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Abstract: Due to the high cost of failures of wind turbines, redundancy designs are commonly
applied in wind turbines for improving the reliability and availability of systems. For this reason,
replacing failed components with other working components of the same type in redundant
systems is becoming an attractive option of maintenance strategies towards more resilient systems.
To quantitatively evaluate system’s reliability, this paper focuses on the reliability analysis of
redundant systems of offshore wind turbines based on swapping existing components. The survival
signature-based component swapping method is introduced to describe the new structure-function
of the system upon swapping. Furthermore, the reliability model of redundant systems is established
using the fault tree and survival signature. Following this, the influences of component swapping on
component reliability importance measure (marginal reliability importance and joint reliability
importance) without and with considerations of the imprecision of failure rates are explored.
Finally, a 5MW offshore wind turbine is presented to show the applicability of the proposed approach
for redundant systems, and the results show that the proposed approach can obtain realistic reliability
assessment of redundant systems and considering component swapping can significantly improve
system reliability.

Keywords: offshore wind turbines; redundant systems; reliability analysis; component swapping;
component importance measure

1. Introduction

As climate change and energy crises continue to worsen worldwide, there is an increased
eagerness to develop cleaner alternatives to fossil fuels. Wind energy is one of the most promising
renewable energy sources. Nowadays, the power and complexity of wind turbines (WTs) are rapidly
increasing. Complex electromechanical systems and uncertainties of extreme operating environments
of wind turbines lead to serious accidents resulting in huge economic losses and threats to human
lives [1–3].

To eliminate the weaknesses in complex system, redundancy designs are widely used for the
improvement of system reliability and availability. In engineering practice, active redundancy,
passive redundancy, partly loaded redundancy, and change over redundancy are commonly
applied to enhance system reliability [4–6]. Reliability-redundancy allocation aims to obtain the
optimal redundancy level of each subsystem to maximize the system reliability within allowable
resources of the entire system [7,8]. However, most redundant components have been treated as
a parallel configuration without considerations of the failure mechanism of redundant systems [5].
Survival signature-based reliability analysis method has been applied to systems with multiple types
of components, and excellent results are also achieved [9–11].
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Many researchers have previously studied reliability importance analysis (Marginal reliability
importance (MRI) and Joint reliability importance (JRI)) and reliability sensitivity analysis for complex
systems. Hong & Lie [12], and Armstrong [13] introduced the JRI to explore how two components in a
system interact in contributing to the system’s reliability. The JRI was extended from two components
to multi-components [14]. Feng et al. [15] used the survival signature to perform imprecise system
reliability analysis and component importance analysis. Xu and Liao [16] studied the reliability of a
one-shot system containing multi-functional components. Huang et al. [17,18] performed the reliability
sensitivity analysis for coherent systems using survival signature and system reliability optimization
considering swapping existing components. However, the effects of component swapping on system
reliability and component importance have not been extensively studied in the existing literature.

In reality, components swapping is of great importance in improving the reliability of redundant
systems, i.e., offshore wind turbines, which have high-reliability requirements. Due to the scale and
complexity of the redundancies in complex systems, it is a challenge for us to express the change of
the structure function of redundant systems upon swapping, which causes the fact that the system
reliability with component swapping can not be realistically evaluated. Furthermore, the quantitative
measure of MRI and JRI of redundant components can help allocate resources (design, inspection and
maintenance) reasonably. However, the listed literature did not explore the influences of component
swapping on system reliability, MRI and JRI of critical components. Moreover, the uncertainties of
failure rates of components were not studied.

Component swapping developed from survival signature is an effective method to enhance
system reliability by swapping between failed components and working components of the same
types in a redundant system, which can significantly improve the resilience of systems to failures [19].
Actually, this kind of maintenance strategy is already used to prevent the shutdown of wind turbines
and avoid huge losses in reality. However, the influences of components swapping on system reliability
have not yet been explored due to the change of system structure upon swapping. Moreover, the MRI
and JRI with considerations of component swapping and fuzzy failure rates can not be conducted as
well. To realistically and quantitatively evaluate the reliability of redundant systems, in this paper,
authors therefore propose to establish a time-dependent reliability model for redundant systems of
a 5 MW offshore wind turbine based on component swapping. Reliability functions of load-sharing
and standby redundant systems are derived. Effects of component swapping on the reliability of
redundant systems are explored. Component reliability importance measure considering component
swapping and imprecise failure rates is performed. The MRI and JRI of critical components considering
component swapping are analyzed, and the lower and upper bounds of MRI and JRI of critical
components are presented using imprecise theory.

The rest of this paper is organized as follows: Section 2 introduces redundant systems and the
fault tree of offshore wind turbines; Section 3 describes methods mentioned in this study including
component swapping, reliability importance analysis, reliability functions of load-sharing redundancy
and standby redundancy; Section 4 presents system reliability model and results analysis; Section 5
performs reliability importance analysis of redundant components of different types; Finally, some
conclusions are summarized in Section 6.

2. Redundant Systems of Offshore Wind Turbines

An offshore wind turbine is taken as an example to show the effectiveness and feasibility of
the proposed methods. In the wind-power industry, redundancy designs play an important role in
improving the system reliability of wind turbines. The redundancy of a component or system can
improve the ability to maintain or restore its function when a failure of a member or connection has
occurred. Redundancy can be achieved for instance by strengthening or introducing alternative load
paths [20].

This paper focuses on a 5 MW doubly-fed induction generator with a four-point suspension
produced by CSIC (Chongqing) Haizhuang Windpower Equipment Co., Ltd. from Chongqing, China.
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The system schematic of the offshore wind turbine (OWT) is presented in Figure 1. The OWT is
a typical three-bladed, upwind, variable-speed, variable blade-pitch-to-feather-controlled turbine.
The rated wind speed and the rated rotor speed are 12.6 m/s and 11.34 rpm, respectively. The design
life of the OWT is 20 years. In Figure 1, the entire system of the OWT is a closed-loop control
system, and every subsystem is closely related to the others. From the wind turbine structure and the
design aspects, it can be seen that redundant systems of OWTs contain multiple types of functional
redundancy including parallel redundancy (active redundancy), load-sharing redundancy (partially
loaded redundancy), standby redundancy (passive redundancy), and k-out-of-n redundancy (change
over redundancy) and redundancy designs exist in eleven subsystems: the pitch system (E1), the safety
chain (E2), the communication system (E3), the speed measuring system (E4), the hydraulic system (E5),
the cooling system of the nacelle (E6), the cooling system of the gearbox (E7), the power generation
system (E8), the wind measuring system (E9), the temperature measuring system of the nacelle (E10),
and the cooling system of the generator (E11), which are transformed into the fault tree (FT) of
redundant systems shown in Figures 2 and 3.

