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Featured Application: In this study, firstly, we proposed a novel modelling methodology for
metal-foam materials in low porosity, which can simulate the actual geometry simply and closely.
Moreover, to quantify the uncertainty of the metal-foam structure in the engineering heat transfer
system, we proposed a novel multi-level optimization-based parameter identification method
using a trigonometric series surrogate model and an unbiased estimation method. The proposed
method provides an effective quantification for practical engineering problems, especially in the
case without sufficient measurements.

Abstract: Metal-foam materials have been applied in many engineering fields in virtue of its high
specific strength and desirable of thermodynamic properties. However, due to the inherent uncertainty
of its attribute parameters, reliable analysis results are often ambiguous to obtain accurately. To
overcome this drawback, this paper proposes a novel interval parameter identification method.
Firstly, a novel modelling methodology is proposed to simulate the geometry of engineering metal
foams. Subsequently, the concept of intervals is introduced to represent the uncertainty relationship
between variables and responses in heat transfer systems. To improve computational efficiency, a
novel augmented trigonometric series surrogate model is constructed. Moreover, unbiased estimation
methods based on different probability distributions are presented to describe system measurement
intervals. Then, a multi-level optimization-based identification strategy is proposed to seek the
parameter interval efficiently. Eventually, an engineering heat transfer system is given to verify
the feasibility of the proposed parameter identification method. This method can rapidly identify
the unknown parameters of the system. The identification results demonstrate that this interval
parameter identification method can quantify the uncertainty of a metal-foam structure in engineering
heat transfer systems efficiently, especially for the actual case without sufficient measurements.

Keywords: metal-foam; interval theory; surrogate model; parameter identification strategy; unbiased
estimation; heat transfer system

1. Introduction

In the past decades, metal-foam materials have attracted extensive attention due to its lightweight,
high specific stiffness, favorable thermodynamic properties, and good energy absorption capacity,
which are widely applied to various engineering fields, such as aeronautics, robotics, and biomedical
engineering. However, as a typical porous material, the specific mechanical property can not be
described accurately, which remains an issue for the research.

At present, the research on the structure of porous materials has made great achievements.
Many researchers have attempted to predict the mechanical properties of this material through the
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structure of the periodic cells [1–3]. For instance, Gibson et al. [4] analyzed the physical mechanisms of
the homogeneous deformation of the three-dimensional cellular foam structure. Demiray et al. [5]
investigated the overall yield behavior of the three-dimensional model foam using the numerical
homogenization method. Liu et al. [6] investigated the failure modes of the three-dimensional porous
structure with the simplified model. Furthermore, with the improvement of X-ray technology, the
method of a computerized tomography scan was adopted to research the internal microstructure in
metal foams [7–9]. Ramirez et al. [10] looked at the elastoplastic deformation of open-cell foams with
micro-CT, which showed better consistency agreement with experimental results. Islam et al. [11]
simulated the dynamic deformation of closed-cell foams structure by using the technology of X-ray
tomography. Sharma et al. [12] adopted CT scan technology to create a volume model and conducted
corresponding experimental and numerical studies. Additionally, compared with periodic cells and
CT scans, the Voronoi method was widely used to describe the random and complex mesostructure
of the porous material factually [13–15]. Zhang et al. [16] used the Voronoi method to construct the
model of the open aluminum foam material and performed the study of a hypervelocity impact. In the
research of Zhang et al. [17], various numerical simulations were carried out to study the mechanical
properties of Voronoi models. Moreover, Skibinski et al. [18] modeled the porous structure with the
Laguerre–Voronoi Tessellations method and researched the influence of various geometric parameters
on the effective thermal conductivity.

However, although the periodic unit cells approach is relatively accurate in describing the
dependence of a single cell transformation characteristic on porosity, actual mechanical properties
are not well known when the complex and stochastic morphology was considered. Meanwhile, the
CT scan technology requires enormous computational resources and computational time to achieve
satisfactory results, which is not realistic for extensive engineering calculations. Besides, for the
method of Voronoi tessellation, plenty of previous studies have adopted it to describe the stochastic
characteristics of the real metal-foam structure. Nevertheless, most of the implementation algorithms
require a large amount of computation and ignore the randomness of the wall thickness [19–21].
Additionally, as a polycrystalline structure composed of an enormous number of cells, its properties
are not determined by the feature of a single cell but by the connectivity and interaction between cells.
Hence, the mechanical properties are often uncertain, coupled with the complicated external factors,
uncertainties inevitably exist in the heat transfer system of the metal-foam structure.

