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Featured Application: The laser hardening process is suitable for extending the life of
many engineering components, such as bearings, shafts and gears. The proposed genetic
algorithm-optimized empirical model allows us to speed up the characterization of the process.

Abstract: This study proposes a genetic algorithm-optimized model for the control of the fatigue life
of AISI 1040 steel components after a high-power diode laser hardening process. First, the effect of the
process parameters, i.e., laser power and scan speed, on the fatigue life of the components after the
laser treatment was evaluated by using a rotating bending machine. Then, in light of the experimental
findings, the optimization model was developed and tested in order to find the best regression model
able to fit the experimental data in terms of the number of cycles until failure. The laser treatment was
found to significantly increase the fatigue life of the irradiated samples, thus revealing its suitability
for industrial applications. Finally, the application of the proposed genetic algorithm-based method
led to the definition of an optimal regression model which was able to replicate the experimental
trend very accurately, with a mean error of about 6%, which is comparable to the standard deviation
associated with the process variability.
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1. Introduction

The request for more precise processing operations for an improvement in the mechanical
performances of structural components have made traditional manufacturing processes unsuitable
for modern engineering. For this reason, innovative and advanced production processes have been
introduced to address the needs of modern industry, especially when dealing with technological
frontiers. In fact, one of the most important targets to achieve is the satisfaction of the stringent
requirements of today’s designers and producers in terms of the life of the parts [1,2]. In particular,
many engineering components, such as bearings, shafts and gears, must resist the wearing phenomena
with a hard surface and, at the same time, a tough inner core should guarantee the absorption of energy
without fracture when subjected to high stress [3,4]. Such heterogeneous properties can be engineered
by selectively hardening the surface using many different approaches, such as heat and mechanical
treatments, alloying or coating the surface of the components, etc. However, these processes are often
expensive and time consuming. Moreover, they usually do not allow for the selective treatment of small
portions of the component. In light of this, lasers have appeared as an innovative and valuable solution
for the thermal surface treatment of steel components thanks to their selectivity, ease of use and control,
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which facilitates their manipulation [5–7]. In fact, lasers can provide localized surface heating. Part of
this heat is transferred to the workpiece, leading to an increase in its surface temperature and resulting,
therefore, in its austenitization. In fact, alternating heating and cooling phases very quickly on the
surface can transform it into martensite, which is harder than the bulk material [8,9]. Moreover, with a
laser, the heat input can be controlled very precisely and selectively on the surface of the components,
due to the ability to accurately define the illuminated area, together with the short timescale of energy
transfer into the material [10]. This ensures a reduced and localized deformation of the part, therefore
limiting, and eliminating in the best case, any further post-processing operation [10,11]. However,
it must be noted that there are two main sources of residual stresses during the heat treatments of
steels: (i) stresses caused by the transformation of the austenite; (ii) thermal stresses caused by the
different cooling rates and strain incompatibilities [12]. In particular, the resulting stresses are of the
compressive type, which lead to the improved hardness of the surface [13]. In fact, the internal stresses
are limited only to the depth at which the martensitic transition occurs, thus resulting in the limited
distortion of the component.

Among the different laser systems available today, high-power diode lasers (HPDL) are particularly
suited for the hardening treatments due to the rectangular or elliptical shape of the laser beam profile,
which is able to ensure a uniform heating on large areas of the treated surface [14,15]. This is an
essential requirement for the laser treatment to be effective [16]. In fact, typical industrial CO2 lasers
are not able to produce an energy flux into the stainless steel, and metals in general, high enough to
promote the hardening process [17]. This is usually due to the reflection of the metal materials at
the CO2 wavelength. However, the application of a coating on the component to be heat treated can
increase the absorptivity at the CO2 wavelength [18]. But this introduces additional costs to the process
both for its application and the subsequent removal. However, the use of high-power diode lasers
avoids coating the surface of the workpiece because they produce wavelengths in which metals show
greater absorptivity [17,19,20].

In thermal-based surface treatments, as it is for laser hardening, the main target is to achieve the
requested mechanical performance, e.g., strength, hardness, wear resistance, etc., while minimizing
thermal deformation. However, very often, these requirements are mutually exclusive and, therefore,
the optimization of the process becomes a challenging task. In this context, the development of
predictive models appears to be a virtual solution in order to reduce time and costs in finding the
optimal operational process conditions. To this end, many research studies have focused on the
development of relationships between process parameters and process responses [21–23]. Thus,
research in laser hardening process development, optimization, modelling and simulation plays a
critical role in advancing surface engineering science and technology [24].

