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Abstract: Stitching gaps and misalignments in mosaic images can severely degrade the human
visual perception of mosaic effects. Image stitching plays a key role in eliminating these unpleasant
defects. In this paper, an image-stitching method for mosaic images with invisible seams is proposed,
according to the research on the human visual system (HVS). By quantifying the human visual
attention of images and visual discrimination about luminance difference and fine dislocations, each
pixel in the stitching region is given a priority value for tracing a stitching line. Coupled with the
processing of an optimal stitching line locating method and the multi-band blending algorithm, the
pixels of discontinuous items in mosaic images decrease significantly and the stitching line is almost
invisible. This study provides a new insight into the image-stitching field, and the experiments show
that the results of the proposed method are more consistent with the human visual system in creating
high-quality image mosaics.

Keywords: image mosaic; seamless image stitching; human visual system; stitching line detection

1. Introduction

Due to the limited display range of a single image taken by a single lens, an excellent method
for stitching and merging two or more adjacent images is required in the fields of remote sensing
and computer vision. A large number of scholars are working on the research of image stitching
and have achieved certain results [1-4]. Common image mosaicking algorithms comprise feature
points detection [5], image registration, rectification, image stitching and blending. If the images are all
identically exposed and perfectly registered, the stitching process will be a simple problem. However,
due to non-ideal factors such as the accuracy limitations of the registration algorithm and differences
in image exposure, there will exist discontinuous edges and unnatural seams in overlap regions [6].
Besides, target movements may also cause blur or ghosting.

Therefore, further processing is essential to eliminate these discontinuities and obtain a natural
transition between images. Alpha blending which is known as feathering or linear blending has
good performance in processing seamlines caused by luminance difference. But this approach will
cause blurring of high-frequency detail if there are some small registration errors [3]. The multi-band
blending algorithm has better effects by using different weights at different frequencies for fusion,
but it cannot correct mismatches either. Compared with the blending-related methods mentioned
above, the more effective method is to find the optimal seamlines in the overlapping area to bypass
obvious dislocations and discontinuous areas, improving the quality of stitching.

In the past three decades, a number of researchers have sought to find the optimal seamlines.
The seamline detection algorithm proposed by Milgram may be the beginning of this field, and he
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defined the seamlines as the pixels that minimize the sum of the gray level differences in the overlapping
area [7]. Kerschner proposed a seamline selection method using twin snakes based on high color
similarity and high texture similarity of images [8]. Dijkstra’s algorithm is a widely used algorithm to
find the shortest path [9], which is also popular in the optimal seamlines detection field. Chon et al.
first determined the required maximum difference level and then applied Dijkstra’s algorithm to find
the best seamline [10]. Gao et al. proposed a novel method for searching for an optimal seamline,
which was driven by seams to obtain high-quality stitching results [11]. Zhang et al. first introduced
the optical flow to the energy function in order to find an optimal seamline for unmanned aerial vehicle
images [12]. Li et al. presented an optimal seamline detection technique via convolutional neural
network and graph cuts [13]. The method is effective in the field of reducing the mismatched objects of
urban remote-sensing images.

We found that these methods currently have used many different criteria to find the optimal
seamline and achieved good results. However, most of these methods seem to ignore one objective
fact, that the subject of evaluating mosaic image quality is the human visual system (HVS) itself [14].
HVS has been proven to evaluate the quality of mosaic images [15]. As far as we know, only Yu
et al. used visual saliency to describe visual attention in optimal seamline selection [1]. Li et al.
proposed a new energy function with visual non-linearity and non-uniformity to find the optimal
seam-cutting which is more consistent with the human perception [16]. However, the above methods
only considered a few characteristics in HVS. HVS is a complex optical imaging and processing system
that includes not only visual attention but also visual discrimination.

In this paper, an image-stitching method based on visual attention and discrimination is proposed
to seek out an optimal seamline that brings less discontinuous edges, many of which are masked or
located in where the human eyes pay little attention or can hardly identify. First, the visual perception
of the image’s overlapped region is quantified using HVS-related metrics (based on human visual
discrimination and attention). Then, an edge detection algorithm is used to distinguish safe edges and
misaligned edges to obtain the edge reference information for selecting seamline. Next, according to
the previous two steps, an optimal path algorithm is used to obtain a stitching line that conforms to the
characteristics of HVS. Finally, a multi-band blending algorithm is used to blend the images to obtain
high-quality mosaic image.

