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Abstract: To date, physical, numerical or data-driven models have been used to forecast water surface
elevation in rivers for specific times or locations in the literature. Recently, the trend of forecasting
water surface elevation changed from physical and numerical models to data-driven models with the
help of the development of big data processing technology and fast simulating time of data-driven
models. In this study, a data-driven model with Long Short-Term Memory (LSTM) was developed
using TensorFlow, one of the famous deep learning frameworks and forecasting of water surface
elevation affected tidal river was performed in Hangang River, Korea. From many types of field
measurements, the hourly hydrological data, precipitation, outlet discharge of dam upstream and
tidal levels were selected as the input dataset through a t-test and a p-value. In particular, the hybrid
activation function was proposed to alleviate the vanishing gradient and dying neuron problems
generally issued in the application of the activation function. The model showed that the root mean
square error (RMSE) and peak error (PE) decreased by 0.22–0.25 m and 0.11–0.21 m, respectively, and
the Nash-Sutcliffe efficiency (NSE) increased up to 79.3%–97.0% compared with the single activation
functions. For w1 = 0.6 and w2 = 0.4 in the hybrid activation function, the improvement of accuracy
and the enhancement of the application range of the leading time interval were obtained through
a sensitivity analysis. Moreover, the hybrid activation function showed a good performance. The
forecasting results provided by this model can be used as reference data for the establishment of the
emergency action plan (EAP).

Keywords: flood forecasting; Long Short-Term Memory (LSTM); hybrid activation function;
Hangang River

1. Introduction

Recently, flood damage has increased at riversides because the water surface elevation is rising
rapidly as the occurrence of extreme flooding has increased due to global warming and climate
change [1,2]. As an example of flood damage to riversides, flooding occurred in roads, parks and
parking lots and caused damage to life and property [3]. Therefore, it was necessary to immediately
forecast and alert about the possibility of the occurrence of flood damage on riversides caused by
flash floods.

For forecasting flooding that occurs along a riverside, many countries have provided flood
forecasting system services such as the Advanced Hydrologic Prediction Service (AHPS in United
States), and the Evaluation et Suivi des Pluies en Agglomération pour Devancer I’Alerte (ESPADA
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in France) by using hydrological data [4]. In general, the precipitation data have been used for a
precipitation-runoff model and the water surface elevation in rivers has been forecasted sequentially.
As the final step, the water surface elevation of the river has been used to determine whether flood
damage occurs at riverside [5]. This is a standardized flood forecasting process around the world,
including Korea. Therefore, accurate forecasting of the water surface elevation has been most significant
to forecast a flood event. There are typically two methods for forecasting the water surface elevation of
a river. The first one is based on a numerical model which can analyze various differential equations
such as Navier–Stokes equations and calculates the water surface elevation by using geometry data of a
river, discharge and precipitation, etc. However, a numerical analysis by computational fluid dynamics
(CFD) has provided accurate and sophisticated forecasting results, whereas it is difficult to acquire
related essential data such as geometry data before a simulation and a simulation takes more time
when 2D or 3D results are expected. Therefore, the numerical model had a limitation in forecasting
and warning floods within limited time [6]. Recently, the forecasting of water surface elevation was
performed by using a data-driven model based on the statistical relationship between the input data
and the output result as a large amount of data has been collected and big data processing technology
has been developed. Examples of data-driven models applied in the forecasting of water surface
elevation are statistical models which include linear regression, autoregressive moving average (ARMA)
and autoregressive integrated moving average (ARIMA) models and machine learning (ML) models
such as artificial neural networks (ANN) [7]. In addition, the ML models were good at performance
for forecasting time series data such as water surface elevation compared with other models [8]. In
addition, the data-driven model using the artificial neural network has the advantage because it is
easy to acquire data when compared to physical models and the time required for forecasting water
surface elevation was short, although the ANN had problems such as dependence on the state of
the input data, unexplained behavior of the network, etc. Therefore, the data-driven model using
ANN was developed to forecast the water surface elevation in this study. Various artificial neural
network models were applied for forecasting the water surface elevation. The long short-term memory
(LSTM) showed a good performance for forecasting the water surface elevation. However, the LSTM
tends to under-forecast at a high water-surface elevation and has a limitation in that the accuracy
of forecasting decreases as the leading time becomes longer. Nevertheless, research which solved
these problems have been insufficient. In general, the activation functions used in LSTM include
the sigmoid function, the hyperbolic tangent function and the rectified linear unit function, but each
activation function causes problems such as a vanishing gradient and a dying neuron [9–11]. Therefore,
in this study, a hybrid activation function in the form of a combination of the hyperbolic tangent
function and the rectified linear unit function with a weighting factor was proposed to improve the
forecasting accuracy at a high water surface elevation and for a long leading forecasting time. The
LSTM in Tensorflow, a deep-learning open-source software library provided by Google, was applied
and the hourly hydrological data from 2009 to 2018 were used to forecast the water surface elevation
in Hangang River, Korea. Finally, the hybrid activation function was applied to evaluate whether
the accuracy of forecasting improved at a high water surface elevation the range of leading time was
reviewed for highly accurate forecasting.

2. Literature Review

2.1. Numerical Model

Various studies were performed to forecast the water surface elevation using numerical model
based on physical laws. Rinaldi et al. [12] applied the flood event and forecasted the water surface
elevation of the Cecina river to simulate the levee breach by using the Delft 3D model. Teng et al. [13]
introduced various one-, two- and three-dimensional numerical models for flood modeling through
forecasting water surface elevation and compared the advantages and disadvantages of each model.
In Korea, Lee and Lee [14] reviewed the change of water surface elevation in the Hangang River due to
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change of tidal level and Paldang dam outlet discharge by using FLDWAV, which is a one-dimensional
unsteady flow model. Song et al. [15] developed a numerical model that discretized the shallow water
equation to analyze the backwater effect according to the discharge and forecasted the change of the
water surface elevation in the river. However, the forecasting water surface elevation using these
numerical models had some limitations, such as difficulty in acquiring geometry data and the longer
simulation time. Thus, as an alternative approach, various artificial neural network models were used
to forecast the water surface elevation.