As it is shown in Figures 2 and 3, there are five types of gates in the FT of redundant subsystems:
AND gate, OR gate, Voting OR gate, Standby gate, and Load Sharing gate. The AND and OR gates
are the most basic types of gates in classical fault tree analysis. The basic symbolic descriptions are
shown in Table 1. The logic symbol of k-out-of-n redundancy in a fault tree is represented as Voting
OR gate in which the output event occurs if k or more of the input events occur (k ≤ n). For standby
redundancies, alike E11 and E12, when the active component fails, the “standby” backup component
will take over the role of the failed component by the switch and the original system continues to
function. Standby redundancy is one of the most commonly used redundancy methods in WTs.
To illustrate the failure mechanism of load-sharing redundancy, the concept of load sharing in the
field of WTs is proposed [21]. It is should be noted that components of the load-sharing redundancy
will share a full load if both of them function, and the surviving component will suffer the full load
if one component fails. In the OWT, the hydraulic system (E5), the cooling system of the nacelle
(E6), the cooling system of the gearbox (E7) and the cooling system of the generator (E11) belong to
load-sharing subsystems.

The specific information of basic events is depicted in Table 2 including components’ name, type
of redundancy, mean time between failure (MTBF) and distribution type of failure times. The data of
components’ MTBF is real maintenance records provided by CSIC (Chongqing) Haizhuang Windpower
Equipment Co., Ltd. Because reliability data of components can not be used directly, it needs to
transform them into distribution parameters. Generally, the lifetime of electronic components follows
an Exponential distribution with parameter λ, and the lifetime of mechanical components follows a
Weibull distribution with scale parameter (λ) and shape parameter (γ) [1,22]. Therefore, the failure
rates of electronic components can be calculated by λ = 1/MTBF, and the scale parameter of a Weibull
distribution can be obtained from MTBF of components using the method proposed in Ref. [21].

Table 1. The symbolic descriptions.

Symbol Meaning Sign Meaning Symbol Meaning Symbol Meaning

. . . OR Basic event LS Load-sharing
SB

Standby

. . . AND Resultant event
k/n

Voting OR
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Figure 1. System schematic of offshore wind turbine.
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Table 2. Parameters of basic events of fault tree.

No. Units Type MTBF (×104 h) Distribution

1, 2 Encoder of pitch motor Standby 56.869 Exponential
3, 4 Speed encoder Standby 38.625 Exponential
5, 6 Temperature sensor Standby 25.696 Exponential
7/8 Grid voltage/Battery Standby 35.215/21.651 Exponential
9, 10, 11 Limit switch 2/3 180.855 Weibull
12, 13, 14 Charging circuit 2/3 18.087 Exponential
15, 16, 17 Back power 2/3 17.52 Exponential
18/19 PLC/Safety controller Parallel 25.835 Exponential
20, 21 Signal monitoring Parallel 3.5339 Exponential
22 Speed sensor of the rotor 16.459 Exponential
23 Speed sensor of the generator Parallel 10.512 Exponential
24, 25 Hydraulic system Load sharing 3.5 Weibull
26, 27 Nacelle axial-flow fan Load sharing 17.52 Weibull
28 Temp. sensor of gearbox Series 48.48 Exponential
29/30 Cooling fan/Cooling pump Load sharing 108.405/61.946 Weibull
31 Temp. sensor of control system Series 10.512 Exponential
32, 34 Generator 4.5499 Weibull
33, 35 Frequency convertor Standby 0.601 Exponential
36, 37, 38 Anemometer Standby 16.637 Exponential
39, 40, 41 Wind vane Standby 4.2 Exponential
42, 43 Temp. sensor of nacelle Parallel 28.293 Exponential
44 Temp. sensor of genreator Series 48.18 Exponential
45, 46 Cooling fan of generator 86.724 Weibull
47 Cooling pump of generator Load sharing 61.946 Weibull

3. Methodology

With regard to the problems of component swapping within redundant systems, the related
methods in this section are proposed to perform the research mentioned in Section 1. Survival signature
is adopted to quantify system reliability when redundant components can be swapped upon failure.
The reliability importance indexes (MRI and JRI) are calculated using methods in Section 3.2.
Following this, the reliability functions of load-sharing redundant systems and standby redundant
systems are derived given in Sections 3.3 and 3.4, respectively.

3.1. Component Swapping in the Original System

In complex equipment, component redundancy is widely used to improve system reliability,
such as parallel redundancy, load-sharing redundancy, standby redundancy and k-out-of-n
redundancy. Once systems can not function due to the failures of critical components, shutdowns of
entire systems will bring huge economic losses to enterprises. To make failed systems return to
work quickly, failed components at a more critical position can be replaced with other functioning
components at a less critical position in the original system. As an example, Figure 4 depicts a
four-component system of two types. Components 1 and 2 are of the same Type 1, and components 3
and 4 are of the same Type 2. Component 1 is in a more important position than other components,
and failure of component 1 will cause the failure of the entire system. Therefore, the system reliability
will be improved a lot if component 1 fails and can be replaced by component 2 or components of the
same type in the original system.
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Figure 4. Illustration of component swapping.

Survival signature-based component swapping is the possibility to replace a failed component
by another component in the system which has not yet failed [11,19]. For a coherent system that
consists of m units of K ≥ 2 types, with mk units of type k ∈ {1, 2, · · · , K} and ∑K

k=1 mk = m. Let Φ(l)
(l = 1, 2, · · · , m) denote the probability that the system functions. If we assume that there are exactly l
units functioning, then the remaining (m− l) units do not function. xk = (xk

1, xk
2, · · · , xk

mk
) ∈ {0, 1}mk

is the state vector of units of type k, with xk
i = 1 if the kth units of type k function and xk

i = 0 if
not. The state vector x = (x1, x2, · · · , xK) ∈ {0, 1}m is introduced to represent the states of units
of the type k (∑mk

i=1 xk
i = lk). The system’s survival function is represented by Φ(l1, l2, · · · , lK) that

means the probability that the system functions in the condition that exactly lk of type k units function,
for lk = 0, 1, · · · , mk. For the system shown in Figure 4, the survival signature of the original system
without swapping Φ(l1, l2), and the system with swapping Φw(l1, l2) are presented in Table 3. It can
be noted that the values of Φ(1, 1) and Φ(1, 2) are changed from 1/2 to 1, which means the increase in
the probability of system’s reliability.

Using the failure times of components of different types and cumulative distribution function
(CDF) Fk(t), the system’s reliability can be calculated by

R(t) =
m1

∑
l1=0
· · ·

mK

∑
lK=0

[
Φ(l1, · · · , lK)

K

∏
k=1

((
mk
lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

)]
(1)

Table 3. Survival signature of the system in Figure 4 with and without swapping.

l1 l2 Φ(l1, l2) Φw(l1, l2)

0 0 0 0
0 1 0 0
0 2 0 0
1 0 0 0
1 1 1/2 1
1 2 1/2 1
2 0 1 1
2 1 1 1
2 2 1 1

For a situation that some components can be swapped upon the failure of a component, the system
structure function given the defined swap in place is represented as φw(x). Two swapping rules are
made in this study: (i) once a component fails another good component will take over its role in
the system; (ii) swaps of components take neglectable time and do not affect the functioning of the
component that changes its role in the system nor its remaining useful life [19]. Therefore, the survival
signature given the defined swapping regime in place can be expressed as follows

Φw(l1, · · · , lK) =

(
K

∏
k=1

(
mk
lk

)−1
)
× ∑

x∈Sl1,··· ,lK

φw(x) (2)
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Then the system reliability with the specified swapping regime in place Rw(t) can be obtained
as follows

Rw(t) =
m1

∑
l1=0
· · ·

mK

∑
lK=0

[
Φw(l1, · · · , lK)

K

∏
k=1

((
mk
lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

)]
(3)

where all swapping strategies are reflected in the survival signature, and effects of component
swapping on the system can be seen from the structure function.