Experiments demonstrate that the result of our approach are more consistent with human visual
perception. The key contributions of our work are summarized as:

1. Human visual attention and discrimination were adopted to quantify the mosaic regions to trace
optimal stitching lines.
2. This method can be integrated into other image-stitching pipelines easily.

The remaining part of this paper has been organized in the following way. Section 2 analyzes the
basis of our method and Section 3 explains the proposed method in detail. Two sets of experiments are
then presented in Section 4. Section 5 concludes our works. The source code for this paper is available
at https://github.com/pumengwang/ImageStitching HVS.

2. Preliminary Work

2.1. Non-Ideal Factors in the Mosaicking Process

Obtaining perfect stitching results is usually not easy because of the limitations of existing
mosaicking algorithms, such as false corner detection, poor matching accuracy and low efficiency
rectification. More specifically, some corner detection algorithms are sensitive to the noise in the
image, while some other corner detection algorithms based on contours cannot accurately locate the
feature points because of the contour deformation resulting from a filter before processing [17-19].
Meanwhile, many false matches exist in feature matching process. A number of advanced corner
detectors and descriptors are created to solve this problem, but error matches still cannot be eliminated


https://github.com/pumengwang/ImageStitching_HVS

Appl. Sci. 2020, 10, 1462 30f16

completely [20,21]. Moreover, the rectification techniques such as least median-squares (LMedS)
proposed by Rousseeuw and random sample consensus (RANSAC) proposed by Fischler have poorer
performance with the mismatches increasing [22,23]. In these cases, the transformation matrix for
mosaicking is not accurate and images cannot be stitched perfectly, which leads to some discontinuities
especially at the edges of the graphs [1].

In addition, external interference always exists when taking pictures, for example lens
distortion [24], photorefractive effect, different exposure and illuminations. None of the images
can be mosaicked to be ideal in the presence of lens distortion [25]. Similarly, the edges of objects
may deform when the pictures are taken under water or in an inhomogeneous atmosphere [26,27].
All the distortions may cause losses of pixel level alignment, these discontinuities can severely degrade
the human visual perception and decrease the quality of the mosaic image. Thus, how to reduce the
negative effect of discontinuities on visual perception is the key to improving image-stitching qualities.

2.2. Human Visual System (HVS)

Image quality evaluation based on HVS is one of the most reasonable methods when assessing
pictures, because the results obtained are consistent with the subjective results [15,28]. Therefore, it is
of great significance to study how the human visual system works. Human awareness of images is
affected by the physiological structure of the eyeballs and the psychological function of the brain shows
different visual discrimination and attention in different conditions. For example, visual masking
refers to the visibility reduction when one stimulus is in a similar background [29]. The limited human
visual ability will ignore some details hidden in the background in time [30]. Besides, the perceived
intensity is proportional to physical stimuli on a logarithmic scale according the Weber—Fechner
law [31]. The law indicates that human eyes are insensitive to the change of gray value when the
brightness of objects in the pictures is at a high level [32]. In addition, psychophysical studies show
that the perception of HVS for an image is selective. Different regions or objects have diverse levels of
visual saliency [33,34]. The HVS will detect the stimulus with high saliency by the distinctive size,
intensity, color, or orientation contrasting with the surroundings [33]. In other words, these stimuli
attract almost all the attention of the human eyes.

The above theories of HVS indicate that if the discontinuous edges located at the high saliency
regions, the quality of mosaic images will be reduced, while the discontinuous edges will result in little
detectable effect when they are in low-saliency regions or masking backgrounds. Therefore, using HVS
to determine the location of the seamline can effectively reduce the discontinuities, thereby improving
the quality of stitching.

3. Methods

The seamless stitching method focuses on eliminating discontinuities in mosaic images. The flow
is shown in Figure 1. First, the feature extraction algorithm is used to register the two input images to
obtain the homographic wrap for aligning them. Then the visual perception of these images’ overlapped
region is quantified to indicate the influence on the stitching result. Human visual discrimination and
attention are involved in the process mentioned above. In general, the image processing is divided into
4 parts, including visual non-linearity (VN), luminance difference (LD), visual masking property (VM),
and visual saliency (VS) respectively, and they are then combined to a weight map (WM) for selecting
stitching line pixels. Edge detection is also implemented to distinguish safe edges and misaligned
edges in order to provide a reference for seamline-pixel selection. An optimal stitching line is then
detected based on WM and the reference edge. Lastly, images are stitched at the stitching line by
multi-band blending to be a seamless mosaic image.

As is stated and analyzed above, the key to this method is tracing a stitching line which can avoid
discontinuous edges that will attract the attention of the human eyes strongly. Therefore, the WM of
visual perception and the optimal stitching line detection method are crucial in our approach.
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Figure 1. Flow of the proposed method.

3.1. Visual Perception Quantification

In the first stage, we process the images for stitching according to several visual properties and
combine the results as a stitching line weight map to represent the priority of choosing the pixels as the
stitching line components. The higher the weight value, the smaller the influence on the quality of
the mosaic image. Finally, WM is obtained based on HVS, which includes the visual discrimination
consisting of VN, LD, and VM and visual attention referred to as VS.

3.1.1. Visual Non-Linearity

VN is a study on the relationship between the objective luminance and the human subjective
brightness perception. According to the universally acknowledged Weber—Fechner law, brightness
perception of pictures is proportional to physical stimulus on a logarithmic scale [32]. In other words,
the human eyes’ ability to recognize the difference of brightness declines with the increase of the
objective luminance. Dehaene demonstrated the neural basis of the Weber-Fechner law by researching
monkeys’ brains [31]. The Weber—Fechner law is given by Equation (1):

S = K-InL + K, (1)

In Equation (1), S describes human visual subjective perception of brightness, and L is luminance of
images. K and Ky are both constants associated with the average brightness of the pictures. Very bright
or dark images correspond to small K values, and the value of K is taken as 1 for normal luminance
range. In this paper, S is normalized to the range of (0-255) to compute the VN map.
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The pictures for mosaicking are always taken by several image sensors from different orientations,
which may lead to inequality in data processing and illumination circumstance; therefore, there are
luminance differences in input images, resulting in discontinuities at luminance of objects in stitched
image. Human eyes’ luminance discrimination threshold is at a low level in very bright areas, so it will
improve the quality of mosaic if locating the stitching line in bright areas.

3.1.2. Luminance Difference

Differentiate Equation (1), and we obtain the solution as follows:

dL
as = KT 2)
where dS and dL are the differentiation of subjective brightness perception and objective luminance.
According to Equation (2), the difference of the perception brightness varies linearly with the change
of actual luminance. High LD between the input image pair will cause luminance discontinuities in
the mosaic image. Thus, we choose low LD regions as mosaic regions in this experiment. LD map is
defined in Equation (3):

LD = 255 — abs(mean_filter(Ly) — mean_filter(Ly)) 3)

where L and L, denote the luminance of pixels with the same coordinate in the overlap area of image
pair to be stitched. Then mean_filter denotes the mean luminance of the pixels adjacent to the pixel
under computing. abs denotes the absolute value function.

3.1.3. Visual Masking

VM refers to the phenomenon that a visual stimulus in an image will be masked by its surroundings,
which is difficult to be detected by HVS, especially when the characteristics of the stimulus are similar
to those of the environment [29]. In the final stitched image, discontinuous edges due to misalignment
usually seriously damage the image quality, but when it appears in areas with very complicated edge
information, it has limited impact. At the same time, in the smoothing regions without edges, even if
a slight mismatch of the image occurs in the area, it will not significantly affect the quality of the
stitched image.

Based on this principle, the visual masking characteristics are quantified. The image is divided
into texture regions, smoothing regions and other regions. The texture regions are mainly used to mask
discontinuous edges in the mosaic image. Therefore, the more chaotic the edge information of texture
regions is, the more helpful it is to improve the quality of stitched images. The degree of chaos in these
regions is measured using local entropy, and the formula is shown in Equation (4):

m—1n-1

H= —Z Zp,’j'logpij (4)

i=0 j=0

where H is the local entropy. m, n are the length and width of the window around the pixel under

calculating. Besides p;; is defined as:
Pi= = ®)
YON O omn’
which is the probability that a gray level pixel (i, j) appears in the m-n neighboring window.
For pixels in smoothing regions, the selection of seamlines also has priority. The smaller the

difference, the smoother the regions, and thus the better for the final result. Therefore, if we seam
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the images in very similar regions, the stitching line will be invisible. The degree of similarity is
represented by a local range defined as:

R = Xmax = Xmin, (6)

where R is the local range. xmax and Xy are the maximum and minimum of gray value in the
neighborhood window, respectively. The value of R is zero when a pixel is same with its adjacent pixels.
In summary, we can work the VM map out via Equations (4)—(7):

k1-(255—-R) , pixels in smoothing regions
VM = ko-h , pixels in texture regions (7)
0 , pixels in other regions

where VM denotes visual masking value of each pixel. k; and k; are constants and set to 0.8 and 1
based on experimental experience.

3.1.4. Visual Saliency

In addition to the visual discrimination restricted by HVS physiological properties analyzed
above, there is also a vital psychological feature called visual attention mechanism, which has an
impact to the selection of visual information. According to the feature integration theory proposed
by [35], independent early features are extracted but not perceived at first time, and then the whole
scene is gradually perceived with the selection and transfer of focus of attention (FOA). VS is used to
represent the tendency of FOA selection. There is an increasing number of researchers studying VS
detection to achieve the consistent effect with the human eyes in recent years. Some researchers are
focusing on image quality assessment based on VS for reasonable evaluation results [14,36].

Each pixel has a unique saliency value, and those pixels with higher saliency have greater impact
on image quality. If the discontinuous stitching line is also with a high visual saliency, it will have a
negative effect on the mosaic result. Therefore, it is of great significance to avoid high VS regions when
searching the stitching line. In this paper, we choose the VS model SDSP to calculate the VS value of
each pixel. The value is defined as Equation (8):

VS(X) = VSp(X)-VSp(X)-VSc(X), ®)

where X refers to different pixels in input image pairs. The final saliency map VS combines three
saliency maps, which include saliency map VSp(X) modeled by band-pass filtering, location saliency
VSp(X), and color saliency VSc(X) based on whether it is warm or cold respectively.

3.1.5. Weight Map

The quality of mosaic images is influenced by VN, LD, VM and VS. We integrate all of them
according to Equation (9):

WM = pt1-VN + LD + pi3- VM + p14-(255 - V), )

where WM refers to the weight map based on HVS. p1, up, 3, and py4 are constants, the sum of which
is 1. In Equation (9), VS is a comprehensive visual feature that directly affects the first impression of
the mosaic image, so 14 is set as the maximum value in these constants. Discontinuous edges degrade
mosaic image considerably, so u3 comes in second. Because an extra light compensation is necessary
for images with obvious luminance difference and it is not the emphasis of our approach, the images
used in this paper have similar brightness. In this situation, y; and p; are set to about 0.15 so that HVS
could experience luminance difference across the stitching line.
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3.2. Optimal Stitching Line Detection and Smoothing

In Section 3.1.3, the overlap area is segmented into smoothing areas, texture areas and other areas.
We have clarified that selecting seamlines in smoothing and texture areas can minimize the impact on
image quality. In fact, some overlapping strong edge areas in other areas, also called safe strong edge
areas, can also be used as candidate areas. Considering the phenomenon mentioned above, a reference
edge map based on edge detection algorithm Canny is used for judging whether an edge pixel is a
stitching line candidate or not.