2.2. Artificial Neural Network Model

Recently, forecasting the water surface elevation using the artificial neural network models was
attempted to solve the problems in a physical or a numerical model. For instant, Yeo et al. [16]
performed a short-term forecasting of the water surface elevation using the ANN model for the water
surface elevation station in the Gamcheon Basin. Chen et al. [17] constructed an ANN-based forecasting
model in the river and reviewed the applicability of the model. Hidayat et al. [18] verified the accuracy
of the forecasting model by constructing an ANN model for the Mankam River in Indonesia and used
tributary water surface elevation and tidal level to construct a real-time forecasting system. However,
the ANN model did not consider the past data in learning the data. Thus, the recent research trend
about forecasting water surface elevation using artificial neural network changed from ANN, recurrent
neural network (RNN) models to long short-term memory (LSTM). Coulibaly and Anctil [19] confirmed
that the RNN model derived effective real-time forecasting results by applying the RNN model to
forecast the short-term discharge and reservoir level in Gondo aquifer, Burkina Faso. Supharatid [20]
used the Multi-Layer Neural Network (MNN) to forecast the tidal level in the Chao Phraya River
estuary, Thailand, and generated a relationship curve between water surface elevation and discharge
in the tidal stream by using the tidal level. Yoo et al. [21] forecasted the water surface elevation in
Hangang River and compared the forecasting accuracy of each model by applying ANN, RNN and a
nonlinear autoregressive network with the exogenous (NARX) model. Thus, they confirmed that the
NARX neural network model was most suitable for forecasting water surface elevation by analyzing
the error of the forecasting result. Zhang et al. [22] confirmed that the LSTM is superior to the previous
feed-forward neural network (FFNN) model in predicting water surface elevation over a long-term
period. Tran and Song [23] used the RNN, RNN-BPTT, and LSTM to perform water surface elevation
forecasting of the Trinity River in Texas, USA, and showed that the LSTM had a good performance
for forecasting the water surface elevation. Jung et al. [24] used the LSTM to forecast the upstream
water surface elevation in the Geumgang river basin, Korea. The accurate forecasting was performed
for the entire water surface elevation. However, the forecasting result was underestimated at a high
water surface elevation. Jung et al. [25] forecasted the water surface elevation of the Jamsu bridge
in Hangang River, Korea, using the LSTM and confirmed that the forecasting accuracy of the model
decreased as the forecasting leading time was longer. Through the sound results from the research
mentioned above, the LSTM was chosen in this study. Furthermore, the hybrid activation function was
proposed to resolve the underestimation at a high water surface elevation and improve the accuracy of
forecasting in longer leading times.

3. Methodology

3.1. Long Short-Term Memory Model

The LSTM was proposed by Hochreiter and Schmidhuber to solve the problems of optimization
hurdle and vanishing gradient in the RNN model. The problems of the optimization hurdle and the
vanishing gradient were a difficulty found in training artificial neural networks with gradient-based
learning methods and backpropagation. The gradient is vanishingly small, effectively preventing
the weight from changing its value. Moreover, these problems completely stop the neural network
from training. To make matters worse, this occurred frequently, especially in long-time series data.
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Therefore, the LSTM could be applied to forecast long-time series data because of its efficiency in
identifying long-term dependence over time and this has been studied in various fields [26,27].

The main elements of LSTM are memory-moving cells, which can maintain the state over time
and three gates that control the transfer of data in and out of cells, unlike the RNN model [28]. The
LSTM applies the concept of a cell to update the state of a specific time (ht) and determines whether to
update the internal information or not by using the input data and the state so far. The types of gates
for controlling data transfer of the cell are: a forget gate ( ft), an input gate (it) and an output gate (ot).

First the forget gate ( ft) applies the output of the previous cell (ht−1) and the current input data
(xt) to the sigmoid activation function to obtain a value between 0 and 1 and determines whether to
maintain or remove the input information. This can be shown in Equation (1):

ft = σ
(
W f ·[ht−1, xt] + b f

)
(1)

where σ is the sigmoid activation function, W f is the weight of the forget gate, and b f is the bias of the
forget gate.

The second the input gate (it) decides which input information is stored in the cell and which
information is updated by using the sigmoid activation function. The input gate also generates a
candidate cell (Nt) which is used when updating a new cell state by using the hyperbolic tangent
activation function. The candidate cell is expressed through the following equations:

it = σ(Wi·[ht−1, xt] + bi) (2)

Nt = tanh(Wn·[ht−1, xt] + bn) (3)

where Wi, and Wn denote the weights of the input gate and the candidate cell, respectively, bi, bn

denote the bias of the input gate and the candidate cell, respectively.
Next, the current cell state (Ct) is updated by combining the previous cell state (Ct−1) and the

candidate cell (Nt), as shown in Equation (4):

Ct = ft·Ct−1 + it·Nt (4)

The output gate (ot) determines which part of the cell state is output by using the sigmoid
activation function, as shown in Equation (5) below. Finally, the hyperbolic tangent activation function
is used to update the state of a specific time (ht) by multiplying it with the activated cell state (Ct).

ot = σ(Wo·[ht−1, xt] + bo) (5)

ht = ot·tan h(Ct) (6)

where Wo is the weight of the output gate and bo is the bias of the output gate.
Previous studies have shown that the LSTM could be used to accurately forecast water surface

elevation [25]. However, the water surface elevation is under-forecasted at the high water surface
elevation conditions because the hyperbolic tangent activation function (value range from −1 to 1)
was basically used when multiplying the output gate and the cell state in the structure of LSTM. Thus,
the hyperbolic tangent activation function should be changed another activation function to solve
under-forecasting at the high water surface elevation conditions. In general, activation functions
include linear and nonlinear functions. The linear function changes by a constant multiple of the
input and the form of the linear function is a straight line. However, the use of a linear function as
an activation function is not an advantage of the neural network. On the other hand, the non-linear
functions have two or more straight or curved forms and the typical nonlinear functions used in neural
network are the sigmoid function, the hyperbolic tangent function, the rectified linear unit (ReLU)
function, etc. However, the use of an existing activation function, such as the hyperbolic tangent
function and the ReLU function, also causes vanishing gradient problems and dying neuron problems
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in error back propagation, leading to under-forecasting or over-forecasting results [9–11]. Therefore,
the activation function of the LSTM needed to be changed from the hyperbolic tangent function to a
new type of activation function to accurately forecast the water surface elevation in high water surface
elevation conditions.

3.2. Hybrid Activation Function

The activation function is used to determine the activation and deactivation of output data when
a signal of input data is received in the neural network structure. It is important to select an activation
function that is suitable for the purpose of the study because the results are dependent on which
activation function is used. In general, activation functions include linear and nonlinear functions. The
linear function changes by a constant multiple of the input and the form of the linear function is a
straight line. However, the use of the linear function as an activation function is not an advantage of
the neural network. On the other hand, the non-linear functions have two or more straight or curved
forms and typical nonlinear functions used in neural network are the sigmoid function, the hyperbolic
tangent function, the rectified linear unit (ReLU) function, etc. The sigmoid function has the feature of
a fast learning speed. In addition, it has a value of 0 to 1 in the range of −∞ to ∞. The form of the
sigmoid function is shown in Equation (7):

σ(x) =
1

1 + e−x (7)

σ′(x) = σ(x)(1− σ(x)) (8)

However, x has a value close to 0 in the range −∞ to ∞ in the derivative form of the sigmoid
function and it causes vanishing gradient problems in error back propagation [29].

The hyperbolic tangent function can be expressed as the ratio of the hyperbolic sine function
and the hyperbolic cosine function or as the ratio of the sum and difference of the two exponential
functions. The form of the hyperbolic tangent function is shown in Equation (9):

tanh(x) =
sinh(x)
cosh(x)

=
ex
− e−x

ex + e−x (9)

tanh′(x) = 1− tanh2(x) (10)

The hyperbolic tangent function is like the sigmoid function, it has a value of −1 to 1 in the range
−∞ to∞. However, the hyperbolic tangent function also has a value close to 0 when x is −∞ and∞ in
the derivative form which causes a problem of vanishing gradient during back propagation [30].

The rectified linear unit (ReLU) function was first introduced by Hahnloser et al. [28] and was used
as an activation function in neural network model. The ReLU function changes its form of function,
depending on the range of x. The ReLU function is shown in Equation (11):

f (x) =
{

0 i f x < 0
x i f x ≥ 0

(11)

f ′(x) =
{

0 i f x < 0
1 i f x ≥ 0

(12)

The ReLU has a value of 0 when x is less than 0, and f (x) = x when x is greater than 0, as shown
from the above function equation. However, the ReLU function has a dying neuron problem because
f (x) always has a value of zero when the value of x is less than zero. Moreover, it has the limitation of
overfitting the results [30].

In this study, the hybrid activation function was proposed to solve the problems of general
activation functions such as the vanishing gradient problem, the dying neuron problem, etc. The
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hybrid activation function is composed of a hyperbolic tangent function and a rectified linear unit
function. The form of the hybrid activation function is as follows:

f (x) = w1ReLU(x) + w2tanh(x) (13)

f ′(x) =

 w1 + w2
(
1− tanh2(x)

)
i f x < 0

w2
(
1− tanh2(x)

)
i f x ≥ 0

(14)

where w1 and w2 are weights, and each sum of weights is one (
n∑
i

wi = 1.0). As the weights (w1 and

w2) change, the range of the hybrid activation function occupies the hatched part of the figure (see
Figure 1).
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3.3. Criteria for Comparison of Model Performance

In this study, the forecasting accuracy of model was compared through a statistical analysis of the
forecasting results after learning the input data through the flood forecasting model. The root mean
square error (RMSE) and Nash-Sutcliffe efficiency (NSE) were used as indexes for scrutinizing the
accuracy of the model. Moreover, the peak error (PE) was also used to evaluate the performance of
model. The error and coefficient calculation formulas are as follows [31]:

RMSE =

√∑n
i=1(Oi − Pi)

2

n
(15)

NSE =

1−

∑n
i=1(Oi − Pi)

2∑n
i=1

(
Oi −Oi

)2

× 100 (16)

PE = (Oi,max − Pi) (17)

where Oi and Pi are the observed water surface elevation and the forecasting water surface elevation
for time t, respectively, Oi is the average value of the observed water surface elevation, Oi,max is the
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maximum value of the observed water surface elevation, i is the i-th observed dada or i-th forecasting
results and n is the total number of observed data.

In the case of RMSE and PE, the closer the value is to zero, the better the forecasting value and the
observed value are matched. When the forecasting value and the observed value are well matched, the
value of NSE approaches 1.

3.4. Autocorrelation Coefficient (AC) and Partial Autocorrelation Coefficient (PAC)

The successive series of observations may be correlated with each other. Thus, the index
for determining the linear relationship between the lagged values of the time series includes the
autocorrelation coefficient and the partial autocorrelation coefficient. The autocorrelation coefficient is
an index of the correlation between the data, yt and yt+k for a lag time t. The coefficient calculation
formula is as follows [32]:

rk =

∑n−k
t=1(yt − y)(yt+k − y)∑n

t=1(yt − y)2 (18)

where k is the number of autocorrelations in the function, n is the number of observations in the series
and y is the mean value.

The partial autocorrelation coefficient is an index of the correlation between data, yt and yt+k
which excludes influence from observations with any lag time other than time t. The coefficient
calculation formula is as follows:

pk,k =
rk −

∑k−1
j=1 pk−1, jrk− j

1−
∑k−1

j=1 pk−1, jr j
(19)

where pk, j = pk−1. j − pk,kpk−1,k− j, k is the number of autocorrelations in the function.
In general, if the autocorrelation coefficients are persistently large. This indicates that the time

series is probably non-stationary. Therefore, the concept of a 95% confidence interval which assumes
that it is not different from zero within a 95% confidence interval, was used in autocorrelation and
partial autocorrelation. The 95% confidence interval is calculated as follows:

95% CI = ±1.96
1
√

n
(20)

where CI is the confidence interval and the value of 1.96 represents the area under the normal curve.
The autocorrelation coefficient (AC) and partial autocorrelation coefficient (PAC) are widely used

in statistics and econometrics, and in time series analysis by using the ARIMA model. For example,
there are analyses of the Computer I/O pattern, forecasting of water quality (water temperature and
concentration of dissolved oxygen), forecasting of supply and demand about electricity, etc. [33–35].

4. Study Area and Data Selection

4.1. Study Area

The Hangang River basin is located in the central part of the Korean Peninsula with a north
latitude of 36◦30′ to 38◦55′ and an east longitude of 126◦24′ to 129◦02′. The basin area is 25,954 km2,
and the length of the river is 494 km, accounting for about 23% of South Korea’s total land area. In this
study, the study section was approximately 91.35 km from Paldang dam to the West sea (see Figure 2).
The 12 parks and 27 bridges are in the downstream of Paldang dam. In addition, the Hangang River
has no estuary banks, so it is affected by the tide. In addition, forecasting the water surface elevation is
difficult because it is a tidal river.
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Figure 2. Study area (Hangang River).

4.2. Input Data

The hybrid activation function was proposed to forecast the water surface elevation, which is an
input data with time series characteristics in this study. The purpose of this study was to evaluate the
performance of the forecasting model based on the use of the hybrid activation function. Therefore, the
type of input data, quantity, and correlation of input data to be used for forecasting the water surface
elevation were considered. Yoo et al. [21] have investigated the accuracy of forecasting according to a
combination of input datasets in Hangang River. They found that the combination of precipitation,
outlet discharge of dam, water surface elevation and tidal level showed a good performance of
forecasting water surface elevation in view of forecasting accuracy. Therefore, we also applied the same
input data as that previous study to forecast the water surface elevation in Hangang River. Therefore,
the input data used for forecasting the water surface elevation are precipitation ( 1O in Figure 2), outlet
discharge of Paldang dam ( 2O in Figure 2), the water surface elevation of Hangang River bridge ( 3O in
Figure 2), the tidal level of Incheon ( 4O in Figure 2), wind speed ( 1O in Figure 2) and the concentration
of dissolved oxygen ( 3O in Figure 2). The observed data for 10 years (from 2009 to 2018) on an hourly
basis from the Korea meteorological administration, the Hangang River flood control center, and the
Korea hydrographic and oceanographic agency, Water Environment Information System, respectively,
were used. The location of the station and the retention periods of the collected data in this study
are presented in Table 1 and the units of observed data are as follows. The unit of precipitation is
millimeters, the unit of outlet discharge is cubic meters per second, the unit of water surface elevation
is meters, the unit of tidal level is centimeters, the unit of wind speed is meters per second, and the
concentration of dissolved oxygen is milligrams per litter.

Table 1. Information about hydrological stations.

No Stations Items * Latitude Longitude Period

1 Seoul P 37
◦

34′ 126
◦

57′

10 years
(2009–2018)

2 Paldang O 37
◦

31′ 127
◦

17′

3 Hangang Bridge E 37
◦

30′ 126
◦

57′

4 Incheon T 37
◦

27′ 126
◦

35′

5 Seoul W 37
◦

34′ 126
◦

57′

6 Hangang Bridge D 37
◦

30′ 126
◦

57′

* P = Precipitation; O = Outlet Discharge; E = Water surface elevation; T = Tidal level; W = Wind speed;
D = Concentration of Dissolved Oxygen.
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4.2.1. Preprocessing of Data

The collected data have a missing value and outliers due to a malfunction of the measuring
instruments, crosstalk in the radio wave path and changes in the measurement points. Thus,
preprocessing of the input data was required to improve the accuracy of the forecasting model for this
study. The outliers and the missing value of observed data were corrected and interpolated according
to the article 14 of the installation environment, maintenance, and management of hydrological survey
facilities and the quality control standard for hydrological data [36]. The interpolation and correction
methods are summarized in Table 2.

Table 2. Correction method for outlier and missing value of hydrological data [36].

Method Contents

Use of relevant station data
Correct using a normal value of station

Correct with linear interpolation
The thresholder decides and correct the value

Use of data from nearby stations Correct using a relationship with upstream and
downstream station values

The proposed method was used to correct and interpolate outliers and missing values
corresponding to about 1% of the total data. Most of the outliers and missing values of hydrology data
used in this study occurred in the non-flood season which was not considered in this study.

4.2.2. t-test and p-value

The t-test analysis was performed by classifying all the input data according to whether flood
damage had occurred at the riverside or not and the p-value was derived to determine whether the
collected data are the main factors for forecasting the water surface elevation. The t-test analysis is a
statistical technique needed to determine whether the difference in mean value between two groups is
statistically significant. The following assumptions must be satisfied in the t-test analysis.

Firstly, the data should be continuous numbers with equal intervals (identical interval and
continuity). Secondly, the two groups must be independent of each other (independence). Thirdly, the
numerical value of the data should be normal (normality).