For the practical engineering system, the process of parameter identification is considered to be
more necessary to quantify these uncertainties, which has been extensively researched [22–25]. These
methods are mainly divided into two types: probabilistic and non-probabilistic. For the method of
probabilistic, Furukawa et al. [26] proposed a methodology to identify defects based on the theory
of random probability. Wan et al. [27] adopted the Bayesian approach coupled with the Gaussian
process model to quantify the uncertainty parameter in the stochastic problem. In the research of
Wang et al. [28], a novel identification method for a steady-state heat transfer problem based on fuzzy
uncertainty was presented. To the present, probabilistic-based parameter identification methods have
been researched widely. However, a serious problem needs to be noticed, that is, the premise of
applying these methods is that the probability distribution function is known, which is difficult to
obtain accurately for the practical engineering systems.

In recent years, the non-probabilistic method based on interval theory has been proposed to describe
the uncertainty [29–32], which avoids the calculation of the probability density function and only needs
the lower bound (LB) and upper bound (UB) of the sample interval. Khodaparast et al. [33] presented a
novel parameter identification method for structure system with the technology of sensitivity analysis
of the Kriging meta-model. To avoid the effects of interval expansion, Fang et al. [34] put forward an
improved parameter identification method by modifying the response surface model. Guo et al. [35,36]
studied polynomial response surface and Radial Basis Function neural networks model, respectively,
and proposed a novel interval parameter identification strategy. Besides, Wang et al. [37] constructed
an interval identification method for heat transfer problems based on the nested-loop strategy and
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chaos expansion. In the research of Wang et al. [38], an augmented Fourier polynomial surrogate model
was proposed and applied to the parameter identification of structural systems with novel optimization
strategy. Although the method based on interval theory has received extensive attention and research,
some issues remain. For instance, the computational cost of the system’s original implicit-based model
is immeasurable in practical engineering systems which require a simple and efficient surrogate model.
In addition, most of the identification strategies adopted in the above study are too complicated
and cannot be effectively applied to the interval problem well. Additionally, for the evaluation of
measurement intervals, the traditional extremum method may cause these intervals biased.

Hence, firstly, this paper presents a novel modelling methodology based on the Voronoi tessellation
to simulate the geometry concisely and factually for low porosity metal-foam materials. Additionally,
for the uncertainty of parameters in the heat transfer problem, an improved interval theory-based
parameter identification strategy is designed, which adopts the novel augmented trigonometric series
polynomial model (ATP) and an unbiased interval estimation method. Eventually, an engineering heat
transfer system is provided to verify the feasibility of the proposed method.

2. Model Structures

2.1. Generation of a Closed-Cell Foam Structure

To simulate the realistic pore geometry effectively, a novel Voronoi-based modelling methodology
was described hereinafter for the closed-cell metal-foam materials with low porosity. The Voronoi
tessellation is a finite partition method that divides a space into n independent regions with n separate
nucleation points. If P =

{
p1, p2, · · ·, pn

}
is a set of n nucleation points in space Xm, the Voronoi region

Ri can be defined as
Ri =

{
x ∈ X

∣∣∣d(x, pi) ≤ d(x, pj) f orall j , i
}

(1)

where d(·, ·) denotes the normal Euclidean distance. For each nucleation point, there is a corresponding
region consisting of a specific subset, which satisfies that all the points in the subset are closer to that
nucleation point than to any other.

The metal-foam model can be created in the following steps, randomly generate nucleation
points, Voronoi tessellation, spheres packing, randomly define boundary thickness, and generate
metal-foam model.

The first is the random generation of nucleation points, which largely determines the location
and size of the pores. Here, the perturbation nucleation point method is adopted to describe the
randomness of the pores. The specific expressions are as follows.

xi = xoi + norm(0, k)
yi = yoi + norm(0, k) , i = 1, 2, ..., n
zi = zoi + norm(0, k)

(2)

where
{
x, y, z

}
are the location of nucleation points, and the set of

{
xo, yo, zo

}
are the original points that

uniformly distributed. The symbol of norm(0, k) denotes a Gaussian random distribution with a mean
of 0 and a standard deviation of k, where the value of k determines the perturbation degree of the new
nucleation points distribution.

Subsequently, the Voronoi tessellation method is applied to divide a cube space into multiple
convex polyhedra with the random nucleation points generated above. The number of polyhedra
depends on the number of these nucleation points.

Then, to create the closed-cell pore structure, the algorithm of spheres random packing is proposed.
The algorithm starts with searching for a maximum volume sphere in each convex polyhedron and
randomly defines the distance between the spheres. If the volume of these spheres does not meet the
pre-set porosity requirements, the procedure will continue the search of maximum volume spheres in
the remaining space one by one, until the requirements are met. Moreover, the randomness of the
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boundary thickness between pores is taken into account in the searching process of spheres. Meanwhile,
for convex polyhedra on boundary surfaces, the boundary constraint is removed to search the larger
part of the sphere to simulate the characteristics of the surface pores.

Eventually, the Boolean operation is employed to subtract the resulting three-dimensional (3D)
solid pores from the solid cube. Thus, the metal foam structure can be created effectively, which
consists of multiple random pores.

In the proposed approach, the Voronoi structure and the packed spheres were generated in
MATLAB (R2016b, MathWorks, USA) by utilizing the algorithm described above. Then, the 3D
metal-foam solid model was created in UG software with the automation procedure, which was
developed based on the C/C++ language and UG secondary development technology. The basic steps
of constructing the 3D metal-foam model are presented in Figures 1 and 2, which can provide a simple
and effective method for practical engineering.
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2.2. Effective Thermal Conductivity of the Foam Structure

Similar to the definition of the solid material conductivity, a steady-state heat transfer equation of
metal-foam materials can be conducted. Hence, the thermal conductivity of metal-foam materials can
be defined as

K f =
q

∆T/H
(3)

where q is the heat flux, ∆T represents the temperature difference of the measured surface, and H
denotes the thickness of the sample.
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In order to predict the thermal conductivity of closed-cell metal-foams, a wide variety of theoretical
modes have been developed [39–41]. For instance, the simplest models, the Series-Parallel and the
Parallel-Series models were constructed with the assumption of a cubical geometry. For particles of
various shapes, the Bruggemann model was presented for this particular case. Moreover, the empirical
model of scaling relation was proposed for metal-foams with a fitting parameter.

Series-Parallel model:

K = Ks(1− P2/3) +
Ks · P2/3

Ka + (Ks −Ka)P1/3
(4)

Parallel-Series model:

K = Ks ·
Ks − (Ks −Ka)P2/3

Ks − (Ks −Ka)(P2/3 − P)
(5)

Bruggemann model:

1− P =
( Ka −K

Ka −Ks

)
·

(Ks

K

)1/3
(6)

Scaling relation model:
K = Ks · (1− P)n, n ∈ [1.65, 1.85] (7)

where K is the overall conductivity of the metal-foam, Ks and Ka stand for the conductivity of the metal
and air, respectively, and P denotes the porosity of the foam.

Apart from the above theoretical prediction models, E. Solórzano [40] gave the experimental data
of the thermal conductivity of closed-cell AlSi7 foams with porosities between 0.5 and 0.8, which was
shown in Figure 3.
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Figure 3. Models’ predictions and measurement and simulation value of thermal conductivity of
metal-foam with different porosity.

The MSC.Patran is employed to investigate the thermal conductivity of closed-cell metal-foam
obtained by the methodology in Section 2.1. The conductivity of metal and air is 167 W/(m·K) and
0.025 W/(m·K), respectively. The Figure 3 shows the mismatch between the simulation result and
the experimental data and the predicted value of models. Evidently, the simulation result showed
good agreement with thermal conductivity values obtained by the literature and the prediction model.
Furthermore, according to the growth of porosity, the thermal conductivity of metal-foam decreases,
which further demonstrates the proposed modelling methodology of metal-foam structure can simulate
the realistic pore geometry effectively, especially for the property of thermodynamic.
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3. Theory Preparation

3.1. Thermodynamics Computational Model with Uncertainty

The governing equation of steady-state thermal analysis varies with the type of heat transfer
systems. Without loss of generality, the general heat equilibrium equation can be expressed as:

[K]{T} = {Q} (8)

where K is the heat stiffiness matrix, T stands for the system temperature response vector, and Q
denotes the heat flow vector.

In practical engineering, the uncertainty of the heat transfer system in terms of material properties,
geometric properties, and modeling conditions is inevitable due to the complex external factors and
inadequate cognition. Generally, these uncertainty parameters are usually represented in terms of a
fluctuation value ∆x and a nominal value x0:

Xi = [xi, xi] = xi
0 + ∆xiXI = [X, X] =

{
(x1, · · ·, xn) ∈ Rn

∣∣∣xi ∈ Xi, i = 1, · · ·, n
}

(9)

where xi and xi describe the bound of interval variable Xi, and X and X denote the LB and UB vector of
XI, respectively.

By introducing uncertainty parameters XI, the general heat equilibrium equation in Equation (8)
can be redefined as

[K(XI)]
{
T(XI)

}
=

{
Q(XI)

}
(10)

Generally, due to the interval vector XI, the value of system responses would varies within a
certain range. Theoretically speaking, the system temperature vector can be calculated as

T = min
X≤X≤X

{
T
(
XI

)∣∣∣∣K(
XI

)
T
(
XI

)
= Q

(
XI

)}
(11)

T = max
X≤X≤X

{
T
(
XI

)∣∣∣∣K(
XI

)
T
(
XI

)
= Q

(
XI

)}
(12)

3.2. Augmented Trigonometric Polynomial Surrogate Model

Compared with the explicit mathematical model, in practical terms, the optimization process
of engineering systems often has ambiguous physical relationships and considerable computational
cost. To improve the computational efficiency and accuracy, the ATP surrogate model was proposed in
this section.

If a periodical function f (x) changes within [−π,π], there exists a Fourier series P(x) converging
to f (x), which can be expressed as

‖ f (x) − P(x)‖
∞
< ε , x ∈ [−π,π] (13)

Then, the function f (x) can be approximated by P(x) with the combined forms of cosine and
sine functions.

f (x) ≈ P(x) =
a0

2
+

n∑
i=1

(ai cos ix + bi sin ix) (14)

Theoretically, by solving the above trigonometric coefficients, we can obtain the Fourier
approximation of f (x). However, for a multi-dimensional problem, the sharp increase in the number
of trigonometric coefficients is a great challenge to the entire calculation process.
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To simplify the approximation expression [42], we adopt the cosine as the basis function. Therefore,
the function f (x) can be expressed with the cosine function.

f (x) ≈ Pcos(x) =
a0

2
+

n∑
i=1

ai cos ix , x ∈ [0,π] (15)

Without losing generality, for an s-dimensional continuous function f (x1, · · ·, xs), the
approximation Pcos(x1, · · ·, xs) can be expressed as the form of tensor product.

f (x1, · · ·, xs) ≈ Pcos(x1, · · ·, xs)

= Pcos(θ1, · · ·,θs)

=
2n1∑

i1=0
· · ·

2ns∑
is=0

(
1
2

)s

gi1,···,is Ci1,···,is(θ1, · · ·,θs)

(16)

where Ci1,···,is(θ1, · · ·,θs) is the basis function of the s-dimensional system, gi1,···,is is the corresponding
expansion coefficient.

Here, we have compared the approximation accuracy of cosine-based, sine-based, and
combined-based with the same example, where the maximum relative error erromax is used to
judge the approximation effect numerically.

