Figure 17c should coincide with each other. In Figure 17d, the drift 
and ghosting do not appear. 

 

 

 

 
(a) (b) 

  
(c) (d) 

Figure 17. 3D point cloud maps of indoor scene and partial enlarged maps constructed by Dynamic-
DSO and DSO in V101_syn sequence. (a): Calibration board shown in V1_01 and V101_syn. (b): Room 
corner shown in V1_01 and V101_syn. (c): point cloud map constructed by DSO. (d): point cloud map 
constructed by Dynamic-DSO.  

6. Conclusions 

In this paper, Dynamic-DSO is proposed, which is a semantic monocular direct visual odometry 
using image semantic segmentation method in deep learning to improve the performance of 
positioning and mapping in dynamic environments. This is different from the most current systems, 
which combine the traditional indirect SLAM or VO with deep learning. The proposed system is 
completed based on direct method. Firstly, image semantic segmentation technology is used to obtain 
the pixel-wise semantic information of the dynamic objects in images. Secondly, a novel candidate 
points extraction method and a tracking model are proposed to eliminate the dynamic objects in an 
effective way by using the image semantic information. Finally, we apply the semantic information 
of dynamic objects into the sliding window optimization to avoid dynamic objects disturbing the 
optimization process. The proposed method was evaluated both on the public TUM dynamic dataset 
and the modified Euroc dynamic dataset, and we compared the pose estimation performance of our 
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method with the state-of-the-art direct method. The results demonstrate the accuracy and robustness 
of the proposed method. The position accuracy of Dynamic-DSO is significantly higher than the state-
of-the-art direct method in dynamic environments, and the semi-dense cloud map constructed by 
Dynamic-DSO is clearer and more detailed. In the future, a more real-time semantic segmentation 
framework should be used to improve the real-time performance of the entire system. Considering 
the semantic information and the Sparse-to-Dense model proposed by Ma et al. [32], we might build 
a dense 3D semantic map in dynamic environments based on the semi-dense map constructed by 
Dynamic-DSO. 
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