The improvement of system reliability due to the swapping regime compared to the situation
without swaps is given from Equations (1) and (3)

∆Rs(t) =
m1

∑
l1=0
· · ·

mK

∑
lK=0

{
[Φw(l1, · · · , lK)−Φ(l1, · · · , lK)] ·

K

∏
k=1

((
mk
lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

)}
(4)

The example shown in Figure 4 is used to illustrate the effects of component swapping on system
reliability. Let CDFs of components of each type be F1(t) = 1− e−(t/3)4

and F2(t) = 1− e−(t/4)4
,

and the system reliability curves with and without swapping are shown in Figure 5. The results of this
figure clearly present that component swapping can greatly improve the reliability of the entire system.
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Figure 5. Reliability curves of the system considering swapping.

3.2. Reliability Importance Measure Of Components

3.2.1. Analytical Method for the Imprecision of Components MTBF

In engineering practice, the probabilistic behavior of complex equipment can not be fully
characterized due to the uncertainties of working conditions. This problem can be tackled by
implementing probabilistic methods, alike imprecise probability method [23]. Coolen et al. developed
a nonparametric predictive inference (NPI) based imprecise reliability analysis method using survival
signature [10]. In fact, global optimization procedures are adopted to obtain lower and upper bounds
for a complex system with multiple fuzzy variables [24,25].

Assume lower distribution functions (F) and upper distribution functions (F) are nondecreasing
functions mapping the real line R into [0,1] and F(x) ≤ F(x) for all real values x [26]. According to
the framework of a p-box [27], the lower and upper bounds of CDFs of the failure times of type k
component can be represented as Fk(t) and Fk(t), respectively. Let

[
(x̃k

i )
L, (x̃k

i )
U
]
(i = 1, 2, · · · , n) be

intervals of type k component. The kth value of the reliability function Rk is also an interval.
Coolen et al. presented nonparametric predictive inference (NPI) for system reliability using

survival signature in [10]. This approach can be used to calculate the lower and upper bounds of the
survival function for a system with K types of components. For k ∈ {1, 2, · · · , K}, let nk denote the
number of components of type k and let Ck(t) represent the number of components of type k that
function at time t. This study assumes that the failure ends the functioning of a component and it can
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not be repaired or replaced. Therefore, the lower and upper bounds of the survival function can be
expressed as followsRTs(t) = P(Ts > t) = ∑m1

l1=0 · · ·∑
mK
lk=0 Φ(l1, · · · , lK) ·∏K

k=1 D(Ck(t) = lk)

RTs(t) = P(Ts > t) = ∑m1
l1=0 · · ·∑

mK
lk=0 Φ(l1, · · · , lK) ·∏K

k=1 D(Ck(t) = lk)
(5)

where {
D(Ck(t) = lk) = P(Ck(t) ≤ lk)− P(Ck(t) ≤ lk − 1)

D(Ck(t) = lk) = P(Ck(t) ≤ lk)− P(Ck(t) ≤ lk − 1)
(6)

Taking the system presented in Figure 4 as example, let scale parameters of components be
uncertain (λ1 ∈ [0.3, 0.36] for type 1 and λ2 ∈ [0.2, 0.3] for type 2). Hence, it is known that F1(t|λ1) =

1− e−(0.3t)4
, F1(t|λ1) = 1− e−(0.36t)4

, F2(t|λ2) = 1− e−(t/5)4
, and F2(t|λ2) = 1− e−(0.3t)4

. The lower
and upper bounds of system reliability function becomeRTs(t) = ∑m1

l1=0 ∑m2
l2=0 Φ(l1, l2)∏2

k=1 (
mk
lk
)Fk(t|λk)

mk−lk [1− Fk(t|λk)]
lk

RTs(t) = ∑m1
l1=0 ∑m2

l2=0 Φ(l1, l2)∏2
k=1 (

mk
lk
)Fk(t|λk)

mk−lk
[
1− Fk(t|λk)

]lk (7)

Hence, the lower and upper bounds of system reliability of the example can be obtained using
Equations (7), which are shown in Figure 6.
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Figure 6. Lower and upper bounds of system reliability considering swapping.

3.2.2. Component Reliability Importance

In this paper, the reliability importance considering component swapping with the imprecise
probabilities are combined to explore the uncertainties of failure times on the reliability importance of
a component. For a single component i of type k, the reliability importance is the difference between
the probability that the system functions at time t given that component i functions at time t, and the
probability that the system functions at time t given that component i does not function at time t [15].
Therefore, the marginal reliability importance (MRI) of component i at time t considering component
swapping can be defined as

MRI(i; t) = P(Ts > t|Ti > t)− P(Ts > t|Ti < t) (8)

where P(Ts > t|Ti > t) and P(Ts > t|Ti < t) are conditional survival functions that can be easily
calculated by the corresponding survival signature.
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The imprecise reliability importance with considerations of the uncertainties of failure times is
studied. The imprecise failure probabilities of components are represented as distributional p-boxes
indicated with M : P ∈ M=

{
[λ1, λ1], [λ2, λ2], · · · , [λn, λn]

}
. Therefore, the lower and upper bounds of

marginal reliability importance can be calculated by{
MRI(i; t) = inf

P∈M MRI(i; t|P)
MRI(i; t) = sup

P∈M MRI(i; t|P)
(9)

where

MRI(i; t|P) =
m1

∑
l1=0
· · ·

mk−1

∑
lk=0
· · ·

mK

∑
lK=0

[
Φ̃w

1 (l1, · · · , lK)− Φ̃w
0 (l1, · · · , lK)

] K

∏
k=1

P{Ck(t) = lk} (10)

MRI(i; t|P) =
m1

∑
l1=0
· · ·

mk−1

∑
lk=0
· · ·

mK

∑
lK=0

[
Φ̃w

1 (l1, · · · , lK)− Φ̃w
0 (l1, · · · , lK)

] K

∏
k=1

P{Ck(t) = lk} (11)

3.2.3. Joint Reliability Importance

A new joint reliability importance measure is presented herein that is expressed as JRI.
For s-independent components, the JRI of two components i and j can be defined as

JRI(i, j; t) = h(1i, 1j, Rs(t))− h(1i, 0j, Rs(t))− h(0i, 1j, Rs(t)) + h(0i, 0j, Rs(t)) (12)

where Rs(t) is the system reliability at time t, and h(1i, 0j, Rs(t)) represents the system reliability with
component i working and component j failed. If component i and j are of same type k, Equation (12)
can be written as follows

JRI(i, j; t) =
m1

∑
l1=0
· · ·

mk−2

∑
lk=0
· · ·

mK

∑
lK=0

Φ̃w
JRI(l1, · · · , lK)

K

∏
k=1

P{Ck(t) = lk} (13)

where

Φ̃w
JRI(l1, · · · , lK) = Φ̃w

1,1(l1, · · · , lK)− Φ̃w
1,0(l1, · · · , lK)− Φ̃w

0,1(l1, · · · , lK) + Φ̃w
0,0(l1, · · · , lK) (14)

Generally, for a system with n independent components (c1, c2, · · · , cn), the JRI can be derived as

JRI(c1, · · · , cn) =h(11, 12, · · · , 1n, Rs(t))− h(11, 12, · · · , 0n, Rs(t))± · · ·
± h(01, 02, · · · , 1n, Rs(t))± h(01, 02, · · · , 0n, Rs(t)) (15)

where the sign before each function h follows the principles: (i) while number n is odd, the sign
before the function h is positive if the number of corresponding 1’s is odd, otherwise, it is negative;
(ii) while number n is even, the sign before the function h is positive if the number of corresponding
1’s is even, otherwise, it is negative; (iii) the sign of last term h(01, 02, · · · , 0n, Rs(t)) is negative if n is
odd, otherwise, it is positive [14].