Example: f (x) = 2 + arctanx, where x ∈ [−1, 1].

erromax = max
∣∣∣∣∣ f a
− f
f

∣∣∣∣∣× 100 (17)

Note from Figure 4, the approximation of cosine-based basis function shows better performance
than others with higher precision and fewer coefficients. However, for the weak nonlinear problem, we
can see that the approximation effect of this function is not perfect even if the order is 5. Therefore, we
added a polynomial term to the cosine-based basis function to augment its approximation performance.
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Thus, the augmented cosine series-based surrogate model can be constructed, as follows.

f (x) ≈
n1∑

i1=0

· · ·

ns∑
is=0

(1
2

)s

gi1,···,isCi1,···,is(x) +
m∑

j=1

h jk j(x) = βTα+ hTk (18)

where
β = [β1, · · ·, βm]

T = (1/2)s[g0,···,0, · · ·, gi1,···,is , · · ·, g2n1,···,2ns ]
T (19)

α = [α1, · · ·,αm]
T = [C0,···,0(x), · · ·, Ci1,···,is(x), · · ·, Cn1,···,ns(x)]

T (20)
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It should be pointed out that the polynomial term of k(x) can be extended in different forms
according to actual needs. For instance, x, x2, x3, among others. In our work, the first order item was
adopted to augment the approximation ability of the cosine series-based surrogate model.

Correspondingly, a group of equations with unknown coefficients can be derived.
α1(x1) · · · αn(x1) k1(x1) · · · km(x1)

...
. . .

...
...

. . .
...

α1
(
xp

)
· · · αn

(
xp

)
k1

(
xp

)
· · · km

(
xp

)

{
β
h

}
=


f (x1)

...
f
(
xp

)
 (21)

The ATP surrogate model is a polynomial regression method, which is composed of cosine-based
trigonometric series and augmented polynomial term. The novel ATP surrogate model can be applied
to the optimization process of engineering systems with uncertainty.

3.3. Unbiased Estimation for Inadequate Interval

For practical engineering systems, the traditional extremum interval method maybe not cover the
factual data accurately. Hence, for the condition with limited data, the unbiased estimation method will
be adopted to handle this small sample problem. According to the distribution of available experimental
data, it can be roughly divided into two forms: uniform distribution and normal distribution.

3.3.1. Uniformly Distributed

If the experiment data have been provided as a sample set {t1, t2, · · ·, tn}, and all samples are
uniformly distributed within the interval [T, T], then, the theoretical mean and variance of T can be
expressed as

E(T) =
T + T

2
Var(T) =

(T − T)
2

12
(22)

Then, the unbiased estimation bounds of the limited experiment observations can be calculated

Tu =
1
n

n∑
i=1

ti −

√√
3

n− 1
·

n∑
i=1

(ti − T
M
)

2
T

u
=

1
n

n∑
i=1

ti +

√√
3

n− 1
·

n∑
i=1

(ti − T
M
)

2
(23)

where superscript u and M denote unbiased estimation and experiment measurements, respectively,
its derivation is given in Appendix A.

3.3.2. Normal Distribution

Similarly, if the experiment data have been provided as a sample set {t1, t2, · · ·, tn}, and each sample
is normal distributed in the interval [T, T]. The unbiased estimation of mean and variance of T can be
derived as follows.

E(T) = T
M
≈

1
n

n∑
i=1

ti Var(T) ≈
1

n− 1

n∑
i=1

(ti − T
M
)

2
(24)

According to the distribution characteristics of normal distributed, the unbiased estimation
bounds of the limited experiment observations can be calculated

Tu =
1
n

n∑
i=1

ti − 3 ·

√√
1

n− 1
·

n∑
i=1

(ti − T
M
)

2
T

u
=

1
n

n∑
i=1

ti + 3 ·

√√
1

n− 1
·

n∑
i=1

(ti − T
M
)

2
(25)

From the operation mentioned above, the interval bounds of experimental observations can
be estimated, which will be more practical for the engineering system with limited experimental
measurements compared to the traditional extremum interval method.



Appl. Sci. 2020, 10, 1429 9 of 18

3.3.3. Numerical Calculation

For the basic distribution laws described above, the numerical example was provided to verify
the effectiveness of the proposed unbiased estimation method.

Assume the sample changes within the interval [50, 60], where we repeat 100 times to calculate
the average maximum relative error.