An optimal stitching line is almost invisible when it produces few discontinuous strong edges
and the discontinuous weak edges are masked or located in low-saliency areas. The first step of
locating the optimal stitching line is to set the two intersections of input image pair’s boundaries after
transforming to starting pixel and terminal pixel, respectively. Then all pixels in overlap region are
divided into candidates and invalid pixels. The candidates comprise the pixels in smoothing regions
or texture regions and safe strong edge pixels. Then, the dynamic programming goes into operation at
the starting pixel. A parameter D, related to the distance to terminal point for each pixel is added to
make sure the stitching line ends at the terminal point. D, is defined as the inverse of the Euclidean
distance between the pixel under computing and the terminal one. During this procedure, we choose
the adjacent candidate with the maximum WM, as the next stitching line pixel. The chosen pixels are
then added into the invalid point set for searching. The program will keep searching the ending point
until it makes it. WM, can be calculated by Equation (10):

WM, s = WM + D, , (10)

and then the obtained stitching line is simplified after the former process to then trace the final
stitching line.

Considering the diversity of the photographic circumstances and image sensors, the luminance
difference cannot be ignored even though the stitching line has already reduced its impact; thus, the
post processes such as white balance and illumination compensation are beneficial to obtain a visually
comfortable mosaic image. In the fusion phase, the overlap area is divided into two parts by the
stitching line based on HVS. The left part of mosaic image is filled by the left input image, while the
other is filled by the right one. The transition is smoothed by a multi-band blending algorithm.

The multi-band blending algorithm gives a significant result by retaining useful image information
at different scales. In the first step this algorithm decomposes the image pairs into a set of band-pass
filtered component images called Gaussian pyramid and Laplacian pyramid. Next, the component
images in each spatial frequency band are assembled into a corresponding band-pass mosaic. Finally,
these band-pass images are integrated to obtain the mosaic image. The macro features of the image are in
the low-frequency component images, while the local characteristics are retained in the high-frequency
ones. Therefore, a stitching line in the resultant mosaic image is almost invisible.

4. Experimental Results and Analysis

We have conducted experiments to evaluate the performance of this method, and the results of the
experiments show that the method improves the quality of the fused image. The two image pairs are
tested in two sets of experiments. In the first set, mosaic images seamed directly at the input images’
boundaries and obtained from the proposed technique were compared. In the other set, we changed

the parameters of the weight map to assess the impact of them in our method.

4.1. Experiment Setl

Figure 2 shows the image pair and the quantitative results of the overlap region with 4 different
HVS properties, which are VN, LD, VM, and VS, respectively.
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(e)

Figure 2. The results with different human visual system (HVS) properties. (a) Stitched image after
affine transformation; (b) image just with visual non-linearity (VN); (c) image just with luminance
difference (LD); (d) image just with visual masking property (VM); (e) image just with visual saliency
(VS); (f) image with the integral HVS.

As is shown in Figure 2a, the two pictures are stitched at the boundary directly, where there
is a dividing line visible to the naked eye. In the experiment, Figure 2b,c illustrate the visual
discrimination of luminance through the VN and LD map of the same image in which Figure 2c shows
the discrimination of edge information. In the VN map shown in Figure 2b, brightness discrimination
of human eyes decreases as the VN value increases, and in the LD map shown in Figure 2c, bright pixels
represent small luminance difference between the two images, and small luminance gap can be
smoothed by our technique. In the VM map, white areas represent smooth areas without edges and
gray areas are texture areas, while the black areas in overlap zone contain strong edges, which are
dangerous to mosaic image quality. The result of visual attention is pictured in Figure 2e. HVS will
capture the white objects in this picture the first time. The last image of Figure 2 is the weight map
combined by Figure 2b—e for tracing the stitching line.

We compare stitching results of 4 different methods in Figure 3. The edges in yellow circle are
broken by the left image boundaries, and the boundaries are visible. The multi-band blending is useless
to eliminate discontinuous edges; it is to say that Figure 3b is a mosaic picture with low quality even
whose boundaries are feathered. The red line in Figure 3c is the stitching line detected by the proposed
method. It can be clearly seen in the enlarged yellow frame that this stitching line successfully locates
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a low luminance difference path and avoids the high-saliency areas. Therefore, our method produces a
satisfactory result without obvious stitching lines or discontinuous edges shown in Figure 3d.

©

(d)

Figure 3. Mosaic images obtained from different methods. (a) Directly seamed at image boundaries;
(b) directly seamed with multi-band blending; (c) detected the stitching line; (d) result of the
proposed method.