The JRI is introduced to quantitatively measure the interaction of multiple components in a system
in contributing to system reliability. For any n components, JRI(n; t) ∈ [−1, 1], and in particular:
(a) JRI > 0 indicates that one component becomes more important when the other is functioning
(“complements”); (b) JRI < 0 indicates that one component becomes less important when the other is
functioning (“substitutes”); (c) JRI = 0 indicates that one component’s importance is unchanged by the
functioning of the other [13].



Appl. Sci. 2020, 10, 1432 10 of 23

3.3. Reliability of Load-Sharing Redundancy

The concept of load sharing was proposed to deal with the problem that most redundant
components are treated as parallel redundancy, which is not true in reality [21]. The quantification of
the system reliability of redundant components is determined based on the assumption that when one
redundant component fails, the failure rates of other components do not change during the mission.
However, this assumption is not correct in engineering practice. The remaining components will suffer
higher failure rates due to the increased share of the load during the mission, which will reduce the
system’s reliability.

Considering a two-component load-sharing system, it is reasonable to assume that the lifetime
of components follows a two-parameter Weibull distribution with scale parameter (λ) and shape
parameter (γ). The state transition diagram the system is depicted in Figure 7. The system reliability
function (Rls

sys(t)) can be derived as follows.

Rls
sys(t) = R1(t)R2(t) + Q1(t1)R2(t1)R

′′
2(t− t1) + Q2(t2)R1(t2)R

′′
1(t− t2) (16)

2

Load=L1

state 1 state 2 state 3

1

2

1 1

2

k1L1

k2L1

λ1

λ2

fails

L1
λ'1>λ1

fails

fails

Figure 7. Load-sharing with two redundant components (k1 + k2 = 1).

The first term of Equation (16) is the probability that component 1 and 2 complete their mission
from 0 to t successfully with pdf ’s f1(t) and f2(t), respectively. It can be expressed as

R1(t) · R2(t) = e−(λ1·t)γ1 · e−(λ2·t)γ2 (17)

The second term of Equation (16) is the probability that component 1 fails at t1 < t with pdf f1(T),
and component 2 functions until t1 with pdf f2(T) and then functions for the rest of the mission with
pdf f

′′
2 (T − t1). The second term of Equation (16) can be written as follows

Q1(t1)R2(t1)R
′′
2(t− t1) =

∫ t

0
γ1 · λγ1

1 · t
γ1−1
1 · e

−

(λ1·t1)
γ1+

λ
′
2

t−t1+
1

λ
′
2
·e(λ2 ·t1)

γ2/γ
′
2

γ
′
2


dt1 (18)

The third term of Equation (16) can also be obtained in the same way, as follows:

Q2(t2)R1(t2)R
′′
1(t− t2) =

∫ t

0
γ2 · λγ2

2 · t
γ2−1
2 · e

−

(λ2·t2)
γ2+

λ
′
1

t−t2+
1

λ
′
1
·e(λ1 ·t2)

γ1/γ
′
1

γ
′
1


dt2 (19)

The system reliability of load-sharing redundancy for a mission of duration t can be obtained by
substituting the pdf ’s involved into Equations (17)–(19) (t1, t2 ∈ [0, t]).

3.4. Reliability of Standby Redundancy

A two-component standby system succeeds in two conditions: (1) when the active component,
the sensing subsystem and the switch do not fail; (2) the active component fails before the end of the
mission, the sensing and switching subsystems do not fail, and the standby component not having
already failed succeeds for the remainder of the mission. The reliability block diagram of such a
standby system is given in Figure 8.
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1

2

Standby component

Active component

Input Output

Switching subsystem

Sensing subsystem

SE

Figure 8. Two-unit standby system with sensing and switching subsystems.

Assuming that the failures of different components and the failures due to different failure modes
are independent, the probability of the first condition is expressed mathematically by

Rsb
1 (t) = R1E(t) · RSE(t) · RSWO(t) (20)

where R1E(t) is the reliability of component 1 in the energized mode at time t during the whole mission,
RSE(t) means the reliability of the sensing subsystem at time t, and RSWO(t) represents the switch
does not fail open from 0 to t.

For the second condition, component 1 fails in a time interval (t1, t1 + ∆t1) before time t, and the
sensing subsystem does not fail by t1. The switching subsystem functions in the quiescent mode by t1,
and the switch successfully switches in the standby component in the energized mode with a one-cycle
operation, at which time the standby component does not fail by t1 in quiescent mode. Following this,
the standby component will function successfully for the remainder of the mission in the energized
mode. The switch does not fail open until the end of the mission. Therefore, the probability of the
second condition can be derived as follows

Rsb
2 (t) =

∫ t

t1=0
f1(t1) · RSE(t1) · RSWQ(t1) · RSWO(t1, t− t1) · RSWE(1 cycle) · R2Q(t1) · R2E(t1e, t− t1)dt1 (21)

where t1 is a variable quantity (0 ≤ t1 ≤ t).
Assuming that all components have constant failure rates and the lifetime of each component

follows an Exponential distribution. From the formula R2Q(t1) = R2E(t1e), taking the natural

logarithm of both sides of Equation e−λ2Qt1 = e−λ2Et1e , the equivalent time t1e =
λ2Qt1
λ2E

can be obtained.
Finally, the reliability of standby systems can be expressed as

Rsb
sys(t) =Rsb

1 (t) + Rsb
2 (t)

=e−(λ1+λSE+λSWO)t + λ1e−(λSWE+λSWOt+λ2Et)
∫ t

0
e−(λ1+λSE+λSWQ−λSWO+λ2Q−λ2E)t1 dt1 (22)

In addition, for a standby system with n identical components where one component is
functioning and (n − 1) components are in standby, the reliability of the standby system can be
calculated by

Rsb
sys(t) = P(N f ≤ n− 1) = e−λt

[
1 + λt +

(λt)2

2!
+ · · ·+ (λt)n−1

(n− 1)!

]
(23)

where N f is the number of components that fail.
If the lifetime of components in a standby system follows a two-parameter Weibull distribution

with parameters λ and γ, the equivalent time t1e =
1

λ2E

(
λ2Qt1

)γ2Q/γ2E and the ith component reliability

Ri(t) = e−(λit)γi can be obtained. The reliability formula of the standby system can also be derived by
the proposed method from Equations (20) and (21)
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Rsb
sys(t) =e−(λ1t)γ1 · e−(λSEt)γSE · e−(λSWOt)γSWO +

∫ t

0
λ1γ1(λ1t1)

γ1−1 · e−(λ1t1)
γ1 · e−(λSEt1)

γSE

· e−(λSWQt1)
γSWQ · e−(λSWOt)γSWO−(λSWOt1)

γSWO · e−(λSWE ·1)γSWE · e−(λ2Qt1)
γ2Q

· e−[λ2E(t1e+t−t1)]
γ2E−(λ2Et1e)

γ2E dt1 (24)

where λi and γi represent scale parameters and shape parameters of component i (i = 1, SE, SWO,
SWQ, SWE, 2Q and 2E).

4. Reliability Analysis of Redundant Systems

In this section, a survival signature-based system reliability model is established for the OWT.
Reliability analysis of the entire system with considerations of components swapping is conducted.
Calculations of multiple swapping cases are performed to explore the effects of component swapping
of different types on the system reliability.

The reliability block diagram of swapping components of three types is given in Figure 9.
Considering the subsystem in Figure 9, which has twelve components of three types (K = 3),
components 5, 6, 28, 31, 42, 43 and 44 are of type 1 (T1), components 29, 45 and 46 are of type 2
(T2), and components 30 and 47 are of type 3 (T3). Four swapping cases of the OWT system are
defined. The case without swapping is treated as case 0. In case 1, all components of three types can
be swapped, and swapping can only happen among the same type components. In cases 2, 3 and
4, only components of type 1, type 2, and type 3 can be swapped when needed to keep the system
functioning, respectively. It is very time-consuming and difficult to calculate the survival signature
of all cases. For this reason, an R package created by Aslett is used to obtain the survival signature
of each case in this study [28]. The survival signature of the subsystem with swapping components
is derived and presented in Table 4, where Φ0, Φw

1 , Φw
2 , Φw

3 and Φw
4 represent structure functions of

Case 0, Case 1, Case 2, Case 3, and Case 4, respectively.

T1 T1T1

T1

T1

T2

T2

T3

T1

T1

T2

T3

28

5

6

29

30

31

42

43

44

45

46

47

SB

Figure 9. Reliability block diagram of swapping components.

According to the approaches proposed in Section 3.1, the reliability function of the subsystem
shown in Figure 9 with component swapping is derived as follows

Rw
RS(t) =

m1=7

∑
l1=0

m2=3

∑
l2=0

m3=2

∑
l3=0

Φw
i (l1, l2, l3)

K=3

∏
k=1

(
mk
lk

)
[Fk(t)]

mk−lk [1− Fk(t)]
lk (25)

where i = 0, 1, 2, 3 and 4.
For load-sharing redundancy subsystems, alike events E5 and E6, the corresponding reliability

function can be obtained from Equation (16)

Rls
Ek
(t) =e−(λ1·t)γ1 · e−(λ2·t)γ2 +

∫ t

0
γ1λ

γ1
1 tγ1−1

1 · e
−

(λ1·t1)
γ1+

[
λ
′
2

(
t−t1+

1
λ
′
2
·e(λ2 ·t1)

γ2/γ
′
2

)]γ
′
2


dt1

+
∫ t

0
γ2λ

γ2
2 tγ2−1

2 · e
−

(λ2·t2)
γ2+

[
λ
′
1

(
t−t2+

1
λ
′
1
·e(λ1 ·t2)

γ1/γ
′
1

)]γ
′
1


dt2 (26)
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where k = 5, 6, λi and γi are scale and shape parameters of components taking full loads, respectively,
and λ

′
i and γ

′
i represent scale and shape parameters of components taking sharing loads, respectively

(i = 1, 2).

Table 4. Survival signature of the system in Figure 9 (rows with Φ(l1, l2, l3) = 0 are omitted).

l1 l2 l3 Φ0 Φw
1 Φw

2 Φw
3 Φw

4 l1 l2 l3 Φ0 Φw
1 Φw

2 Φw
3 Φw

4

5 0 2 4/21 1 1 4/21 4/21 6 2 2 4/7 1 1 4/7 4/7
5 1 1 2/21 1 1/2 4/21 4/21 6 3 0 4/7 1 1 4/7 4/7
5 1 2 4/21 1 1 4/21 4/21 6 3 1 4/7 1 1 4/7 4/7
5 2 0 8/63 1 2/3 4/21 8/63 6 3 2 4/7 1 1 4/7 4/7
5 2 1 10/63 1 5/6 4/21 4/21 7 0 2 1 1 1 1 1
5 2 2 4/21 1 1 4/21 4/21 7 1 1 1/2 1 1/2 1 1
5 3 0 4/21 1 1 4/21 4/21 7 1 2 1 1 1 1 1
5 3 1 4/21 1 1 4/21 4/21 7 2 0 2/3 1 2/3 1 2/3
5 3 2 4/21 1 1 4/21 4/21 7 2 1 5/6 1 5/6 1 1
6 0 2 4/7 1 1 4/7 4/7 7 2 2 1 1 1 1 1
6 1 1 2/7 1 1/2 4/7 4/7 7 3 0 1 1 1 1 1
6 1 2 4/7 1 1 4/7 4/7 7 3 1 1 1 1 1 1
6 2 0 8/21 1 2/3 4/7 8/21 7 3 2 1 1 1 1 1
6 2 1 10/21 1 5/6 4/7 4/7

For standby redundancy subsystems, alike events E11, E12, the corresponding reliability function
can be obtained from Equations (22) and (24)

Rsb
Ej
(t) = e−(λ1t)γ1 +

∫ t

0
λ1γ1(λ1u)γ1−1 · e−(λ1u)γ1 · e−(λ2Qu)γ2Q · e−[λ2E(t1e+t−u)]γ2E−(λ2Et1e)

γ2E du (27)

where λi and γi represent scale parameters and shape parameters of component i (i = 1, SE, 2Q and 2E).
Considering 2/3 redundancy subsystems, the system reliability is equal to the probability that

the number of working components is greater than or equal to 2, which can be expressed as follows

R2/3
Ek

(t) =
n=3

∑
r=2

(
n
r

)
[Rk(t)]

r [1− Rk(t)]
n−r (28)

where Rk(t) is the reliability of components of subsystem Ek at time t (k = 15, 16, 17).
According to the FT of redundant systems shown in Figures 2 and 3, the minimal cut set of

subsystems can obtained as follows:
T: {E1, E2, E3, E4, E5, E6, E7, E8, E9, E10, E11}
E1: {E11, E12, E13, E14, E15, E16, E17}
Therefore, the reliability of the redundant system of OWT can be obtained by

Rr
sys(t) = Rsb

E11
(t) · Rsb

E12
(t) · Rsb

E14
(t) ·

17

∏
i=15

R2/3
Ei

(t) ·
4

∏
j=2

Rpar
Ej

(t) ·
6

∏
k=5

Rls
Ek
(t) · Rsb

E8
(t) · Rser

E9
(t) · Rw

RS(t) (29)

Using the methods given above, the time-dependent reliability of redundant systems in Figure 3
can be obtained, and the reliability curves are shown in Figure 10. As it is shown in Figure 10, the dotted
line and the solid line represent system reliability with and without considerations of component
swapping, respectively. The system reliability considering component swapping is significantly larger
than that of the system without swapping. To measure the increase of system reliability, a function
∆Rsys(t) = Rr

sys(t) − Rsys(t) that is the difference of system reliability between two situations is
defined. Figure 11 presents the absolute increase in system reliability at a given time t. It can be
seen from Figure 11 that the absolute increase of system reliability (∆Rsys(t)) is increasing with the
increase of time t (T < 8800 h), and the absolute increase of system reliability will decrease when
time t > 8800 h. Therefore, the component swapping makes the greatest contribution to the reliability
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improvement of redundant systems of offshore wind turbine at t = 8800 h, which means that the
“optimal” performance will be obtained if swapping failed components is performed at time t = 8800 h.