Note from Figure 5, both unbiased estimation methods can better describe the actual measurement
interval in the case of small samples. With increase of sample number, the uniformly distributed-based
unbiased estimation can not show better performance compared with the extremum interval method.
However, the normal distributed-based unbiased estimation can always maintain an excellent
estimation performance.
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4. Interval Parameter Identification Procedure

This section introduces a novel interval parameter identification method, which adopted the
improved optimization strategy. Similar to the traditional parameter identification, the system with
uncertainty can be implemented effectively by converting into an inverse optimization problem,
which seeks the minimum relative error between the calculated value and experimental value. The
mathematical model of the optimization process can be expressed in the following general form:

Find x =
{[

xi, xi
]}

m

min f (x) =
n∑

i=1

(∣∣∣∣(Ti
P(x) − Ti

M
)
/Ti

M
∣∣∣∣)

=
n∑

i=1

(∣∣∣∣(Ti
P(x) − Ti

M
)
/Ti

M
∣∣∣∣+ ∣∣∣∣∣(Ti

P
(x) − Ti

M
)
/Ti

M
∣∣∣∣∣)

s.t. x ≤ x ≤ x

(26)

where x denotes the system unknown parameter vector, m and n is the number of unknown parameters
and system features, respectively, f (x) describes the relative error of system, and the superscript P and
M stands for the predicted and measured value, respectively.

As seen in Figure 6, the process of the interval parameter identification is clearly shown. Among
them, several judgment conditions are set to ensure the effective operation of the procedure. Specifically,
the “Condition met” in the step of construct the surrogate model guarantees the accuracy of the ATP
model. While, the judgment follows the step of updating strategy is set to ensure that the ATP model
can maintain high accuracy throughout the optimization process. The proposed interval parameter
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identification method roughly consists of two parts: (1), searching the initial value of the variable; (2),
performing the rough and fine search to obtain the identified result.
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4.1. Searching the Initial Value

In this step, the interval parameter identification process was executed by converting into a
deterministic framework problem, which was used to seek the initial value of unknown parameters
corresponding to the mean of measurement intervals. Hence, the optimization model can be expressed
as follows:

Find x = {xi}m

min f (x) =
n∑

i=1

(∣∣∣∣(Ti
P(x) − Ti

Mmean
)
/Ti

Mmean
∣∣∣∣)

s.t. x ≤ x ≤ x

(27)

where TMmean describes the mean of measurements interval, TP(x) denotes the predicted value
of system.

The traditional optimization algorithms can be applied to this process, such as exhaustive method,
particle swarm algorithm, and genetic algorithm. By executing this step, the initial value of unknown
parameters can be obtained, which can provide an initial identification range for subsequent calculations.
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4.2. Searching the Eventual Result

In contrast to the deterministic framework, the traditional optimization algorithms may not be
able to deal with the uncertain system better. To improve the accuracy and efficiency of the parameter
identification, the multi-level optimization-based strategy was constructed, which mainly included
two steps: rough search and fine search.

Note from Figure 7, the procedure is executed in the order of rough search and fine search. In the
rough search, the initial interval of unknown parameters is defined according to the value calculated
above. By introducing the constriction factor, the process of rough search can obtain a group of
identification results rapidly. If the result can not meet the requirement of precision, the procedure will
automatically move to the stage of the fine search. In this stage, numerous samples will be randomly
generated near the above identification results to search the optimal results. The detailed process is
shown in Figure 7.
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For the calculation of the system predicted interval, various methods have been tried, for instance,
interval arithmetic, series expansion, perturbation, optimization, among others. However, these
methods cannot show active inclusiveness for solving complex nonlinear problems. Therefore, Monte
Carlo is adopted as a simple and effective method. By sampling a large number of parameter
intervals, the interval of the objective function can be calculated rapidly. The proposed multi-level
optimization-based strategy can identify the unknown parameter of uncertain systems efficiently
and accurately.

