
applied
sciences

Article

Simplifying the Verification of Simulation Models
through Petri Net to FlexSim Mapping

Pau Fonseca i Casas 1,* , Daniel Lijia Hu 2, Antoni Guasch i Petit 2 and Jaume Figueras i Jové 2

1 Statistics and Operations Research Department, Universitat Politècnica de Catalunya, 08034 Barcelona, Spain
2 Automatic Control Department, Universitat Politècnica de Catalunya, 08028 Barcelona, Spain;

danihu@outlook.com (D.L.H.); toni.guasch@upc.edu (A.G.iP.); jaume.figueras@upc.edu (J.F.iJ.)
* Correspondence: pau@fib.upc.edu

Received: 27 December 2019; Accepted: 12 February 2020; Published: 19 February 2020
����������
�������

Abstract: Simplifying the encoding of a simulation conceptual model representation reduces the
number of errors that will be detected in the verification phase. In this paper, we present a mapping
between Petri nets, a well-known formalism, and FlexSim, a well-known simulation tool. The
proposal is illustrated through an example of how a model specified in a Petri net can be encoded
easily, reducing the time needed to understand and verify the model. In the proposed methodology,
the mapping must be defined at the initial stage of the encoding, starting from (in this case) a Petri
net conceptual model, and ending at the encoding tool (FlexSim in this case). The main advantages of
the proposed methodology are discussed.

Keywords: discrete simulation; Petri nets; FlexSim; mapping; verification

1. Introduction

The development of any simulation project is guided by the verification, validation and
accreditation processes. The three phases must be carried out in agreement with the hypotheses that
govern the model, which are mainly defined in the conceptual model.

The conceptual model to be used to represent the systems must be selected in agreement with the
client and experts in the system. In order to simplify the subsequent validation, the experts must focus
on the conceptual model and not on any specific encoding, so they must feel confident with the language
used to produce conceptual representations of their system. The only requirements for these languages
are that they must be complete and unambiguous, and able to define the structure and the behavior
of all the model elements, all of which are met by languages like the Specification and Description
Language (SDL) [1,2], Petri nets [3–5] and Discrete Event System Specification (DEVS) [6] Interestingly
once there has been a formal definition of a simulation model one can undertake transformations of the
model from one of these formal representations to another; as an example, taking DEVS as a common
formalism [7], one can transform an SDL model to DEVS [8] or Petri nets to DEVS [9]. The possibility
of transforming the conceptual model from one representation to another allows it to be independent
of the final language used to represent this conceptual model. The structure and behavior of the model
are preserved.

In this paper we show a mapping between timed Petri nets and FlexSim, proposing a methodology
that will simplify the verification and encoding process. This methodology opens the door to the
implementation of automatic encoding algorithms for different tools. The mapping can also be extended
to colored timed Petri nets since the concept of color is equivalent to the concept of an attribute in the
FlexSim target simulation environment. However, it has been decided to narrow the scope of this
article mostly to timed Petri nets to facilitate the description of the methodological process.

Appl. Sci. 2020, 10, 1395; doi:10.3390/app10041395 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-6747-9736
http://dx.doi.org/10.3390/app10041395
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/4/1395?type=check_update&version=2

Appl. Sci. 2020, 10, 1395 2 of 17

Figure 1 shows the simplified modeling process [10]; in red are the aspects that will be simplified
with the application of the proposed methodology.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 2 of 18

Figure 1 shows the simplified modeling process [10]; in red are the aspects that will be
simplified with the application of the proposed methodology.

Figure 1. Simplified modeling process for a simulation project [10], showing in red the aspects that
will be affected by the proposed methodology. The conceptual model-tool mapping simplifies the
verification process and encoding.

2. Literature Review

The need for a formal representation to include the stakeholders in the model validation and
verification is becoming increasingly relevant because of the growing complexity of the models [11], the
use of languages to simplify the communication between the parts to accelerate the agreement is
encouraged. For example, in the frame of health, [12] discusses how to assure the engagement of the
stakeholders in the modelling process, proposing the use of diagrams and drawings to ensure that
the model is fully understood and that an agreement on the parts exists. On the same scope, some
solutions are proposed aligned with the idea of representing graphically the model, like on [13,14]
where the use of Business Process Model and Notation (BPMN) is proposed, see [15], extending it in
order to make it fully executable and unambiguous. Along the same lines, [16] proposed the use of
SDL; in that case, due to the nature of the language, SDL is complete and not ambiguous, and one
can define the model involving the stakeholders without the need of add an extension to the
language. This codification in SDL can be achieved automatically if one uses a tool that understands
any of these formal languages, like [17–19], among many others. Petri Nets, like SDL does not need
the addition of any extension, hence a model defined in a Petri Net is complete and can be fully codified.
Petri Nets become an excellent alternative to represent simulation models and to analyze the correctness
of executing a task or representing its behavior, in multiple areas, like in robotics and microcontrollers
[20,21], to study biological and social systems [22–24] or infrastructures and logistics analysis [25–27]
among other multiple scopes, hence several works exist to transform to Petri Nets models
represented in other languages, like BPMN or Flowcharts, see [28–30] as an example.

In the frame of Petri nets there exists a database that, although not exhaustive, collects the most
important software capable of running a model represented with a Petri Net, see [31]. Some studies

Figure 1. Simplified modeling process for a simulation project [10], showing in red the aspects that
will be affected by the proposed methodology. The conceptual model-tool mapping simplifies the
verification process and encoding.

2. Literature Review

The need for a formal representation to include the stakeholders in the model validation and
verification is becoming increasingly relevant because of the growing complexity of the models [11],
the use of languages to simplify the communication between the parts to accelerate the agreement is
encouraged. For example, in the frame of health, [12] discusses how to assure the engagement of the
stakeholders in the modelling process, proposing the use of diagrams and drawings to ensure that the
model is fully understood and that an agreement on the parts exists. On the same scope, some solutions
are proposed aligned with the idea of representing graphically the model, like on [13,14] where the use
of Business Process Model and Notation (BPMN) is proposed, see [15], extending it in order to make it
fully executable and unambiguous. Along the same lines, [16] proposed the use of SDL; in that case,
due to the nature of the language, SDL is complete and not ambiguous, and one can define the model
involving the stakeholders without the need of add an extension to the language. This codification in
SDL can be achieved automatically if one uses a tool that understands any of these formal languages,
like [17–19], among many others. Petri Nets, like SDL does not need the addition of any extension,
hence a model defined in a Petri Net is complete and can be fully codified. Petri Nets become an
excellent alternative to represent simulation models and to analyze the correctness of executing a task
or representing its behavior, in multiple areas, like in robotics and microcontrollers [20,21], to study
biological and social systems [22–24] or infrastructures and logistics analysis [25–27] among other
multiple scopes, hence several works exist to transform to Petri Nets models represented in other
languages, like BPMN or Flowcharts, see [28–30] as an example.

Appl. Sci. 2020, 10, 1395 3 of 17

In the frame of Petri nets there exists a database that, although not exhaustive, collects the most
important software capable of running a model represented with a Petri Net, see [31]. