
applied  
sciences

Article

Multisensory Plucked Instrument Modeling in Unity3D:
From Keytar to Accurate String Prototyping

Federico Fontana 1,*,† , Razvan Paisa 2, Roberto Ranon 1 and Stefania Serafin 2

1 HCI Lab, Department of Mathematics, Computer Science and Physics, University of Udine, 33100 Udine,
Italy; roberto.ranon@uniud.it

2 Multisensory Experience Lab, Aalborg University Copenhagen, 2450 Copenhagen, Denmark;
rpa@create.aau.dk (R.P.); sts@create.aau.dk (S.S.)

* Correspondence: federico.fontana@uniud.it; Tel.: +39-0432-55-8432
† Current address: Via delle Scienze 206, 33100 Udine, Italy.

Received: 29 November 2019; Accepted: 18 February 2020; Published: 21 February 2020 ����������
�������

Abstract: Keytar is a plucked guitar simulation mockup developed with Unity3D that provides auditory,
visual, and haptic feedback to the player through a Phantom Omni robotic arm. Starting from a description
of the implementation of the virtual instrument, we discuss our ongoing work. The ultimate goal
is the creation of a set of software tools available for developing plucked instruments in Unity3D.
Using such tools, sonic interaction designers can efficiently simulate plucked string prototypes
and realize multisensory interactions with virtual instruments for unprecedented purposes, such as
testing innovative plucked string interfaces or training machine learning algorithms with data about
the dynamics of the performance, which are immediately accessible from the machine.

Keywords: stringed musical instruments; multisensory feedback; virtual reality; musical haptics

1. Introduction

Keytar is a virtual guitar, providing sensory feedback comprehensive of three modalities:
visual, auditory, and haptic. This application has been previously documented concerning its initial
implementation [1,2], and concerning subsequent hardware/software refinement now including
keyboard-based note control [3].

As Figure 1 shows, Keytar’s users pluck a string through the robotic arm using their dominant
hand, meanwhile selecting notes or chords through the keyboard controller with the other hand.
As the dominant hand feels the resistance and textural properties of the string actuated by the robot,
the plucking force follows by a perception-and-action process which comes naturally for most
musicians, and especially guitarists. The setup is completed by a screen displaying the action
of the virtual plectrum against the vibrating strings, as well as by the auditory feedback consequence
of string excitations.

Apart from Guitar Hero—a best-selling music software game based on guitar-like
controllers [4]—several plucked instrument models have been prototyped in the form of virtual
reality interfaces, sound synthesis models, or educational scenarios. Virtual Air Guitar is a touch free
virtual musical instrument controlled through graspable accelerometers and camera hand tracking [5].
This instrument was shortly followed by Virtual Slide Guitar [6], whose control was realized using
high-rate infrared visual capture. The air guitar concept was later generalized into a programming
framework [7], also targeting specific control devices, such as the Kinect [8]. Other plucked virtual
instruments include the harp [9] and kalichord [10].

Appl. Sci. 2020, 10, 1452; doi:10.3390/app10041452 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-1692-2603
https://orcid.org/0000-0002-9744-0197
https://orcid.org/0000-0001-6971-1132
http://www.mdpi.com/2076-3417/10/4/1452?type=check_update&version=1
http://dx.doi.org/10.3390/app10041452
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1452 2 of 12

Figure 1. The Keytar interface, with a robotic arm for plucking and a keyboard for selecting the notes
of the virtual strings.

Augmented reality has been also used to support guitar learning [11] and rehabilitation courses
where patients were invited to hear the sound of their own guitar playing actions [12].

Keytar is developed using the Unity3D environment, a currently widely-used visual programming
environment for prototyping computer games and virtual reality scenarios, as has been suggested [13],
advertised (https://rapsodos.ru/watch/How-to-Create-a-Piano-in-Unity-3D/), and previously
used [14] to develop virtual instruments. Its environment can be provided with a library of 3D
instrument models (https://assetstore.unity.com/packages/3d/props/musical-instruments-pack-
20066). Yet, multisensory musical objects are not part of the standard assets that can be imported into a
Unity3D project.

In this work we summarize and extend the results from previous presentations [1–3], describing
how Keytar is evolving in a more general software tool allowing for prototyping of plucked string
instruments inside Unity3D. In this sense, this paper is not about new digital music instruments.
Rather, it offers the state of the art about the use of a game engine, in this case Unity3D, for the specific
research topic. Its reading, hence, is not expected to enrich sonic interaction designers’ basic knowledge
about the virtual prototyping of musical instruments; conversely, it should help them understand
Unity3D’s programming principles and basic philosophy, and thus estimate the current pros and cons
of this development environment before starting a new project.

For this reason we do not expect this work to raise interest in the long-term. Rather, our goal
is to immediately stimulate further research and prototyping of digital musical instruments through
the explanation of the pros and cons. Among current concerns, we will report about inaccuracies
of the collision detection mechanism of the existing environment, as well as limitations in the visual
rendering of rapidly oscillating objects. To this regard, the most important part of our on going work
consists of the substitution of static with dynamic 3D elements forming each string.

Here, the potentially interested reader may wonder why we approach such a sophisticated
framework for sonic interaction design purposes. Indeed this question animated the development
of Keytar since the beginning. As this project posed a broad range of questions about the simultaneity
and accuracy of the performer–instrument interaction in a multisensory context, Keytar became a
tool to uncover the applicability of the Unity3D’s programming methodology to address prototyping
subtleties which typically appear in sonic interaction design. Through its development, we have been
able to assess several factors in this methodology across a bottom-up process, and consequently report
to the community.

https://rapsodos.ru/watch/How-to-Create-a-Piano-in-Unity-3D/
https://assetstore.unity.com/packages/3d/props/musical-instruments-pack-20066
https://assetstore.unity.com/packages/3d/props/musical-instruments-pack-20066


Appl. Sci. 2020, 10, 1452 3 of 12

Our conclusions are that Unity3D will soon be able to offer a competitive set of specific functions
for digital music instrument designers at no excessive costs in terms of the time to learn. On the other
hand, the same designers’ community will have to actively be involved in the refinement, especially
of the software libraries enabling the visual programming of physical interactions that are at the base
of sound synthesis. As, for instance, haptics researchers are currently doing while updating the libraries
enabling the robotic arm used by Keytar.

Applications of the resulting string objects include the design and virtual prototyping under
Unity3D of new plucked instruments, possibly for use with intelligent agents that may perform
and learn from them much more easily than by exchanging multisensory data with a physical
instrument, even if it is provided with proper sensors and actuators. Whatever the envisaged
application, an accurate plucked string model running within Unity3D would enable interaction
designers to sketch and test musical instrument prototypes faster than with any other
development environment.

Figure 2 gives an overview of the interaction design components and software libraries
used to implement them. The most critical aspect related to the use of each library is listed.
Together, such aspects emphasize the exploratory character of this paper and call for further work,
aiming at understanding in more detail how the corresponding software libraries could work
optimally together. In this respect, our investigation represents an initial effort toward this direction
and, hopefully, a stimulus for other researchers to program a physical model for Unity3D capable
of integrating the haptic interaction with the audio–visual animation.

Figure 2. Overview of the interaction design components and related software libraries.

This paper addresses the design of the Keytar haptic workspace in Section 2. Then, Section 3
is devoted to the issues created by the previous workspace, and consequent modifications that were
necessary in order to achieve a more accurate visual rendering and, prospectively, a more precise haptic
interaction. Section 4 describes how the string sounds are synthesized, and how they can be adapted
to specific project requirements using a proper chain of digital audio effects. Section 5 discusses
the perspectives of the current development environment, mainly limited by the hardware at hand.
Finally, Section 6 concludes the paper.

2. Haptic Feedback

Currently, many musical instrument computer interfaces consider haptic feedback as a necessary
component that must be made available to the user. The idea is not new [15], as testified by several
decades of development of e.g., the Cordis-Anima framework [16]. However, the relatively recent
availability of affordable force and especially vibratory devices has brought to the foreground the effects
that haptics have during performances [17]. Such effects have been shown to play a significant role,



Appl. Sci. 2020, 10, 1452 4 of 12

for instance, on the perception of quality in pianos [18] and violins [19], and the research field
has gained enough relevance to become known as Musical Haptics [20].

In our case, force and tactile feedback are enabled by a SensAble (now 3D Systems) Phantom
Omni robotic arm, as shown in Figure 1. The motors of this device exert limited force (up to 3.3 N)
and can actuate rotation and lift. On the other hand the arm movements are extremely precise (tracking
accuracy equal to about 0.055 mm), silent and prompt, as the mechanics have been designed to simulate
materials that are not too stiff. For this reason the Phantom Omni proved ideal when simulating string
plucking with a plectrum. In addition to responding with realistic forces, the motors of the Phantom
Omni are able to follow little changes in the contact point position. In this way they enable the sonic
interaction designer to define textural motifs over the strings that will be plucked.