5. Numerical Example

A box structure made of metal-foam was provided to verify the efficiency of the proposed method.
In order to improve computational efficiency, the equivalent solid parameter model was adopted, where
the actual performance of metal-foam structure can be simulated by adjusting the thermodynamic
parameters of the equivalent model. The schematic diagram of the structure was shown in Figure 8,
where the overall dimensions were 500 mm × 500 mm × 500 mm, and the thickness was 30 mm.
Meanwhile, there is a 100 × 100 × 100 mm heating element on the middle of the bottom. The whole
structure is made of the same material with emissivity ε and heat conductivity k. To simulate the heat
transfer performance of the box under low temperature and pressure environment at high altitudes,
the ambient air temperature outside the box is set to –60 ◦C, and the initial ambient air temperature in
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the box is set to 20 ◦C. Besides, the combination of radiation and convection was considered both inside
and outside the box, where the external convection heat transfer coefficient was set to 3 W/(m2

·K).
Then, the finite element model of equivalent model was created in NX THERMAL/FLOW with 14,049
tetrahedron elements and 27,302 nodes, as shown in Figure 8b. Four nodes were selected as the
feature response points, where point 1 and 2 were located at the center of the outer surface of the box,
respectively, and point 3 and 4 were distributed along the centerline at the inner surface of the box, as
shown in Figure 8a. And the temperature value of each feature point is the result of the steady state of
the system. Furthermore, it should be noted that the thermodynamic parameters identified by this
method are not parameters of metal-foam models, but the equivalent model. In other words, we can
obtain a more accurate equivalent model that can simulate the original foam structure.
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Due to the uncertainty of the metal-foam material properties, as well as the uncertainty of the
complicated external factors, various uncertainties unavoidably exist in the heat transfer system
of the box structure. According to the description in Section 2, if the equivalent heat conductivity,
emissivity and the power of heating element are known in advance to change in the intervals
k ∈ [10, 20] W/(m ·K), ε ∈ [0.4, 0.8], and p ∈ [10, 15] W, the accurate intervals of four feature points
can be calculated by the optimization algorithm, where the temperature responses are changed in the
ranges [−56.85, −49.57], [−49.80, −34.97], [−56.56, −49.11], [−55.36, −47.83] respectively.

In order to simulate the situation lack of measurement datas in actual engineering, 8 samples of
each temperature response intervals are randomly selected with the assumption of normal distribution,
which are listed in Equation (28).

T1 = {−53.85, − 54.21, − 53.33, − 55.12, − 53.21, − 54.86, − 51.04, − 54.10};
T2 = {−44.20, − 42.96, − 41.46, − 38.40, − 41.33, − 45.14, − 39.02, − 43.78};
T3 = {−52.01, − 54.25, − 54.68, − 54.90, − 52.94, − 53.53, − 51.10, − 53.04};
T4 = {−52.39, − 50.32, − 50.97, − 50.62, − 53.11, − 51.30, − 51.70, − 53.31};

(28)

By utilizing the traditional extremum description method, the intervals of above sample set can
be described as

Te
1 = [−55.12,−51.04] Te

2 = [−45.14,−38.40]
Te

3 = [−54.90,−51.10] Te
4 = [−53.31,−50.32]

(29)

Similarly, the unbiased estimation method is applied to obtain the unbiased intervals of the above
sample set, which shown in Equation (30).

Tu
1 = [−57.51,−49.91] Tu

2 = [−49.33,−34.74]
Tu

3 = [−57.25,−49.36] Tu
4 = [−55.08,−48.34]

(30)
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In contrast to the temperature response intervals calculated by the traditional extremum description
method, the unbiased intervals are closer to the original intervals, which illustrate the efficiency of the
unbiased estimation method for the actual engineering with inadequate information.

After performing the process of parameter identification, the eventually identified results of heat
conductivity, emissivity, and the power of the heating element are listed in Table 1. Meanwhile, the
corresponding response intervals of the four feature points can be seen in Table 2. The mean relative
errors of the parameter intervals and the temperature response intervals are dramatically reduced to
(4.5, 2.2)% and (0.3734, 0.4371)%, respectively. Note from Figure 9 that the system response intervals can
converge rapidly in the identification process where the error can be reduced quickly in the stage of the
rough search, while in the fine search stage, the error tends to converge gradually, which demonstrates
the efficiency of the proposed optimization strategy. Moreover, Figures 10–12 show the initial, true,
and identification space of the temperature response, where the identified results can better match
the real results. Therefore, the proposed interval parameter identification method can be effectively
applied to the actual heat transfer problem with uncertainty.