Due to the lack of universal no-reference image quality assessment based on HVS, two quantitative
indicators were proposed to evaluate the stitching effects. One is N defined as the number of the pixels
in the stitching line which can be detected by an edge detection algorithm (Canny), excepting those
masked ones. The other indicator P is expressed as the following Equation (11):

N
P=—— (11)
N, stitch_line
where Nticp,_1ine indicates the number of stitching line pixels. Obviously, the values of these indicators
are low for a visual friendly image. Table 1 shows the indicators of Figure 3a,b,d.

Table 1. Evaluations of fusion effects in Figure 3.

No. of Images Canny (o = 0.01) Canny (6 =1)
N P N P
a 880 0.8943 149 0.1514
b 559 0.5681 124 0.1260
d 268 0.1682 73 0.0458

We process images by the Gaussian smoothing filter with different levels (o) at the beginning
of edge detection. According to Figure 3 and Table 1, our approach performs much better than the
traditional methods in the both two situations. The significant decreases of N when enlarge the value
of o imply that all of three images have many edge pixels that are hard to notice. Nevertheless, there
are still about 130 conspicuous edge pixels left in Figure 3a,b with the image size of 699 X 459 pixels,
while the number in Figure 3d is 73 with a 50% decline compared with Figure 3a. These conspicuous
edge pixels in the final image are only 4.58% of the stitching line pixels, compared with the 15.14% and
12.6% in (a) and (b) respectively.
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By contrast with the above image pair, the other image pair in the first experiment set is a photo
couple taken by drones. The stitching results are listed in Figure 4.

@

Figure 4. Mosaic images obtained from different methods. (a) Directly seamed at image boundaries;
(b) directly seamed with multi-band blending; (c) detected stitching line; (d) stitch result of
proposed method.

Besides the obvious stitching line in (a) and (b), the riverbank edges and farmland edges in yellow
frames are cut off by image boundaries. However, these rivers are high-saliency objects in the pictures,
which lead to the conspicuous unnatural dislocations. In this experiment, stitching lines must cut
through the river. But the path selection of the stitching line shown in Figure 4c automatically bypasses
the high-saliency regions where discontinuities occur in (a) and (b), it chooses the low-saliency regions
such as the aligned river bank as its components. There is no visible discontinuous edge in (d) and the
transition of the two photos is also smoothed. The evaluations are listed in Table 2.

When ¢ is 0.01, N of Figure 4d decreases a lot compared with (a) and (b). The value of P shrinks
even more. When ¢ is 1, about 32% stitching line pixels can be detected in Figure 3a, compared to only
5.3% in (d). Only 101 pixels in the picture with a resolution of 830+542 are visible. According to the
two experiments, our technique improves the mosaic image quality significantly.
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Table 2. Evaluations of fusion effects in Figure 4.

No. of Images Canny (o = 0.01) Canny (c=1)
N P N P
a 722 0.7490 306 0.3174
b 415 0.4305 157 0.1629
d 285 0.1495 101 0.0530

4.2. Experiment Set 2

According to Figure 2e, white architecture is the most conspicuous object. All the stitching
effects are fine, because the edges of white building are aligned. However, the stitch lines obtained
from VN, LD and VM cut through the high-saliency object, which is dangerous to the mosaic image
quality. Then we change the parameters of Equation (9) and make comparison of these stitching effects,
as shown in Figures 5 and 6. The broken edges in the yellow box of Figure 5d debase the image quality.
The stitch lines in (e) and (f) avoid the white building and unaligned edges, and the final result is
seamless. Evaluations of fusion effects are listed in Table 3.

(a) (b)

(e} (d)

(© (0

Figure 5. The stitch line results with different weight map: (a) VN, (b) LD, (c) VM, (d) VS, (e) WM with
parameter set 0.1, 0.2, 0.2, 0.5, and (f) 0.1, 0.1, 0.25, 0.55.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. The stitch line results with different weight map: (a) VN, (b) LD, (c) VM, (d) VS, (e) WM with
parameters 0.1, 0.2, 0.2, 0.5, and (f) 0.1, 0.1, 0.25, 0.55.