At this point, if the user shifts the plucking point, as guitarists, for instance, do when they rub
the plectrum along a wound string, then he/she will have the tactile feeling of scraping the string,
depending on its coating, with a net effect on the perceived realism of the interaction. This feature
of the robotic arm has been used in Keytar since its first version. In parallel to feedback, the Phantom
Omni has good characteristics as an input interface for capturing the plucked interactions mediated
by a plectrum. The device, in fact, records the tip position and angle of its stylus (visible in Figure 1)
with a 1 kHz sampling rate, that allows the capture of the plectrum position with an accuracy of 1 mm
when the performer’s hand plucks the string at 10 m/s, which is far above reported hand strumming
velocities—normally below 1 m/s [21].

Haptic Workspace

The robotic arm is interfaced to the virtual scene in Unity3D through the haptic workspace.
This workspace contains the tangible properties of all the objects in the scene. In the limit, such objects
can be set to be invisible, that is, absent in the visual space but reactive in terms of haptic feedback,
or conversely, visible, however absent in the haptic workspace. Unfortunately, complex haptic
workspaces enabling contacts between 3D objects which are not primitive in Unity3D often encumber
the simulations, causing occasional crashes of the application, especially if built for slower machines
using the Haptic Plugin for Geomagic OpenHaptics—see the end of this section.

Another consequence of object complexity is that, even in the absence of a system crash,
the plectrum-string contact can go unnoticed by the system due to the real-time constraint imposed
on the collision detector for returning a result. This is a well known problem in game development,
sometimes referred to by Unity3D developers as the Bullet through paper problem. (https://answers.
unity.com/questions/176953/thin-objects-can-fall-through-the-ground.html).

These limitations motivated the design of a simple physical contact, by providing the haptic
workspace with a little sphere corresponding to the tip of a larger visual plectrum (see Figure 3):
The former, responsible for making contact with the strings, was instantiated as a Sphere object having
a minimum (i.e., almost point-wise) diameter. In parallel, each haptic string was made of a chain
of cylinder objects active both in the haptic and visual space. Both spheres and cylinders are primitive
in Unity3D and possess parameters of diameter, position, and length that were set along with their
haptic properties during previous tests of the system, also involving guitar and bass players [1].

An obvious downside of this simplification is that the sphere cannot provide a distributed
contact point, nor allow a performer’s freedom to rotate the plectrum as a larger triangular object
would have been able to. Moreover, the plectrum could visually pass through the strings as soon
as its tip was incidentally moved below them instead of colliding against their surface, even diving
into the fretboard if the user continued to pull down the arm of the robot. Even worse, recovering
from this unrealistic situation was problematic as the plectrum easily collided against the strings on its
way back, making it difficult for the user to restore a correct interaction.

This issue was solved by inserting an invisible haptic surface immediately below the strings,
opposing maximum stiffness against penetration. The inclusion of this additional object overall
resulted in the haptic workspace shown in Figure 3.

https://answers.unity.com/questions/176953/thin-objects-can-fall-through-the-ground.html
https://answers.unity.com/questions/176953/thin-objects-can-fall-through-the-ground.html


Appl. Sci. 2020, 10, 1452 5 of 12

Figure 3. The haptic workspace in Keytar. The colliding sphere is visible as a white tip on the edge
of the plectrum.

A more subtle visuo-haptic mismatch manifested when the haptic edge of the plectrum touched,
but did not penetrate a string enough: In this case, the haptic objects did interact, but did not collide
deeply enough to elicit sufficient force feedback to the user. This problem was solved by wrapping each
string with an invisible, yet touchable, layer, which was set to be as thick as the radius of the haptic
sphere forming the plectrum. The layer is shown in Figure 4. This ensured that users, while plucking
the visible string, were moving the stylus on a position providing robust contact between the plectrum
and the string.

Figure 4. Mismatching positions of the visual and haptic collision point. Wrapping with a
touchable layer.

On top of providing force feedback to the plectrum, due to their peculiar design made
by alternating small cylinders of two different diameters, the strings conveyed tiny discountinuities
that the robotic arm was able to render when the stylus was slid to scrape the plectrum along a string.
This feedback provided a vibrotactile effect that differed among strings by their size (depending
on the diameter of the cylinders) and texture (depending on the length and diameter differences
between adjacent cylinders). In any case, the strings were static objects, in the sense that their position
did not change in time, as opposed to the plectrum. Furthermore, there was no vibrotactile feedback
from the string to the plectrum, as the string vibration was only rendered visually.



Appl. Sci. 2020, 10, 1452 6 of 12

On a brief technical note, Unity3D objects that need to be placed in the haptic workspace must
be interfaced to the classes RigidBody and Collider. These classes provide methods for the real-time
detection and management of collisions. Such objects become visible to the robotic arm if they
are furthermore typed as Touchable. Once interfaced also to this class, they in fact have access to Unity3D’s
Haptic Plugin for Geomagic OpenHaptics resources, developed for Windows and (in beta version) for Linux
by the Glasgow School of Art’s Digital Design Studio. The interested reader is referred to the respective
asset (https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-5-haptic-plugin-for-
geomagic-openhaptics-3-3-hlapi-hdapi-34393) for Unity3D v.5 and related information.

3. Visual Feedback

As we have seen, the only dynamic object populating the haptic workspace is the plectrum.
On the one hand, this configuration is satisfactory as guitarists and other stringed instrument players
do not experience positional changes of the strings while playing their instruments, and the compliance
of the robotic arm in parallel proved suitable to convey a credible sense of string elasticity through
the virtual plectrum. On the other hand, strings that do not visually vibrate after being plucked
are unrealistic. Similarly to the haptic–visual case, in the audio–visual case we achieved sufficient
realism by visually animating the strings, yet with no relationship between the sound produced
by the Karpulus–Strong algorithm and the visual vibration of the strings. As previously said,
in Keytar the visual scene was organized independently of the haptic workspace, so in principle it would
be sufficient to design a realistic graphic rendering of the vibrating strings to add consistent visual feedback
to the overall scenario.

The experience with Keytar showed that accurate vibrating strings are not straightforwardly
rendered in Unity3D. While plectrum movements and rotations were directly reproduced
from the standard camera viewpoint in the visual scene, strings visually vibrated thanks to the Animator
interface, whose methods implement Unity 3D’s Mecanim. (https://docs.unity3d.com/Manual/
AnimationOverview.html). This animation system concatenates basic Animation objects along time,
together realizing the visual flow visible from the Camera object. Animation objects were designed
to model transversal oscillations with specific frequency and time decay, in ways that few such
objects could be used to animate each string with an overall low computational effort. In practice,
each collision triggered a script determining the initial vibration amplitude. From this moment on,
vibrations were rendered by an Animator method that destroyed a visual string while cloning it into
a shifted instance, until the original string returned to rest or, conversely, was triggered again by a
new collision.

In spite of its efficiency and versatility, this graphic rendering technique was far from producing
accurate results. Its main artefact consisted of a purely transversal motion of the strings as they
were all rigid bodies. The the vibration frequency also needed to be higher. The most promising
solution was that of redefining the design approach completely, through the use of a dynamic model.
Furthermore, if a dynamic model was correctly computed in the visual scene, then an attempt could
be made to export it also to the haptic workspace, with potential advantages in terms of the accuracy
of the somatosensory feedback and coherence of the multisensory percept. In other words, the new
approach could also be used as a multimodal platform rendering string vibrations.

With this goal in mind, the Animator interface was substituted in the Keytar software architecture
with the Ultimate Rope Editor asset (https://assetstore.unity.com/packages/tools/physics/ultimate-
rope-editor-7279), available from the Unity3D Marketplace. This asset provides the dynamic generation
of strings of variable length and the number of links and nodes. Once imported into a project, the
Ultimate Rope Editor allows for editing several pseudo-realistic physical parameters, such as string
tension, string weight, and breaking force.

Due to its flexibility and the dynamic processing of string vibrations, this asset provided far
greater visual accuracy. Its feedback is appreciable from Figure 5. Though, such an improvement came

https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-5-haptic-plugin-for-geomagic-openhaptics-3-3-hlapi-hdapi-34393
https://assetstore.unity.com/packages/essentials/tutorial-projects/unity-5-haptic-plugin-for-geomagic-openhaptics-3-3-hlapi-hdapi-34393
https://docs.unity3d.com/Manual/AnimationOverview.html
https://docs.unity3d.com/Manual/AnimationOverview.html
https://assetstore.unity.com/packages/tools/physics/ultimate-rope-editor-7279
https://assetstore.unity.com/packages/tools/physics/ultimate-rope-editor-7279


Appl. Sci. 2020, 10, 1452 7 of 12

at costs that are listed in Section 5, where the use of the Ultimate Rope Editor as a dynamic model
integrating together the visual and haptic behavior of the vibrating strings is discussed.