In this light, the present work is aimed at proposing a genetic algorithm-optimized empirical
model able to describe the fatigue behaviour in terms of the number of cycles until failure for different
sets of process parameters for the laser hardening process of AISI 1040 medium carbon steel. The choice
of such a material is due to its suitability for thermal hardening treatments and because it is commonly
used in structural components as gears, shafts, axles, bolts, and so forth [25]. The experimental
campaign [26] showed an overall improvement in the fatigue life of the components after the laser
treatment, also exhibiting a significant dependence on the process parameters, i.e., laser power and
scan speed. Moreover, the genetic algorithm-based regression model developed is able to replicate the
experimental data very accurately, thus revealing its suitability for laser hardening process optimization.

2. Materials and Methods

The starting material is a commercial medium carbon steel (AISI 1040, [27]). The typical mechanical
and thermal properties of the AISI 1040 steel are reported in Table 1, while the chemical composition
is described in Table 2. Starting from 2 m bars, the geometry reported in Figure 1 was obtained by
machining the samples using a milling machine with medium finishing inserts. The thermal treatments
for surface hardening were performed using a 1.5 kW high-power diode laser (Rofin-Sinar model
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DL015, Plymouth, UK), with a wavelength of 940 nm and an elliptical spot of 0.6 and 1.9 mm along
the minor and major axes, respectively. During the laser treatments, the samples were held and
rotated on a CNC turning device (DENFORD, Brighouse, West Yorkshire, UK), as reported in Figure 2.
For protection and insulation purposes, a constant inert gas flow of 2.5 L/h of Argon was directed to
the surface of the sample.

Table 1. Mechanical and thermal properties of AISI 1040 [27].

Property Value(s) Unit

Tensile strength 500 MPa
Yield strength 415 MPa

Young’s Modulus 200 GPa
Poisson coefficient 0.3 -
Hardness Rockwell 13 -

Heat capacity * 486–770 J/kgK
Thermal conductivity * 30.1–50.7 W/mK

*: evaluated in the range 273–973 K. In particular, the thermal conductivity increases for decreasing temperature.

Table 2. Chemical composition of AISI 1040 [27].

Element Wt%

C 0.37–0.44
Mn 0.50–0.80
Si 0.15–0.40
P ≤0.035
S ≤0.035
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The experimental factors investigated were laser power (P) and scan speed (Ss), as reported in
Table 3. In particular, the scan speed (i.e., peripheral speed) is calculated as the product between the
rotational speed and the radius of the samples middle section.

Table 3. Experimental factors. 5 terms of P × 5 terms of Ss = 25 experimental scenarios.

Factor Values Unit

Laser power (P) 100 150 200 250 300 W
Scan speed (Ss) 12 14 16 18 20 mm/s

The laser focus and the number of passes were fixed, respectively, at 0 and 1, because defocusing
the laser beam and increasing the number of times that the laser passed on the treated area reduced
the resulting hardness [19,28,29]. For each condition investigated, i.e., 5 terms of P × 5 terms of Ss,
the rotational speed and the beam feed were properly chosen to ensure no overlap in the laser scans
during the thermal treatment, and therefore only one pass [29]. All the tests were replicated three
times, with a total of 75 experimental tests. After that, a four-point rotating bending machine was
used to carry out the fatigue tests (see Figure 3), in order to evaluate the number of cycles until failure
(N). The samples were loaded with alternate cycles of tensile and compressive stresses as they were
simultaneously bent and rotated. To this end, the untreated samples were tested in order to identify the
value of the alternating stress to be adopted during the fatigue tests of the heat-treated samples so that a
low-cycle fatigue behaviour was assured, i.e., within the range 104–105 cycles for steel materials [30,31].
Therefore, from the resulting Wöhler curve (see Figure 4), the alternating stress was set at a value of
approximately 425 MPa, i.e., corresponding to a constant load F of about 120 N.
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2.1. Computational Procedure

Manufacturers and researchers are interested in finding the best relationship between input(s)
and output(s) with the aim of predicting and controlling the final quality of a process saving time
and costs. This is usually accomplished by using empirical models. However, the choice of the best
one is a challenging task that is not straightforward because of the very high number of possibilities,
especially when dealing with data affected by dispersion due to both process and measurement
variability. For this reason, in this work, a genetic algorithm (GA) is proposed and implemented in
order to find the best empirical model (see Equation (1)) and, therefore, for the global optimization of
the laser hardening process presented in this work in terms of the number of cycles until failure (NGA).
The choice of this evolutionary-based method is due to the ability to handle the optimization of many
variables in a robust and efficient way [32–35].