Table 1. Identified results of the box heat transfer system.

Parameter Real Interval Identification Interval Error (%)

k(W/(m·◦C)) [10, 20] [9.62, 19.56] (3.8, 2.2)
ε [0.4, 0.8] [0.4159, 0.8241] (3.9, 3.0)

P (W) [10, 15] [10.57, 15.21] (5.7, 1.4)
Mean (4.5, 2.2)

Table 2. Temperature intervals of the box heat transfer system.

Feature Real Interval Unbiased Interval Output Interval Error (%)

Point 1 [−56.85, −49.57] [−57.51, −49.91] [−56.75, −49.83] (0.1759, −0.5245)
Point 2 [−49.80, −34.97] [−49.33, −34.74] [−49.34, −34.72] (0.9237, 0.7149)
Point 3 [−56.56, −49.11] [−57.25, −49.36] [−56.47, −49.36] (0.1591, −0.5091)
Point 4 [−55.36, −47.83] [−55.08, −47.35] [−55.23, −47.83] (0.2348, 0)
Mean (0.3734, 0.4371)
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6. Conclusions

Firstly, this work presents a novel modelling methodology for low porosity metal-foam materials,
and for the heat transfer system of metal-foam structure, develops a novel interval parameter
identification method, which can quantify the uncertainty parameters in the actual engineering
problems with only limited experimental measurements effectively. In summary, the conclusions can
be drawn:

1. A novel Voronoi-based modelling methodology is proposed for the closed-cell metal-foam in low
porosity, by which the realistic pore geometry can be generated concisely and effectively. This
method adopts the new algorithm of spheres random packing, which can simplify the calculation
program. Moreover, the randomness of the boundary thickness between pores is taken into
account in the searching process. Meanwhile, the boundary constraint can be effectively removed
when searching the maximum volume sphere of convex polyhedra on boundary surfaces.

2. Compared to the probabilistic based parameter identification methods, interval methods can
preferably describe uncertainty problems, especially for the case with limited information. Besides,
the novel ATP surrogate model was constructed to describe the mapping relationship between
variables and responses effectively and accurately. Meanwhile, the unbiased estimations method
is adopted to describe the measurement interval of the actual engineering system accurately.

3. To executive the parameter identification procedure effectively, the novel multi-level
optimization-based strategy was designed, which can identify the unknown parameter of
uncertain systems efficiently and accurately in the order of searching the initial value, rough
searching, and fine searching.

4. An engineering heat transfer example of a box structure made of metal-foam was provided to
verify the efficiency of the proposed method without sufficient information. The satisfactory
identification results were obtained when applied to the proposed method, which indicated
that the proposed interval parameter identification method could quantify the uncertainty of
metal-foam structure in the engineering heat transfer system efficiently, especially for the actual
case without sufficient measurements.

5. The application of the unbiased estimation method was under certain conditions in this study.
Furthermore, the validation example just considered a single non-probabilistic uncertainty. In
the future, the applicable conditions of the unbiased estimation method will be further studied.
Meanwhile, the proposed method will be expanded to complex engineering problems with
mixed uncertainties.
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Appendix A

In this appendix we derive the unbiased estimation forms of uniform distribution.
We start from the theoretical mean and variance of T

E(T) =
T + T

2
Var(T) =

(T − T)
2

12
(A1)

then
T = E(T) −

√
3 ·Var(T) T = E(T) +

√
3 ·Var(T) (A2)
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However, for the limited experiment observations set, the unbiased estimation of mean, and
variance of sample set T can be expressed as follows:

E(T) = T
M
≈

1
n

n∑
i=1

ti Var(T) ≈
1

n− 1

n∑
i=1

(ti − T
M
)

2
(A3)

Then, the unbiased estimation bounds of the limited experiment observations can be calculated

Tu =
1
n

n∑
i=1

ti −

√√
3

n− 1
·

n∑
i=1

(ti − T
M
)

2
T

u
=

1
n

n∑
i=1

ti +

√√
3

n− 1
·

n∑
i=1

(ti − T
M
)

2
(A4)
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