Besides, to examine the system reliability with different swapping components, three swapping
cases are compared. In case 2, only Type 1 components are able to be swapped, in case 3, only Type 2
components can be swapped, and in case 4, only Type 3 components can be swapped. The system
reliability curves are given in Figure 12. Clearly, Case 2 provides the best improvement of system
reliability than others, which is mainly because Type 1 components are at critical locations in the
original system, and the effects of component swapping of Case 3 and 4 on system reliability are
the same. Because the levels of redundancy of Type 2 and 3 components are similar. Therefore,
the positions of temperature sensors of Type 1 are more important than that of the cooling fan of Type
2 and the cooling pump of Type 3. The positions of temperature sensors should be paid more attention
and be allocated more resources (inspections, spare components, etc.) than other components.
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Figure 10. System reliability with all possible swapping.
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Figure 11. Improvement of system reliability with component swapping.
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Figure 12. System reliability with different swapping strategies.
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5. Component Reliability Importance

For critical components that can be swapped, the reliability importance of a specific component
or multiple components needs to be measured in the way described in Section 3.2. Components are
defined based on their locations in the original system. The results of reliability importance analysis can
help rank critical components, and allocate more resources (reliability and maintenance) to weakness
than others.

5.1. Marginal Reliability Importance

For the system shown in Figure 9, there are multiple components of the same type in the same
location. In this study, components 5 and 28 of Type 1, components 29 and 45 of Type 2, and components
30 and 47 of Type 3 are taken as research objects. The Φ̃1(l1, l2, l3) and Φ̃0(l1, l2, l3) of each component
without and with swapping are given in Tables A1–A3 in Appendix A. MRI analysis of components
5, 28, 29, 45, 30, and 47 with and without swapping is performed, the results of which are shown
in Figures 13–15. The findings show that MRIs of components 5 and 28 of Type 1 are much larger
than that of components 29, 45 of Type 2 and components 30 and 47 of Type 3 by comparisons of
three figures. In Figure 13, the MRI of component 5 considering component swapping (MRIw(5; t)) is
larger than that of component 5 without considering component swapping (MRI(5; t)), which means
that considering component swapping can increase the MRI of component 5. The MRI of component
28 considering component swapping (MRIw(28; t)) is much less than that of component 28 without
considering component swapping (MRI(28; t)), which indicates that component swapping can reduce
the MRI of component 28.

The results of Figure 14 show that the MRI of component 29 without considering component
swapping (MRI(29; t)) is much larger than that of the rest cases. In the inner figure of Figure 14,
the MRI of component 45 without swapping (MRI(45; t)) is the largest than other cases, and the
MRIs of components 45 and 29 with swapping (MRIw(45; t) and MRIw(29; t)) are second and third.
Therefore, considering component swapping can reduce the MRI of components 29 and 45 of Type 2.
The same results also occur for components 30 and 47. As shown in Figure 15, the MRI of component
30 without swapping (MRI(30; t)) is the largest than other cases, and the MRI of component 30 with
swapping (MRIw(30; t)) is larger than that of component 47 without and with swapping (MRI(47; t)
and MRIw(47; t)). Component swapping can significantly reduce the MRI of components 30 and 47 of
Type 3.

M
R

I(
t)

Time (year)
0 5 10 15 20

0

0.2

0.4

0.6

0.8

1

MRI(28;t)

MRIw(28;t)

MRI(5;t)

MRI
w
(5;t)

Figure 13. MRI of components (5 and 28) with and without swapping.
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Figure 14. MRI of components (29 and 45) with and without swapping.
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Figure 15. MRI of components (30 and 47) with and without swapping.

The failure rates of swapping components are uncertain due to different working conditions and
random loads. In addition, manufacturers of wind turbines like to apply components from different
manufacturers in wind turbines to evaluate their reliability levels and reduce the investment risk.
In this paper, the influences of uncertainties of failure rates on the MRI of swapping components
are explored. Let the MTBF of Type 1 components be in a interval [25.696, 48.18]× 104 h, MTBF of
Type 2 components be in a interval [86.724, 108.405] × 104 h, and MTBF of Type 3 components be
in a interval [61.946, 81.472]× 104 h. The lower and upper bounds of components MTBF reflect the
best and the worst performance of the components, respectively. Using the proposed method in
Section 3.2, lower and upper MRI of each swapping components can be obtained. Figure 16 presents
the lower and upper MRI of components 5 and 28 with and without considering component swapping.
The imprecision of components’ MTBF is translated into the imprecision of MRI of components 5 and
28. The imprecision of components’ MTBF greatly affects the MRI of component 28. Lower and upper
MRI of components 29 and 45 of Type 2, and components 30 and 47 of Type 3 are given in Figure 17
and Figure 18, respectively. It can be seen from the figures that the uncertainties of components’ MRI
are increasing with the increase of time t. Moreover, the MRI of components without swapping is still
larger than that of components with swapping.



Appl. Sci. 2020, 10, 1432 17 of 23

Time (year)

M
R

I(
t)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

MRI(5;t)

MRI(5;t)

MRI
w
(5;t)

MRI(28;t)

MRI(28;t)

MRI
w
(28;t)

MRI
w
(28;t)

MRI
w
(5;t)

Figure 16. Lower and upper MRI of components 5 and 28.
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Figure 17. Lower and upper MRI of components 29 and 45.
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Figure 18. Lower and upper MRI of components 30 and 47.

5.2. Joint Reliability Importance

Since components of the same type are dependent, it is necessary to perform the JRI analysis of
multiple components with and without considerations of component swapping. Survival signatures
of given states of components are shown in Tables A4–A6 in Appendix A. The lower and upper
JRI of components 5 and 28 of Type 1, components 29 and 45 of Type 2 and components 30 and 47
of Type 3 are shown in Figures 19–21, respectively. The results show that the fuzzy failure rates
cause the uncertainties of JRI of two components. The influences of imprecise failure rates on the
JRI of components 5 and 28 is larger than that of components 29 and 45, and components 30 and
47. In Figure 19, the JRI of components 5 and 28 with considerations of components swapping is
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less than zero, which means that one component becomes less important while the other component
is functioning (“substitutes”) [19]. However, the MRI of components 5 and 28 without swapping
(MRI(5, 28) and MRI(5, 28)) is greater than zero. The relationship between components 5 and 28 is
changed from “complements” to “substitutes” if component swapping is considered. For the cases
that the JRI of components is greater than zero in Figures 20 and 21, one component becomes more
important while the other component is functioning (“complements”). The results of Figure 20 indicate
that imprecise failure rates have little effects on the JRI of components 29 and 45 without swapping
(JRI(29, 45) and JRI(29, 45)). The JRI of components 30 and 47 with and without swapping are the
same. This is because only two components of Type 3 are available, and the structure function of the
system in Figure 9 without and with swapping does not change.
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Figure 19. Lower and upper JRI of components 5 and 28.
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Figure 20. Lower and upper JRI of components 29 and 45.
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Figure 21. Lower and upper JRI of components 30 and 47.
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6. Conclusions

In this paper, the reliability of redundant systems of offshore wind turbines considering
component swapping is assessed. Survival signature-based component swapping is introduced
to express the new structure-function of redundant systems after swapping. FT based reliability model
considering component swapping is proposed to obtain the realistic reliability assessment of redundant
systems. Moreover, both marginal reliability importance index and joint reliability importance index of
critical components with and without swapping are calculated to explore the influences of component
swapping on component reliability importance and rank the importance of individual components.
The effects of the imprecision of failure rates on component reliability importance are also studied.