The p-value was derived if the above assumptions were met. The process of derivation is shown
in Figure 3. The factor could be considered as a significant factor if the p-value is less than the value
which the researcher set as the threshold and the value of the threshold was 0.05 in general [37]. The
results of the t-test analysis and the p-value for the various input data, such as precipitation, outlet
discharge of Paldang dam, water surface elevation of Hangang River, tidal level of Incheon, wind
speed, and concentration of dissolved oxygen are summarized in Table 3. Moreover, precipitation,
outlet discharge Paldang dam, water surface elevation of Hangang River, and tidal level of Incheon
used as input data in this study. Because these factors were considered to be important factors in
forecasting the water surface elevation through the results of the t-test analysis and p-value. On the
other hands, the wind speed (p-value = 0.06) and concentration of dissolved oxygen (p-value = 0.29)
were not important factors for forecasting the water surface elevation.
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Table 3. t-test analysis for input data.

Input Data t-score p-value Significant Factor for Forecasting Flood

Precipitation 8.9 ~0.00 O
Outlet Discharge 41.2 ~0.00 O
Water Elevation 37.8 ~0.00 O

Tidal Level 2.2 0.03 O
Wind Speed 1.9 0.06 X

Concentration of Dissolved Oxygen 1.0 0.29 X

5. Model Setup

The open source library was used in this study. Python (version 3.6.4, Anaconda) was used as the
programming language. Numpy (version 1.14.2) and Pandas (version 0.22.0) libraries inside Python
were used for data management to execute the forecasting model. The forecasting model using the
LSTM was developed by using the Tensorflow (version 1.8.0) provided by Google as an open source
library. The TensorFlow is composed of data flow graph structure and is used in various research fields
of machine learning and deep learning. Moreover, the forecasting of water elevation was performed
by using a computer with the following specifications: Intel Core i5-6600 CPU (Central Processing
Unit), 8.00 GB of RAM (Random Access Memory), 256 GB of SSD (Solid State Drive), and an Intel(R)
HD Graphics 530 video card.

5.1. Sensitivity Analysis

The sensitivity analysis was performed on various factors in the LSTM prior to evaluating the
performance of the forecasting model and the performance of the newly proposed hybrid activation
function in this study. The simulation cases for the sensitivity analysis are summarized in Table 4.
The four parameters can be set in LSTM. The hydrological data were used for 1 year as input data.
The forecasting data concern water surface elevation after 3 h because the leading time of the flood
forecasting in river is within 3 h. The uncertainty of each parameter was expressed as the standard
deviation and the average CPU time was verified with 30 iterative simulations.
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Table 4. Sensitivity analysis for LSTM for forecasting flood (*: reference value).

Parameter Value Evaluation

Hidden Layer (A) 1 *, 3, 5, 10, 20
Standard deviation

(Uncertainty) and CPU Time
Learning Rate (B) 0.005, 0.01 *, 0.02, 0.05, 0.1

Sequence Length (C) 1 *, 3, 6, 9, 12, 24
Iterations (D) 1, 10, 100 *, 1000, 10,000

The standard deviation and the CPU time were considered to derive the optimal setting value for
each parameter. The standard deviation and CPU time for each parameter are shown in Figure 4 and
the results of sensitivity analysis are summarized in Table 5.
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Table 5. Sensitivity analysis for parameter.

Parameter Value Uncertainty (m) CPU Time (s)

Hidden Layer

1 0.50 8
3 0.48 8
5 0.27 10

10 * 0.18 14
20 0.23 24

Learning Rate

0.005 * 0.22 8
0.01 0.50 8
0.02 0.67 9
0.05 0.40 9
0.10 0.61 9

Sequence Length

1 * 0.25 8
3 0.38 10
6 0.65 19
9 1.00 21

12 1.25 28
24 1.50 54

Iterations

1 0.58 8
10 0.45 8

100 0.50 8
1000 * 0.11 22
10,000 0.10 158

*: Optimal value for flood forecasting model.

As a result of the sensitivity analysis, the optimal values for each parameter were those with a
hidden number of layers of 10, the learning rate was 0.005, there were 1000 iterations, and the sequence
length was 1 h in this study. However, in the case of sequence length, the setting value can be changed
depending on how the engineer sets the leading time. The recommended time of the sequence length
is more than 5 h, according to previous studies [25].

5.2. Model Scenarios

The optimal values derived for each parameter of LSTM through the sensitivity analysis were
applied in this study. Prior to setting up the model scenarios, the input data used in this simulation
were precipitation, outlet discharge of Paldang dam, water surface elevation of Hangang River, and
tidal level of Incheon, as mentioned in the previous section, and all the data were obtained from the
station at the study area. The collected input data is for 10 years. Moreover, two scenarios were set up
to evaluate the performance of the flood forecasting model and to evaluate the performance of the
hybrid activation function proposed in this study.

In the first scenario, the weights of the hybrid activation function were set from the near hyperbolic
tangent function (w1 = 0.1 and w2 = 0.9) to the near rectified linear unit function (w1 = 0.9 and
w2 = 0.1) because, the hyperbolic tangent function has an under-forecasting problem due to vanishing
gradient and the rectified linear unit function has an over-forecasting problem due to dying neuron.
Therefore, we compensated for these problems by changing the weights and found the optimal
value of weights for accurate forecasting. Moreover, the trend in frequency of utilization is moving
from hyperbolic tangent function to rectified linear unit function in many researches [30]. Therefore,
the forecasting accuracy of the hybrid activation function proposed in this study was checked and
the change of the forecasting accuracy was compared by changing the weights (w1 and w2) of the
hybrid activation function. The second scenario involved checking the applicability of the maximum
forecasting time when using the hybrid activation function and the change in the forecasting accuracy
was compared by changing the leading time. The simulation cases were summarized in Table 6.
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Table 6. Simulation cases for the application of the hybrid activation function.