Table 3. Evaluations of fusion effects in Figure 5.

No. of Images Weight Map Canny (o = 0.01) Canny (0 =1)
N P N P
a VN 339 0.2180 98 0.0630
b LD 297 0.1820 60 0.0368
c VM 252 0.1622 49 0.0315
d VS 286 0.1974 60 0.0414
e parameter set 1 334 0.1742 63 0.0329
f parameter set 2 268 0.1682 73 0.0458

According to the table, the six mosaic images are visual pleasant even the high-saliency objects
are cut through by stitch lines. That is because the objects are registered perfectly. However, in other
cases, this kind of stitch lines may cause many unexpected effects (shown in Figure 6).

Figure 6 shows stitch lines using different combinations of visual properties. There are some
unnatural edges caused by breaking the reflections of the sun in the rivers indicated by yellow boxes in
Figure 6a,b. Due to the high saliency of the sun reflections, the stitch effects are poor. The dislocation in
Figure 6c is also an unexpected item. Figure 6d—f are acceptable outcomes without generating broken
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strong edges. The evaluations of these images are listed in Table 4. Although indicators of (a), (b) and
(c) are at a low level, they are unnatural mosaic images because some of detected edges are strong.
According to the table, (d), (e) and (f) have similar performance.

Table 4. Evaluations of fusion effects in Figure 6.

No. of Images Weight Map Canny (o = 0.01) Canny (6 =1)
N P N P
a VN 297 0.1250 96 0.0404
b LD 222 0.1278 110 0.0633
c VM 256 0.1590 64 0.0398
d VS 233 0.1356 85 0.0495
e parameter set 1 285 0.1495 101 0.0530
f parameter set 2 274 0.1443 102 0.0537

4.3. Analysis

All Evaluations of fusion effects in the two experiments are listed in Figures 7 and 8.

The experiment results show that our method can locate appropriate stitching lines based on
HVS and blend input images commendably. The output mosaic images have less discontinuous edges
and visible stitching-line pixels, with most of them located in low-saliency or masking areas where
human eyes will ignore flaws. In our method, the combination of py, u, 3, and g, is crucial for
tracing the stitching line. Computing with a visual property alone is likely to produce obvious mosaic
trace, but an appropriate combination of parameters can stitch images seamlessly by our technique.
The weight map with parameter set 2 takes the impact of several HVS properties into consideration
comprehensively and has a stable performance for photos taken in similar environments. If the average
luminance difference of image pairs is significant, we can increase the value of p, so that we can make
Equation (9) suit this situation.
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Figure 7. Evaluations of fusion effects of white building pictures in two experiments (DS (directly
seamed); MB (multi-band blending)). (a) N with ¢ = 0.01, (b) N with o =1, (¢) P with 0 = 0.01, and (d) P
witho =1.
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Figure 8. Evaluations of fusion effects of river pictures in two experiments. (a) N with o = 0.01, (b) N
with o =1, (¢) P with 0 =0.01, and (d) P witho = 1.

5. Conclusions

This paper has presented a stitching method for generating mosaic images consistent with the
human visual system. The value of influence on stitching effects is quantified based on models of HVS.
This method can locate a stitching line by quantifying the visual perceptions in overlapping regions,
avoiding pixels which can produce a strong response to the human eyes, and the multi-band blending
scheme is applied for smooth transition at the stitching line. Visual non-linearity, luminance difference,
visual masking property and visual saliency are used to represent human visual discrimination and
attention, and the weight map obtained through the combination reflects the human eye’s perception
of the image. Locating the stitching line in low-perception areas as much as possible can minimize the
negative impact of discontinuities. To further prove the superiority of our proposed approach, we used
images from the fields of architecture and remote sensing to compare our method with traditional
methods. Experimental results show that the mosaic images processed by this method contain fewer
detected stitching line and discontinuous edge pixels, which is more consistent with human visual
perception. Different weight maps have a direct impact on the results. There are different situations in
some applications, which may correspond to different optimal weight combinations. The quality of
stitching images may be further improved if some deep-learning method is employed in the allocation
of weights.
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