NGA(P, Ss) = k0 +
∑NT

i=1

(
ki·Pαi ·Ssβi

)
. (1)

Given a defined number of terms NT, Equation (2) represents a generic regression model in which
αi and βi are optimized using the proposed GA, while the empirical coefficients ki and the constant
term k0 are obtained with standard linear regression.

Figure 5 reports the procedure of the proposed algorithm as it is typically implemented: it consists
of four steps, i.e., initialization, selection, crossover and mutation [36]. In this case, the crossover
and mutation operators are used in parallel, in order to emphasize the gains in performance that
can be achieved from the concurrent application of operators with different and complementary
roles [37]. Furthermore, two other important concepts are the genetic encoding of the parameters and
the formulation of the fitness function, which are explained in the following Figure.
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The implementation of the genetic algorithm starts with the definition of a fixed number of
chromosomes, which represent, in this case, one of the possible regression models. At the beginning,
chromosomes are encoded and therefore represented in terms of a string of bits, octal numbers,
hexadecimal numbers, values, etc. [38]. In this study, real value encoding is adopted, in which every
chromosome is represented in terms of a set of real values. The main advantage of this scheme is given
by the direct representation of the parameters and by the fact that it avoids any intermediate encoding
and decoding steps [32].

In particular, each term of the model:

Ci = Pαi ·Ssβi , (2)

is encoded using two independent genes, i.e., the powers of the variables that constitute each term αi
and βi, i = 1, . . . , NT, with αi, βi ∈ Q, where Q is a discrete set of real values representing all the possible
considered exponents for the model. Finally, the coefficients of the regression model (ki, i = 0, . . . , NT)
are evaluated using a standard linear regression.

The initial population of models is generated by assigning to each gene a random value within
the chosen range. The fitness of this population is evaluated by the fitness function, which is built
according to the target of the study, thus returning a specific value for the variable of interest:

f = rms(NGA(Pi, Ssi) −NE(Pi, Ssi)), i = 1, . . . , c, (3)

where rms represents the root mean square operation, NGA(Pi, Ssi) is the result obtained by applying
the models of the initial population for the specific combination of parameters i, NE(Pi, Ssi) is the
corresponding experimental measure and c is the number of combinations. The aim of the genetic
algorithm is to find the best regression model which minimizes the fit value f .

Then, if the stop condition is not met, the initial population evolves into the next generation
through the genetic operators, i.e., selection (i), crossover (ii) and mutation (iii):

i. during new generation, the selection operator decides which chromosomes in the population
are transferred to the next one, while eliminating some of them. In this case, the decision
is made using the ranking method. In particular, it implies the selection of the individuals
by sorting them accordingly to their fitness values (see Equation (3)). Then, the best 50%
individuals are chosen to mate, while the remaining 50% are eliminated. In order to maintain
a constant number of individuals in the population, 50% new individuals are generated by
applying either crossover or mutation operators to the best ones;

ii. the crossover operator increases the variability of the population by letting two random
chromosomes, i.e., parents, to exchange genes between themselves, therefore producing a more
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powerful individual. Here, the random single-point crossover is considered and applied to
every chromosome, as shown in Figure 6;

iii. the mutation operator is used to avoid local convergence of the genetic algorithm by introducing
random variation in the genome of some individuals [32,39]. In fact, while increasing the
number of generations, even if the crossover rate is high, chromosomes become more and
more similar to each other, therefore blocking diversity and preventing the occurrence of more
powerful generations [36]. In particular, the mutation operator only starts after some new
generations with a fixed probability of occurrence. As in the case of the crossover, a random
single-point mutation is considered (see Figure 7).Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 14 
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Finally, in order to ensure the global convergence of the algorithm, it is iterated until a defined
number of generations in which a stationary fitness value is reached.

3. Results and Discussion

Among the experimental combinations investigated in this research work (see Table 3), it is
possible to highlight three main scenarios:

i. laser treatments carried out at laser power lower than 150 W did not lead to significant changes
in the substrates’ morphology and any grain structure modification was observed;

ii. the treatments at 150 and 200 W ensured the best performances. In fact, these process conditions
led to a change in substrate properties without melting phenomena, especially with scan speed
in the range 16 to 20 mm/s;

iii. when increasing the laser power to 250 or 300 W, surface melting was observed regardless of
the scanning speed.