Figure 5. Snapshot of the visual feedback in Keytar using Ultimate Rope Editor. The active region
of the collision can be seen bounded by green circles surrounding the first string, each pointed by a
black arrow. Small green and red arrows depict the horizontal and vertical components of tangential
force vectors exerted by the active string elements.

4. Auditory Feedback

In the visual scene, the amplitude of each vibrating string was computed starting from
the spatial coordinates (x, y, z) of the contact point, immediately before (b) and after (a) every collision.
These coordinates are accessible through the Haptic Plugin at runtime, and provided a measure
of the initial amplitude as each string was shifted when its oscillation started. This measure was
used only to excite the algorithm, and not to change its parameters based on the plucking position.
Nevertheless, the same data allowed for an estimation of the velocity, computed as the distance
between such two points divided by the haptic frame rate (1 ms, see Section 2) readable from the static
variable Time.deltaTime:

velocity =

√
(xa − xb)2 + (ya − yb)2 + (za − zb)2

Time.deltaTime
.

The velocity was then used to determine the intensity of the acoustic vibration in each string.
In Unity3D, the sound sources and listening points are respectively defined by AudioSource

and AudioListener objects. Keytar contained six sound sources, one for each string, and a default audio
listener corresponding to the Camera object. Each string was sonified by means of a Karplus–Strong [22]
sound synthesis algorithm, available as an asset (https://github.com/mrmikejones/KarplusStrong)
of Unity3D. Concerning the algorithm parameters, tone fundamental frequency, and sound intensity
were set for every string at runtime through a keyboard-based Musical Instrument Digital Interface
(MIDI) control.

The keyboard, visible in Figure 1, was in fact connected to the sound synthesizer, thanks to Keijiro
Takahashi’s MIDI Jack open project (https://github.com/keijiro/MidiJack) for Unity3D. In spite
of its low-latency and moderate computational cost, Karplus–Strong is known to produce pure string
oscillations whose sound is still far from that of a guitar. In order to improve such sounds, a series
of built-in digital audio effects were cascaded along the main channel of the AudioMixer. The resulting
chain, shown in Figure 6, followed a common “Less to More” electric guitar pedalboard configuration:

https://github.com/mrmikejones/KarplusStrong
https://github.com/keijiro/MidiJack


Appl. Sci. 2020, 10, 1452 8 of 12

1. Attenuation is a default effect found on all of Unity’s mixing channels. It sets the intial gain
of the channel.

2. Distortion, with a level set to 0.82, is the first real effect in the chain that simulates a high gain drive
pedal, like the BOSS DS-1. This effect provides a richer sound for the following delay module.

3. Flanger is the fastest temporal effect in the path, thus it is found early in the chain.
It is set to provide some pitch modulation to the otherwise too static sound synthesized
by the Karplus–Strong algorithm. The modulation rate was set at 0.1 Hz, the depth was set
at 100% and the mix was set to be 70% wet.

4. Chorus makes the sound processed by the flanger fatter. The delay was set to 42.5 ms, and the time
modulation oscillates at 0.8 Hz with a depth equal to 30%. There is no feedback in the chorus,
however the effect provides a multitap mix control whose values were all set to 0.77. The level
of dry mix was set to maximum, to ensure that some peculiar aspects of the Karplus–Strong
sound were preserved.

5. A compressor is found next, taming occasionally strong attack levels caused by the Karplus–Strong
algorithm. Its threshold was set to be rather high, at 5.8 dB, with a moderately fast attack
of 40 ms and a medium release of 190 ms. In addition to smoothing the attack, the compressor
manages to reduce the gain by 6.2 dB. This reduction results in a smaller dynamic range, however,
closer to a high gain guitar tone sound. As for any digital chain, the noise floor was not increased
by the compressor nor was any extra noise introduced by the other effects.

6. Distortion 2 is placed at this point to simulate the natural drive of guitar amplifiers. The level
was set to a relatively low value, i.e., 0.3, as most of the harmonic enrichment had been already
ensured by the previous effects.

7. A parametric equalizer (ParamEQ) is a series of peaking and notch filters which is usually put
at the end of the chain. The equalizer was tuned to attenuate the spectral power around 3.5 kHz
in ways to reduce some of the residual metallic timbre of the sound. The gain was set to 0.41
and the selectivity amounted to 0.23 octaves. This selectivity worked well for all strings, therefore
it is reasonable to assume that the unwanted gain in the respective bands was a by-product
of the effect chain.