Scenario

I II

Case w1 w2 Case Leading Time Interval

1 0.1 0.9 A 1 h
2 0.2 0.8 B 3 h
3 0.3 0.7 C 6 h
4 0.4 0.6 D 9 h
5 0.5 0.5 E 12 h
6 0.6 0.4 F 15 h
7 0.7 0.3 G 18 h
8 0.8 0.2 H 21 h
9 0.9 0.1 I 24 h

The 7 years of input data (from 2009 to 2015) were used as the training dataset and the 3 years
of input data (from 2016 to 2018) were used for the test dataset in order to simulate the scenarios.
In particular, 2016 was selected for model evaluation because the maximum water surface elevation
occurred in 2016. Moreover, the observed water surface elevation corresponding to about 50 h from
5–7 July 2016 was compared. The maximum water surface elevation (EL. 5.61 m) occurred on 5 July
2016 at 10 p.m. In addition, the input data were normalized to improve the accuracy of the forecasting
model and to improve the learning speed. The minmax normalization was used and rescaling (from 0
to 1) of the input data was applied to the simulation.

6. Results and Analysis

The training dataset and the test dataset were applied independently in this study. The performance
of the forecasting model for each scenario was evaluated by using model evaluation indexes such as
NSE, RMSE, and PE, which were derived by comparing the forecasting result and the observed data.
In addition, the forecasting water surface elevation and the observed water surface elevation were
compared for about 50 h on 5 July 2016 when the maximum water surface elevation in three years
(from 2016 to 2018) occurred.

6.1. Results from Scenario I

The result of the improvement of the forecasting accuracy when using the hybrid activation
function proposed in this study are summarized in Table 7. In addition, the forecasting result and
the observed water surface elevation are presented in Figure 5 according to the change of weight (w1

and w2).

Table 7. Summary of accuracy for various weights in Scenario I (Period: 5–7 July 2016, about 50 h).

Case RMSE (m) NSE (%) PE (m) Remark

I-1 0.38 98.4 0.13 No good
I-2 0.47 97.6 0.28 No good
I-3 0.41 98.1 0.10 No good
I-4 0.48 97.5 0.26 No good
I-5 0.38 98.4 0.43 No good
I-6 0.31 98.9 0.19 Accept/Good
I-7 0.37 98.5 0.15 Accept
I-8 0.43 97.9 0.11 No good
I-9 0.41 98.2 0.20 No good
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Figure 5. Results of the flood forecasting model in Scenario I.

The forecasting results were changed according to the weights (see Figure 6). And the forecasting
results were well matched with the observed water surface elevation at w1 = 0.6 and w2 = 0.4. In
terms of forecasting accuracy, the NSE was 98.9%, the RMSE was 0.31 m, and the PE was 0.19 m at
w1 = 0.6 and w2 = 0.4, according to Table 7. The forecasting results have an uncertainty. Therefore,
the confidence interval was examined by changing the weights (from wi = 0.1 to wi = 0.9 where,
i = 1,2). Most of the forecasting results were under-forecasted and they were overfitted at high water
surface elevations above the specified elevation (EL. 3.9 m) for flood management when compared with
the observed data. The results of the confidence interval when using the hybrid activation function
proposed in this study are summarized in Table 8.
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Figure 6. Results of the flood forecasting model according to Scenario II ((A) = 1 h leading time;
(B) = 3 h leading time; (C) = 6 h leading time; (D) = 9 h leading time; (E) = 12 h leading time; (F) = 15 h
leading time; (G) = 18 h leading time; (H) = 21 h leading time; (I) = 24 h leading time).

Table 8. Summary of confidence intervals for various weights in Scenario I.

Case CI * (%) Accuracy ** (%) Standard Deviation (m) Remark

I-1 99.0 29.0 0.12 No good
I-2 95.0 18.0 0.11 No good
I-3 95.0 25.0 0.10 No good
I-4 90.0 32.0 0.11 No good
I-5 80.0 40.0 0.10 No good
I-6 80.0 61.0 0.10 Accept/Good
I-7 80.0 46.0 0.11 Accept
I-8 95.0 32.0 0.11 No good
I-9 99.0 32.0 0.14 No good

* CI = Confidence Interval; ** accuracy = total number of correct forecasting/total number of observed data
(at 80.0% CI).

As shown in the I-6 case, the forecasting results of the hybrid activation function (w1 = 0.6 and
w2 = 0.4) obtained the smallest confidence interval and a better performance than the other cases.
In addition, the forecasting results of the hyperbolic tangent function and the rectified linear unit
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function were compared with the forecasting results of the hybrid activation function (w1 = 0.6 and
w2 = 0.4) proposed in this study at the high water surface elevation above the specified elevation
for flood management (EL. 3.9 m) which caused the flood damage at the riverside. The results are
summarized in Table 9.

Table 9. Comparison of the accuracy in various activation functions (above 3.9 m).