These results are in good agreement with the pertinent literature [40] and are supported by
Figure 8, in which it can be observed that increasing the scan speed by values greater than 14 mm/s,
increases the number of cycles until failure, which is almost double the number of cycles obtained
with the untreated samples (U label). The improvement in the fatigue life can be attributed to the
formation of a superficial annealed martensitic structure due to thermal phenomena induced by the
laser treatment [15,25]. In particular, the amount of thermal energy the steel can absorb during the
laser treatment decreases, and the process reaches the condition in which it is possible to have the
martensitic transition. The subsequent laser scan causes a further heat treatment which leads to a
slight annealing of the steel, i.e., back tempering phenomenon [41,42].
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It is worth noting that, during the tests, the coordinate-measuring machine showed no
appreciable deformations. In fact, the axial symmetry of the laser treatment helped to compensate for
possible distortions.

For sake of clarity, Figure 9 shows a cross section of the steel specimen treated at P = 200 W
and Ss = 20 mm/s. In particular, it can be seen that the martensitic structure, i.e., the light grey area,
reaches a thickness of about 182 µm. On the other hand, Table 4 reports the thickness of the martensitic
structure, i.e., heat affected zone (HAZ), obtained for some of the investigated values of the scan
speed. In particular, when increasing the scan speed the thickness of the martensitic structure increases,
according to the fact that, for lower values of the scan speed, the interaction time is greater and the
aforementioned back tempering phenomenon takes place.
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Figure 9. Optical micrography of a laser hardened cross-section: transition from the martensitic
structure (light grey) to the ferrite and perlite structure (dark grey) for P = 200 W and Ss = 20 mm/s.

Table 4. Thickness of the martensitic structure (HAZ) for different values of scan speed.

Ss, mm/s HAZ, µm

12 67
16 127
20 182

From this experimental campaign it is evident that, among the studied process parameter values,
only some combinations allow the effective obtainment of the hardening of the samples (see Table 5).
Therefore, only these values are used in the optimization process by means of genetic algorithm,
as described in Section 2.1.
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Table 5. Combination of parameters (c ) used in the optimization process. The ‘U’ label refers to the
untreated samples.

c Ss, mm/s P N

1 18 150 114,754 ± 20,695
2 18 200 224,327 ± 39,017
3 18 250 146,136 ± 18,011
4 20 150 421,982 ± 34,238
5 20 200 364,860 ± 33,197
6 20 250 170949 ± 16,390
U - - 92,608 ± 10,698

Among these optimal combinations, the best one is given by P = 150 W and Ss = 20 mm/s leading
to an improvement in the fatigue life more than 4 times that of the untreated samples, i.e., 421,982
against 92,608 cycles until failure, as reported in Table 5.

It is important to highlight here that the laser treatments were carried out in order to maintain a
constant scan speed. To this end, the rotating speed of the sample was changed according to the varying
section when moving from the largest section zone to the smallest one. Moreover, all the parameters
were chosen to avoid, or at least limit, the overlapping phenomenon. This means that the interaction
time between the laser beam and the specimen is different at the various scan speeds investigated.
In particular, the lower the scan speed, the higher the interaction time. It is worth mentioning that,
as reported in the literature [42,43], the interaction time is suggested to be proportional to the laser
power. Therefore, increasing the laser power over 250 W, the heat transferred to the sample is greater
and the melting phenomena occurs. On the other hand, a laser power that is too low, i.e., 100 W, in
combination with the investigated scan speed values, does not promote the martensitic transition, as it
happens for too high and too short a treatment time, respectively.

Genetic Algorithm-Based Optimization

The aim of this step is to find the best regression model able to fit the experimental data among
the infinite possible combinations of input parameters and their powers in terms of the number of
cycles until failure (NGA), as reported in Equation (1).

A preliminary investigation aimed at identifying the best number of terms for the optimized
regression model. To this end, the number of terms was increased starting from two, i.e., one term plus
the constant one, to the number of terms after which any more decrease in the fitness value is obtained.
Additionally, three different discrete sets of real values representing all the possible exponents were
investigated (see Table 6). In this way, the explored space is discrete and contains the number of
exponents to the power of NT·NV possible models, where NV is the number of variables constituting
each term (2 in this case).

Table 6. Discrete set of real values representing the possible exponents.