Figure 6. Virtual pedalboard.



Appl. Sci. 2020, 10, 1452 9 of 12

Such effect levels and parameters were set by listening to each string, using subjective criteria like
consistency among string sounds and similarity to a high gain guitar tone.

Concerning note control, Keytar featured three different playing modes that can be selected
through the stylus buttons: solo, harmonic major, and harmonic minor. This feature is being maintained
in the current development. Any switch of these buttons called a script that activates the corresponding
playing mode. In solo mode, the related script simply runs an instance of the Karplus–Strong
algorithm at the time when a collision happens, by tuning the synthesizer to the tone that has been
set by the controller key—but not below the lowest note the excited string can produce, however.
The harmonic modes instead launch several instances of the same algorithm, by building major
and minor chords based on the last key press on the controller. This event dictates the fundamental
note of the corresponding chord. All chords were standard forms based on the chord voicing music
theory. They were formed only by tones belonging to the fundamental tonality.

Last, but not least, the acoustic feedback includes real sounds that are a by-product of the effort
that the robotic arm makes while reproducing the string textures. This effect is to be kept as well.
As can be seen from Figure 3, each string results from alternating cylinders of two different diameters.
The resulting surface geometry thus reproduces a texture assimilable to that of a wound string coating,
as it contains regular discontinuities. While following the longitudinal motion of a plectrum scraping
along such a string, the motors simulate a motion similar to friction, producing not only haptic,
but also acoustic cues of convincing quality, creating a substantial improvement of the overall realism
of the interaction.

5. Ongoing Work

As anticipated at the end of Section 3, an attempt to integrate the visual and haptic workspaces
together under the control of a single dynamic model was made using the Ultimate Rope Editor.
Keeping the conservative approach used with the previous string models in an effort to reduce
the computational load of the haptic workspace, the collision detection region was limited to the area
around the pickups. The locus of interaction was realized by a Capsule object, by attaching a collider
to a node between two rope segments, as shown in Figure 7.

Figure 7. A Capsule collider attached to a string. The green, red, and blue arrows depict the orientation
of the capsule object.

The diameter of the collider was matched to the diameter of the contact sphere on the plectrum,
as shown in Figure 4.

The visual result was the desired one, but three problems arose in the haptic workspace using
this implementation.



Appl. Sci. 2020, 10, 1452 10 of 12

1. The string dynamics are not unconditionally stable when realistic parameters (i.e., low weight
and high tension) are set, causing chaotic oscillations of the string links that occurred rarely.

2. An even more significant problem was the inconsistency of the haptic feedback. This behavior,
in part, happened because the haptic collider was applied on the string links, which are actually
free to micro-oscillate and rotate in the 3D space due to the nature of the dynamic model.
These movements, visible in Figure 5 with green arrows showing the rotation of the force
vectors along space, are translated to the plectrum, which rotate around the colliding sphere,
thus not resisting movement. This shortcoming was emphasised by the insufficient frame rate
of the Unity3D collision detection system, again causing the plectrum to occasionally move
beyond the string instead of plucking against it. This issue has been recently addressed in newer
versions of Unity, which now detect collisions through a callback procedure. However, the new
collision detection system is yet to be implemented in Keytar.

3. The Ultimate Rope Editor is especially demanding in terms of computational effort. This increases
the probability of the application to crash proportionally with the rendering accuracy set
for the visual feedback.

An alternative implementation of dynamic string motion has undergone preliminary testing
by the authors, leading to promising results. This implementation makes use of the Obi Rope physics
engine (https://assetstore.unity.com/packages/tools/physics/obi-rope-55579), which is built on
Obi Particles instead of Unity3D rigid bodies and links. This approach improves the customization
and stability, and should lead to substantial improvements, when used in parallel with an official
Application Programming Interface (API) released for Unity3D by 3D Systems, current owner
of the Phantom Omni technology. This API is based on the newer version, 3.5, of OpenHaptics,
and comes bundled with updated drivers for Windows 10, Mac, and Linux.

On top of the increased stability, the new API gives access to additional material parameters,
such as viscosity and smoothness. The availability of such parameters promises to give the designer
control of the textural parameters of the virtual strings, which is so far an exclusive domain of the arm
motor characteristics. A reliable software building of the newly released Obi Rope and OpenHaptics
in the Keytar architecture is the object of onging work.