Considering component swapping can significantly improve system reliability, which is shown in
Figure 10. Furthermore, as shown in Figure 11, the improvement (∆Rsys(t)) of system reliability is
increasing first and then decreasing with the increase of time t. The ∆Rsys(t) obtains the maximum
value (0.0551) at time t = 8800 h. The influences of different swapping components on system
reliability are explored, and the findings show that swapping components of Type 1 (the temperature
sensor) is the “best” option of swapping strategies, which means that the location of components of
Type 1 is more important than that of other types (the cooling fan and the cooling pump). Therefore,
components of Type 1 should be allocated more resources for repair, maintenance and inspection than
other components.

To quantify the importance degree of critical components, the marginal reliability importance
measure and joint reliability importance measure without and with swapping are performed.
The findings show that considering component swapping decreases component reliability importance
(MRI and JRI). The importance degrees of individual and a couple of components are ranked to help
conduct an optimal allocation of resources for operation and maintenance. The ranks of the MRIs
of individual components without swapping are MRI(28;t) > MRI(5;t) > MRI(30;t) > MRI(29;t) >
MRI(45;t) > MRI(47;t). The ranks of the JRIs of components without and with swapping are the same
JRI(w)(5, 28; t) > JRI(w)(29, 45; t) > JRI(w)(30, 47; t). The lower and upper bounds of MRI and JRI of
components at a given time t are obtained. The results indicate that the proposed method is a practical
and efficient method to perform reliability analysis of redundant systems considering component
swapping and examine component reliability importance.

In future work, we intend to establish a reliability optimization model considering constraints of
the number, cost, weight, and volume of redundant components and explore the optimal swapping
strategy for the improvement of system reliability of offshore wind turbines.
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Abbreviations

The following abbreviations are used in this manuscript:

SWO switch does not fail open
SWQ switch does not fail in the quiescent mode
SE sensing subsystem
1E component 1 in the energized mode
SWC switch does not fail closed
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SWE switching subsystem in the energized mode
2Q component 2 in the quiescent mode
2E component 2 in the energized mode

Nomenclature

f1(T) pdf of component 1 with parameters λ1 and γ1 when it carries the load k1L
f
′
1(T) pdf of component 1 with parameters λ

′
1 and γ

′
1 when it carries full load L

Q1(t1) probability of component 1 fails at time t1
R
′′
1(t− t2) conditional reliability function of component 1 after component 2 fails at time t2

MRI(i; t) MRI of component i without swapping at time t
MRIw(i; t) MRI of component i with swapping at time t
f2(T) pdf of component 2 with parameters λ1 and γ2 when it carries the load k2L
f
′
2(T) pdf of component 2 with parameters λ

′
2 and γ

′
2 when it carries full load L

Q2(t2) probability of component 2 fails at time t2

R
′′
2(t− t1) conditional reliability function of component 2 after component 1 fails at time t1

JRI(i, j; t) JRI of components i and j without swapping at time t
JRIw(i, j; t) JRI of components i and j with swapping at time t

Appendix A

Table A1. Φ̃1 and Φ̃0 for components 5 and 28 without and with swapping (rows with Φ̃(l1, l2, l3) = 0
are omitted).

Without Swapping With Swapping Without Swapping With Swapping
l1 l2 l3 Φ̃5

1(l1, l2, l3) Φ̃5
0(l1, l2, l3) Φ̃5

1(l1, l2, l3) Φ̃5
0(l1, l2, l3) Φ̃28

1 (l1, l2, l3) Φ̃28
0 (l1, l2, l3) Φ̃28

1 (l1, l2, l3) Φ̃28
0 (l1, l2, l3)

4 0 2 2/15 0 1 0 4/15 0 4/15 0
4 1 1 1/15 0 1/2 0 2/15 0 2/15 0
4 1 2 2/15 0 1 0 4/15 0 4/15 0
4 2 0 4/45 0 2/3 0 8/45 0 8/45 0
4 2 1 5/45 0 5/6 0 2/9 0 2/9 0
4 2 2 2/15 0 1 0 4/15 0 4/15 0
4 3 0 2/15 0 1 0 4/15 0 4/15 0
4 3 1 2/15 0 1 0 4/15 0 4/15 0
4 3 2 2/15 0 1 0 4/15 0 4/15 0
5 0 2 1/2 1/3 1 1 2/3 0 2/3 4/15
5 1 1 1/4 1/6 1/2 1/2 1/3 0 1/3 2/15
5 1 2 1/2 1/3 1 1 2/3 0 2/3 4/15
5 2 0 1/3 1/6 2/3 2/3 4/9 0 4/9 8/45
5 2 1 5/12 5/18 5/6 5/6 5/9 0 5/9 2/9
5 2 2 1/2 1/3 1 1 2/3 0 2/3 4/15
5 3 0 1/2 1/3 1 1 2/3 0 2/3 4/15
5 3 1 1/2 1/3 1 1 2/3 0 2/3 4/15
5 3 2 1/2 1/3 1 1 2/3 0 2/3 4/15
6 0 2 1 1 1 1 1 0 1 2/3
6 1 1 1/2 1/2 1/2 1/2 1/2 0 1/2 1/3
6 1 2 1 1 1 1 1 0 1 2/3
6 2 0 2/3 2/3 2/3 2/3 2/3 0 2/3 4/9
6 2 1 5/6 5/6 5/6 5/6 5/6 0 5/6 5/9
6 2 2 1 1 1 1 1 0 1 2/3
6 3 0 1 1 1 1 1 0 1 2/3
6 3 1 1 1 1 1 1 0 1 2/3
6 3 2 1 1 1 1 1 0 1 2/3
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Table A2. Φ̃1 and Φ̃0 for components 29 and 45 without and with swapping (rows with Φ̃(l1, l2, l3) = 0
are omitted).