Set Exponents

Q1 {0, 1, 2}
Q2 {−2, −1, 0, 1, 2}
Q3 {−2, −1, −0.5, 0, 0.5, 1, 2}

Moreover, in order to evaluate the capability of the optimized models in representing the
experimental findings, they were compared with the regression model typically used for statistical
investigations, as in the case of two-way ANOVA test, i.e., considering the effect of each single
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parameter and their combinations [44]. In this case, the set of possible exponents QR can be defined as
{0, 1}, while the statistical regression model is described by the following equation:

NR = k0 + k1·Ss + k2·P + k3·Ss·P. (4)

Figure 10 shows the results obtained during the preliminary investigation. In particular, among
the different combinations of numbers of terms and sets of exponents, the worst one, i.e., the one
with the highest fitness value, is the model with only two terms, as expected. While the best models
were obtained with four terms, adding more terms did not lead to a decrease in the fitness value. It is
important to note that, for the regression model, the number of terms is set at four, which is the number
of possible combinations. The resulting optimized models are described by Equations (5)–(7), while
Table 7 reports the relative empirical coefficients, evaluated by means of standard linear regression.

N1
GA = k1

0 + k1
1·P + k1

2·Ss2 + k1
3·Ss2

·P2 (5)

N2
GA = k2

0 + k2
1·

1
Ss·P2 + k2

2·
Ss2

P
+ k2

3·Ss2
·P (6)

N3
GA = k3

0 + k3
1·

1
Ss·P

+ k3
2·

Ss
√

P
+ k3

3·Ss·
√

P (7)
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Table 7. Empirical coefficients of the genetic algorithm-optimized models.

Coefficients *
Set

Q1 Q2 Q3

ki
0 −6.420 1.587 8.314

ki
1 6.628 −0.959 −4.016

ki
2 5.147 2.019 4.539

ki
3 −4.993 −2.271 −8.462

*: i = 1, 2, 3 refers to the investigated sets of exponents Qi.

As shown in Figure 10, the statistical model is characterized by a fitness value greater, yet more
negative, than the optimal value obtained with the genetic algorithm, i.e., −0.1052 against −0.0622.
In order to better clarify this result, Figure 11 shows the root mean square error and the standard
deviation of the regression models compared with the experimental findings for each combination of
parameters (see Table 5).
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As shown in Figure 11, the genetic algorithm-optimized models are able to accurately replicate the
experimental results with an error almost half that of the mean error obtained with the statistical model,
i.e., 0.0603 against 0.0998. Moreover, these models are characterized by a mean error comparable to and
even lower than the standard deviation of the experimental data, i.e., 0.0603 against 0.0723, which is
associated with the variability of the process, highlighting the good capability of the model to replicate
the experimental trend. It is worth noting that the best optimized model is given by using the set of
exponents Q3 (see Table 6), for which the mean error is about 0.0591. For completeness, Figure 12
shows the optimal model results.
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Figure 12. Optimal genetic algorithm (GA)-based model results.

In general, convergence was reached in less than 15 generations, as shown in Figure 13. In each
generation, 1000 individuals (i.e., models) were evaluated. In practice, the GA explores a space of
cardinality C � 5.7·106 solving only 1.5·104 models. A further 50 generations were computed to verify
if mutation can move the optimum from a local minimum toward a better solution. The optimization
algorithm was run several times, always obtaining the same result, ensuring in this way that the GA
reached a global minimum.
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4. Conclusions

The 1.5 kW continuous wave high-power diode laser used in this study demonstrated a high
suitability for the surface hardening of AISI 1040 medium carbon steel substrates.

The inspection of the cross-sections of the specimens by means of optical microscopy revealed
two different main areas: (i) an outer area characterized by a homogenous distribution of the annealed
martensite and (ii) an unaltered underling area made of a ferrite and perlite structure.

The laser thermal surface treatment increases the fatigue life of the treated material with respect
to the untreated one. In particular, within the tested range of the parameters, the most suitable thermal
conditions are obtained using a laser power of 150 W and a scan speed of 20 mm/s, reaching a fatigue
life up to four times longer.

The proposed genetic algorithm-based method appeared to be a fast and effective solution for
finding the optimal regression model able to replicate the experimental trend. In particular, the mean
error achieved is about 5.9%, the same as the standard deviation of the experimental results. Therefore,
the simulation reveals a good capability for the proposed solutions to be very helpful in predicting,
controlling and managing the laser surface hardening process.
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