6. Conclusions

If the new physics engine and API for the robotic arm provide the promised enhancements
in comparison to the previous software libraries, Keytar will provide interaction designers with a
development environment to visually edit, for the first time, most features of a plucked string
instrument, including the size, position, plucking points, and intonation of a string set. In parallel,
a wide palette of parameters will be made available to design not only the sound, but also the tactile
feeling of such strings. All of these features will be in easy reach for those designers who have enough
knowledge of Unity3D— a development environment that has gained popularity especially for its
rich, user friendly and easy to learn visual programming features.

The multisensory feedback conveyed by Keytar has already been judged to be especially
satisfactory in both controlled experimental settings [23] and informal showcasing situations [3].
Its prospectively more stable behaviour and wider accessibility to the contact parameters make Keytar
an ideal candidate for the virtual testing of novel plucked string interactions, and for the interactive
generation of music performance data. Such data could be used, for instance, as an initial
platform for the comparative analysis of touch and sounds using different sets of virtual strings.
The tuning of such strings could be made by engaging musicians in interactive tasks, where they
manipulate physical parameters based on subjective haptic and auditory sensations.

Author Contributions: Conceptualization, F.F. and R.P.; software, R.P.; resources, F.F., R.R. and S.S.;
writing—original draft preparation, F.F.; writing—review and editing, F.F., R.P., R.R. and S.S.; project
administration, F.F.; funding acquisition, S.S. All authors have read and agreed to the published version of
the manuscript.

https://assetstore.unity.com/packages/tools/physics/obi-rope-55579


Appl. Sci. 2020, 10, 1452 11 of 12

Funding: This research was funded by NordForsk grant number 86892 NordicSMC - Nordic Sound and Music
Computing Network.

Acknowledgments: Andrea Passalenti provided the original conceptualization and software of Keytar.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Passalenti, A.; Fontana, F. Haptic interaction with guitar and bass virtual strings. In Proceedings of the 15th
Sound and Music Computing Conference (SMC 2018), Limassol, Cyprus, 4–7 July 2018; pp. 427–432.

2. Passalenti, A.; Paisa, R.; Nilsson, N.C.; Andersson, N.S.; Fontana, F.; Nordahl, R.; Serafin, S. No Strings
Attached: Force and Vibrotactile Feedback in a Guitar Simulation. In Proceedings of the 16th Sound
and Music Computing Conference (SMC 2019), Málaga, Spain, 28–31 May 2019; pp. 210–216.

3. Fontana, F.; Passalenti, A.; Serafin, S.; Paisa, R. Keytar: Melodic control of multisensory feedback from virtual
strings. In Proceedings of the International Conference on Digital Audio Effects, (DAFx-19), Birmingham, UK,
2–6 September 2019.

4. Miller, K. Schizophonic performance: Guitar hero, rock band, and virtual virtuosity. J. Soc. Am. Music
2009, 3, 395–429. [CrossRef]

5. Karjalainen, M.; Mäki-Patola, T.; Kanerva, A.; Huovilainen, A. Virtual air guitar. J. Audio Eng. Soc. 2006, 54, 964–980.
6. Pakarinen, J.; Puputti, T.; Välimäki, V. Virtual slide guitar. Comput. Music J. 2008, 32, 42–54. [CrossRef]
7. Figueiredo, L.S.; Teixeira, J.M.X.N.; Cavalcanti, A.S.; Teichrieb, V.; Kelner, J. An open-source framework

for air guitar games. In Proceedings of the VIII Brazilian Symposium on Games and Digital Entertainment,
Rio de Janeiro, Brazil, 8–10 October 2009; pp. 74–82.

8. Hsu, M.; Kumara, W.G.C.W.; Shih, T.K.; Cheng, Z. Spider King: Virtual musical instruments based on Microsoft
Kinect. In Proceedings of the International Joint Conference on Awareness Science and Technology Ubi-Media
Computing (iCAST 2013 UMEDIA 2013), Aizuwakamatsu, Japan, 2–4 November 2013; pp. 707–713.

9. Taylor, T.; Smith, S.; Suh, D. A virtual harp with physical string vibrations in an augmented reality
environment. In Proceedings of the International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference (ASME), Cleveland, OH, USA, 6–9 August 2007; pp. 1123–1130.