Activation Function RMSE (m) NSE (%) PE (m)

Hyperbolic Tangent
(w1= 0.0, w2= 1.0) 0.54 −21.2 0.30

Rectified Linear Unit
(w1= 1.0, w2= 0.0) 0.57 −38.9 0.40

Hybrid
(w1= 0.6, w2= 0.4) 0.32 58.1 0.19

When using the hybrid activation function, the RMSE decreased by 0.22 m compared with the
hyperbolic tangent function and decreased by 0.25 m compared with the rectified linear function
and the NSE increased by 79.3% compared with the hyperbolic tangent function and increased by
97.0% compared with the rectified linear function. Finally, the PE was 0.11 m and 0.21 m less than the
hyperbolic tangent function and rectified linear unit function, respectively. From these results, the use
of the hybrid activation function instead of the existing activation function had the effect of improving
the forecasting accuracy at a high water surface elevation. However, it can be confirmed that the
forecasting accuracy did not improve in all the data. Therefore, the hybrid activation function was more
effective only for forecasting a high water surface elevation than the existing activation function because
the forecasting water surface elevation in this study was highly affected by seasonal characteristics in
Korea. Moreover, the time series data of water surface elevation, tidal level, precipitation and discharge
have characteristics such as trend and seasonality. Even though the LSTM was generally used to
forecast the time series data [22], the high water surface elevation was under-forecasted because of
the lack of samples at a high water surface elevation. In particular, the Hangang River has a large
coefficient of river regime in terms of river discharge. In addition, the original activation functions have
the problems of a vanishing gradient and a dying neuron that occurred in the backpropagation training.
Thus, the original activation functions have the limitation of needing to resolve the under-forecasted
problem. Therefore, the hybrid activation function proposed in this study to partially solve the
problems of the vanishing gradient and the dying neuron show the more accurate forecasting than the
original activation functions, as shown in Table 9. Therefore, we conclude that the hybrid activation
function was suitable for forecasting a high water surface elevation in Hangang River.

6.2. Results from Scenario II

The maximum forecasting time for the hybrid activation function applying the results of Scenario
I (w1= 0.6 and w2= 0.4) is summarized in Table 10. In addition, the forecasting results and the observed
data were compared for about 50 h from 5 July 2016 as the leading time was changed (see Figure 6).
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Table 10. Summary of the accuracy for various leading times in Scenario II (Period: 5–7 July 2016 about
50 h, w1 = 0.6 & w2 = 0.4).

Case RMSE (m) NSE (%) PE (m) Remark

II-(A) 0.33 98.8 0.20 Accept/Good
II-(B) 0.31 98.9 0.19 Accept/Good
II-(C) 0.77 93.6 0.00 Accept
II-(D) 1.13 86.1 0.89 Not Good
II-(E) 1.31 81.2 1.69 Not Good
II-(F) 1.52 74.8 2.97 Not Good
II-(G) 1.93 59.3 2.98 Not Good
II-(H) 2.05 53.9 3.84 Not Good
II-(I) 2.33 40.8 4.25 Not Good

As the leading time interval increased, the value of water surface elevation was shifted to delay
the peak event and under-forecasted the values in the rising rim. The RMSE increased sharply after 3 h
of leading time while the NSE decreased sharply after 3 h of leading time (see Figure 7). Therefore, the
good forecasting of the water surface elevation was up to 3 h in terms of RMSE and NSE. When using
the hybrid activation function, the RMSE decreased by 0.10 m to 0.25 m compared with the hyperbolic
tangent function and the rectified linear function, and the NSE increased by 3.2% to 20.1% compared
with the hyperbolic tangent function and the rectified linear function. Finally, the PE was 0.03 m to
0.41 m less than the hyperbolic tangent function and the rectified linear unit function, respectively.
From the results of Scenario II (see Table 11), it can also be considered that the use of the hybrid
activation function could partially solve the vanishing gradient and dying neuron problems through
accurate forecasting results at a high water surface elevation. Moreover, it was considered that the
leading time interval was two times longer than the single activation functions when using the hybrid
activation function. However, when using the hybrid function, it was shown that the accuracy of
the forecasting was poor after 3 h of leading time interval. The reason for this was that the value of
partial the autocorrelation coefficient of the water surface elevation at Hangang River was under the
95% confidence interval after 3 h of leading time interval (the range of 95% confidence interval was
−0.2 to 0.2 in the partial autocorrelation analysis). Therefore, it was shown that the correlation of the
water surface elevation was significant up to 3 h in Hangang River (see the small figure in Figure 8).
However, in the case of PE, accurate forecasting was performed up to 6 h of leading time. Thus, the
leading time interval was acceptable up to 6 h because the accurate forecasting of the peak water
surface elevation is also important in flood forecasting.
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Figure 7. Overall results from Scenarios I and II. (A) Scenario I; (B) Scenario II.
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Table 11. Comparison of the accuracy in various activation function in Scenario II.

Case
Hyperbolic Tangent Rectified Linear Unit Hybrid

RMSE (m) NSE (%) PE (m) RMSE (m) NSE (%) PE (m) RMSE (m) NSE (%) PE (m)

II-(A) 0.43 95.2 0.25 0.42 95.6 0.23 0.33 98.8 0.20
II-(B) 0.45 92.3 0.25 0.48 93.4 0.21 0.31 98.9 0.19
II-(C) 0.90 86.8 0.49 0.88 88.6 0.41 0.77 93.6 0.00
II-(D) 1.23 80.8 1.05 1.28 83.3 0.95 1.13 86.1 0.89
II-(E) 1.55 78.2 1.80 1.48 79.5 1.90 1.31 81.2 1.69
II-(F) 1.86 66.2 3.11 1.82 68.3 3.02 1.52 74.8 2.97
II-(G) 2.08 48.3 3.55 2.03 52.1 3.23 1.93 59.3 2.98
II-(H) 2.33 38.6 4.12 2.28 40.9 4.03 2.05 53.9 3.84
II-(I) 2.58 20.7 4.65 2.66 25.8 4.55 2.33 40.8 4.25Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 21 
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6.3. Flood Risk Assessment

The virtual flood forecasting, defined as the forecasting of flood occurrence with the data-driven
model developed in this study, was performed using the model’s results and the metrices for
classification evaluation were used to evaluate the model. The criteria for flood forecasting was
assumed to be above the specified elevation in Hangang River (EL. 3.9 m) and reviewed for one year,
2018. The metrices for the classification evaluation were accuracy, precision, and recall. Moreover, the
confusion matrix for the binary classification and the corresponding array representation were used as
shown in Table 12.

Table 12. Confusion matrix for binary classification and the corresponding array representation used
in this study.