Without Swapping With Swapping Without Swapping With Swapping
l1 l2 l3 Φ̃29

1 (l1, l2, l3) Φ̃29
0 (l1, l2, l3) Φ̃29

1 (l1, l2, l3) Φ̃29
0 (l1, l2, l3) Φ̃45

1 (l1, l2, l3) Φ̃45
0 (l1, l2, l3) Φ̃45

1 (l1, l2, l3) Φ̃45
0 (l1, l2, l3)

5 0 1 2/21 0 2/21 0 2/21 0 2/21 0
5 0 2 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
5 1 0 4/21 0 4/21 0 2/21 0 2/21 0
5 1 1 4/21 2/21 4/21 4/21 1/7 2/21 1/7 1/7
5 1 2 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
5 2 0 4/21 0 4/21 4/21 4/21 4/21 4/21 4/21
5 2 1 4/21 2/21 4/21 4/21 4/21 4/21 4/21 4/21
5 2 2 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
6 0 2 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
6 1 1 4/7 2/7 4/7 4/7 3/7 2/7 4/7 3/7
6 1 2 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
6 2 0 4/7 0 4/7 4/7 4/7 4/7 4/7 4/7
6 2 1 4/7 2/7 4/7 4/7 4/7 4/7 4/7 4/7
6 2 2 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
7 0 2 1 1 1 1 1 1 1 1
7 1 1 1 1/2 1 1 3/4 1/2 3/4 3/4
7 1 2 1 1 1 1 1 1 1 1
7 2 0 1 0 1 1 1 1 1 1
7 2 1 1 1/2 1 1 1 1 1 1
7 2 2 1 1 1 1 1 1 1 1

Table A3. Φ̃1 and Φ̃0 for components 30 and 47 without and with swapping (rows with Φ̃(l1, l2, l3) = 0
are omitted).

Without Swapping With Swapping Without Swapping With Swapping
l1 l2 l3 Φ̃30

1 (l1, l2, l3) Φ̃30
0 (l1, l2, l3) Φ̃30

1 (l1, l2, l3) Φ̃30
0 (l1, l2, l3) Φ̃47

1 (l1, l2, l3) Φ̃47
0 (l1, l2, l3) Φ̃47

1 (l1, l2, l3) Φ̃47
0 (l1, l2, l3)

5 1 1 4/21 4/63 4/21 4/21 4/21 8/63 4/21 4/21
5 2 0 4/21 8/63 4/21 8/63 8/63 8/63 8/63 8/63
5 2 1 1 8/63 4/21 4/21 4/21 4/21 4/21 4/21
5 3 0 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
5 3 1 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
6 1 1 4/7 4/21 4/7 4/7 4/7 8/21 4/7 4/7
6 2 0 4/7 8/21 4/7 8/21 4/7 8/21 4/7 8/21
6 2 1 4/7 8/21 4/7 4/7 4/7 4/7 4/7 4/7
6 3 0 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
6 3 1 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
7 1 1 1 1/3 1 1 1 2/3 1 1
7 2 0 1 2/3 1 2/3 2/3 2/3 2/3 2/3
7 2 1 1 2/3 1 1 1 1 1 1
7 3 0 1 1 1 1 1 1 1 1
7 3 1 1 1 1 1 1 1 1 1

Table A4. Survival signatures of given states of components 5 and 28 (rows with Φ̃i,j = 0 are omitted).

Without Swapping (JRI(5, 28)) With Swapping (JRI(5, 28))
l1 l2 l3 Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3) Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3)

3 0 2 1/5 0 0 0 0 0 0 0
3 1 1 1/10 0 0 0 1/10 0 0 0
3 1 2 1/5 0 0 0 1/5 0 0 0
3 2 0 2/15 0 0 0 2/15 0 0 0
3 2 1 1/6 0 0 0 1/6 0 0 0
3 2 2 1/5 0 0 0 1/5 0 0 0
3 3 0 1/5 0 0 0 1/5 0 0 0
3 3 1 1/5 0 0 0 1/5 0 0 0
3 3 2 1/5 0 0 0 1/5 0 0 0
4 0 2 3/5 0 2/5 0 3/5 3/5 3/5 0
4 1 1 3/10 0 1/5 0 3/10 1/10 3/10 0
4 1 2 3/5 0 2/5 0 3/5 3/5 3/5 0
4 2 0 2/5 0 4/15 0 2/5 2/5 2/5 0
4 2 1 1/2 0 1/3 0 1/2 1/2 1/2 0
4 2 2 3/5 0 2/5 0 3/5 3/5 3/5 0
4 3 0 3/5 0 2/5 0 3/5 3/5 3/5 0
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Table A4. Cont.

Without Swapping (JRI(5, 28)) With Swapping (JRI(5, 28))
l1 l2 l3 Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3) Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3)

4 3 1 3/5 0 2/5 0 3/5 3/5 3/5 0
4 3 2 3/5 0 2/5 0 3/5 3/5 3/5 0
5 0 2 1 0 1 0 1 1 1 1
5 1 1 1/2 0 1/2 0 1/2 1/2 1/2 1/2
5 1 2 1 0 1 0 1 1 1 1
5 2 0 2/3 0 2/3 0 2/3 2/3 2/3 2/3
5 2 1 5/6 0 5/6 0 5/6 5/6 5/6 5/6
5 2 2 1 0 1 0 1 1 1 1
5 3 0 1 0 1 0 1 1 1 1
5 3 1 1 0 1 0 1 1 1 1
5 3 2 1 0 1 0 1 1 1 1

Table A5. Survival signatures of given states of components 29 and 45 (rows with Φ̃i,j = 0 are omitted).

Without Swapping (JRI(29, 45)) With Swapping (JRI(29, 45))
l1 l2 l3 Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3) Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3)

5 0 2 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
5 1 0 4/21 4/21 0 0 4/21 4/21 4/21 0
5 1 1 4/21 4/21 2/21 2/21 4/21 4/21 4/21 4/21
5 1 2 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
6 0 0 4/7 0 0 0 4/7 0 0 0
6 0 1 4/7 2/7 2/7 0 4/7 2/7 2/7 0
6 0 2 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
6 1 0 4/7 4/7 0 0 4/7 4/7 4/7 0
6 1 1 4/7 4/7 2/7 2/7 4/7 4/7 2/7 4/7
6 1 2 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
7 0 0 1 0 0 0 1 0 0 0
7 0 1 1 1/2 1/2 0 1 1/2 1/2 0
7 0 2 1 1 1 1 1 1 1 1
7 1 0 1 1 0 0 1 1 1 0
7 1 1 1 1 1/2 1/2 1 1 1 1
7 1 2 1 1 1 1 1 1 1 1

Table A6. Survival signatures of given states of components 30 and 47 (rows with Φ̃i,j = 0 are omitted).

Without Swapping (JRI(30, 47)) With Swapping (JRI(30, 47))
l1 l2 l3 Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3) Φ̃1,1(l1, l2, l3) Φ̃1,0(l1, l2, l3) Φ̃0,1(l1, l2, l3) Φ̃0,0(l1, l2, l3)

5 0 0 4/21 0 0 0 4/21 0 0 0
5 1 0 4/21 8/63 4/63 0 4/21 8/63 4/63 0
5 2 0 4/21 4/21 8/63 8/63 4/21 4/21 8/63 8/63
5 3 0 4/21 4/21 4/21 4/21 4/21 4/21 4/21 4/21
6 0 0 4/7 0 0 0 4/7 0 0 0
6 1 0 4/7 8/21 4/21 0 4/7 8/21 4/21 0
6 2 0 4/7 4/7 8/21 8/21 4/7 4/7 8/21 8/21
6 3 0 4/7 4/7 4/7 4/7 4/7 4/7 4/7 4/7
7 0 0 1 0 0 0 1 0 0 0
7 1 0 1 2/3 1/3 0 1 2/3 1/3 0
7 2 0 1 1 2/3 2/3 1 1 2/3 2/3
7 3 0 1 1 1 1 1 1 1 1
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