10. Schlessinger, D.; Smith, J.O. The Kalichord: A Physically Modeled Electro-Acoustic Plucked String
Instrument. In Proceedings of the New Interfaces for Musical Expression (NIME), Pittsburgh, PA, USA,
4–6 June 2009; pp. 98–101.

11. Liarokapis, F. Augmented Reality Scenarios for Guitar Learning. In Proceedings of the Theory and Practice
of Computer Graphics (TCPG)- Eurographics UK Chapter, Canterbury, UK, 15–17 June 2005; pp. 163–170.

12. Gorman, M.; Lahav, A.; Saltzman, E.; Betke, M. A camera-based music-making tool for physical rehabilitation.
Comput. Music J. 2007, 31, 39–53. [CrossRef]

13. Manzo, V.J.; Manzo, D. Game Programming Environments for Musical Interactions. Coll. Music Symp.
2014, 54. [CrossRef]

14. Zhaparov, M.; Assanov, U. Augmented reality based on Kazakh instrument “Dombyra”. In Proceedings
of the IEEE 8th International Conference on Application of Information and Communication Technologies
(AICT), Paris, France, 20–24 July 2014; pp. 1–4.

15. Berdahl, E.; Verplank, B.; Smith, J.O.; Niemeyer, G. A Physically Intuitive Haptic Drumstick. In Proceedings
of the International Computer Music Conference (ICMC), Copenhagen, Denmark, 27–31 August 2007;
pp. 150–155.

16. Leonard, J.; Cadoz, C. Physical Modelling Concepts for a Collection of Multisensory Virtual Musical
Instruments. In Proceedings of the New Interfaces for Musical Expression (NIME), Baton Rouge, LA, USA,
31 May–3 June 2015; pp. 150–155.

17. Miranda, E.R.; Wanderley, M.M. New Digital Musical Instruments: Control and Interaction Beyond the Keyboard;
A-R Editions: Middleton, WI, USA, 2006.

18. Fontana, F.; Papetti, S.; Järveläinen, H.; Avanzini, F. Detection of keyboard vibrations and effects on perceived
piano quality. J. Acoust. Soc. Am. 2017, 142, 2953–2967. [CrossRef] [PubMed]

19. Wollman, I.; Fritz, C.; Poitevineau, J. Influence of vibrotactile feedback on some perceptual features
of violins. J. Acoust. Soc. Am. 2014, 136, 910–921. [CrossRef] [PubMed]

20. Papetti, S.; Saitis, C., Eds. Musical Haptics; Springer International Publishing: Berlin, Germany, 2018.

http://dx.doi.org/10.1017/S1752196309990666
http://dx.doi.org/10.1162/comj.2008.32.3.42
http://dx.doi.org/10.1162/comj.2007.31.2.39
http://dx.doi.org/10.18177/sym.2014.54.mbi.10532
http://dx.doi.org/10.1121/1.5009659
http://www.ncbi.nlm.nih.gov/pubmed/29195444
http://dx.doi.org/10.1121/1.4889865
http://www.ncbi.nlm.nih.gov/pubmed/25096125


Appl. Sci. 2020, 10, 1452 12 of 12

21. Romero-Ángeles, B.; Hernández-Campos, D.; Urriolagoitia-Sosa, G.; Torres-San Miguel, C.R.;
Rodríguez-Martínez, R.; Martínez-Reyes, J.; Hernández-Vázquez, R.A.; Urriolagoitia-Calderón, G. Design
and Manufacture of a Forearm Prosthesis by Plastic 3D Impression for a Patient with Transradial Amputation
Applied for Strum of a Guitar. In Engineering Design Applications; Öchsner, A., Altenbach, H., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 97–121. [CrossRef]

22. Karplus, K.; Strong, A. Digital Synthesis of Plucked String and Drum Timbres. Comput. Music J. 1983, 7, 43–55.
[CrossRef]

23. Passalenti, A.; Paisa, R.; Nilsson, N.C.; Andersson, N.S.; Fontana, F.; Nordahl, R.; Serafin, S. No Strings
Attached: Force and Vibrotactile Feedback in a Virtual Guitar Simulation. In Proceedings of the IEEE
Conference on Virtual Reality and 3D User Interfaces (VR), Atlanta, GA, USA, 22–26 March 2019;
pp. 1116–1117. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/978-3-319-79005-3_8
http://dx.doi.org/10.2307/3680062
http://dx.doi.org/10.1109/VR.2019.8798168
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Haptic Feedback
	Visual Feedback
	Auditory Feedback
	Ongoing Work
	Conclusions
	References