Actual Flood Class Actual Non-Flood Class

Forecasting Flood Class True Flood (t f ) False Non-Flood ( f n)
Forecasting Non-Flood Class False Flood ( f f ) True Non-Flood (tn)
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The results of the classification evaluation are summarized in the Table 13 according to the
activation function. In terms of the accuracy, all the activation functions have the same performance in
flood forecasting. Moreover, in terms of the precision, the use of the hybrid activation function showed
better performance than the existing activation functions and in terms of the recall, it was also shown
that the hybrid function has a good performance for forecasting flood. However, the improvement
of model performance with the hybrid activation function was not noticeable compared with the
forecasting surface elevation with a hybrid activation function because the total samples of flood
events were too small to evaluate the performance of model, especially the number of false non-flood
conditions ( f n) and false flood conditions ( f f ). Nevertheless, the model with the hybrid activation
function was suitable for forecasting flood from the results of virtual flood forecasting because the
accurate forecasting performed at a high water surface elevation with the hybrid activation function.
In addition, it was considered that the accurate forecasting water surface elevation in the high water
surface elevation conditions was an important factor in performing accurate flood forecasting.

Table 13. The results of the classification evaluation according to the activation function.

Activation Function Accuracy * Precision * Recall *

Hyperbolic Tangent **
(w1 = 0.0, w2 = 1.0) 0.99 0.88 0.84

Rectified Linear Unit ***
(w1 = 1.0, w2 = 0.0) 0.99 0.90 0.76

Hybrid ****
(w1 = 0.6, w2 = 0.4) 0.99 0.95 0.84

* Accuracy = (t f + tn)/(t f + tn + f f + f n); Precision = (t f )/(t f + f f ); Recall = (t f )/(t f + f n); ** Hyperbolic
Tangent (t f = 19, tn = 8245, f f = 2, f n = 6); *** Rectified Linear Unit (t f = 21, tn = 8244, f f = 3, f n = 4); **** Hybrid
(t f = 21, tn = 8246, f f = 1, f n = 4).

7. Conclusions

The data-driven model was used for forecasting the water surface elevation in a tidal river and
applied to Hangang River, Korea, in this study. The LSTM was constructed using the TensorFlow,
an open-source library of deep learning and hourly data, such as precipitation, outlet discharge and
tidal level were used as the input dataset through a t-test analysis. In particular, the hybrid activation
function was proposed to resolve a specific issue of the single activation function, which is that they
tended to under-forecast the results at the conditions for high water surface elevations above EL. 3.9
m, the designated elevation for flood management in Hangang River. The parameters of LSTM were
determined through the sensitivity analysis, in which the number of hidden layers was 10, the learning
rate was 0.005, and there were 1000 iterations. Moreover, sequence length, which is the most important
parameter that determines the temporal amount of learning information during the learning time, was
simulated for various leading times. Finally, the forecasting results, compared with the observed data,
show improvement in the prediction accuracy (Scenario I) and the enhancement of the application
range of the leading time interval (Scenario II) with the hybrid activation function.

First, for the application of the hybrid activation function, the optimal performance of the
forecasting model was obtained when w1 = 0.6 and w2 = 0.4. The forecasting accuracy of all the data
was presented to be 0.31 m in RMSE and 98.9% in NSE. However, in this case, the accuracy of the
forecasting results was the same as the existing activation function, such as the hyperbolic tangent and
ReLU. On the other hand, the RMSE was 0.32 m, NSE was 58.1%, and PE was 0.19 m at the conditions
for high water surface elevation, which can cause flood damage at the riverside. These results show
that the RMSE decreased by 0.22–0.25 m, PE also decreased by 0.11–0.21 m, and NSE increased up to
79.3%–97.0% compared with the existing single activation function. Therefore, the hybrid activation
function proposed in this study was suitable for forecasting high-water levels above the specified
elevation of Hangang River.
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Secondly, the limitation of the application range of the leading time interval was obtained when
the hybrid activation function was applied, which can be accurately forecasted at a high water surface
elevation. We found a lower accuracy of forecasting at the longer leading time interval. The accuracy
of forecasting was acceptable up to 3 h in terms of RMSE and NSE because the value of the partial
autocorrelation coefficient about the water surface elevation at Hangang River was under the 95%
confidence interval after the 3 h leading time interval. Therefore, it was considered that the correlation
of the water surface elevation was significant up to 3 h in Hangang River. However, in the case of PE,
the accurate forecasting was performed up to 6 h of leading time. Therefore, the leading time interval
was acceptable up to 6 h because the accurate forecasting of the peak water surface elevation was also
important in terms of flood forecasting.

Thirdly, the improvement of model performance for virtual flood forecasting with the hybrid
activation function was not noticeable compared with the forecasting surface elevation with the hybrid
activation function because the total samples of flood events were too small to evaluate the performance
of the model. Nevertheless, the model using the hybrid activation function proposed in this study
showed a better performance accuracy, precision, and recall than the other single activation functions
when performing the virtual flood forecasting using the model’s results of the water surface elevation
(in which accuracy was 0.99, precision was 0.95, and recall was 0.84). From these results, it can be
seen that the accurate forecasting of high-water surface elevations was the most important factor in
performing more accurate flood forecasting.

In this study, the LSTM based on deep learning was used as a complementary means of a physical
and numerical model for forecasting water surface elevation in a tidal river, Hangang River, Korea.
In addition, the hybrid activation function was proposed to improve the accuracy of forecasting the
high-water levels. In the near future, the forecasting results of the model proposed in this study will
more accurately identify the effects of climate change on riverside and they are also expected to be
used as a basis for establishing an emergency action plan (EAP) along riversides. In addition, if the
information is provided to citizens through personal internet media, such as SNS, promptly, it will be
possible to evacuate in advance and reduce human injury and damage.
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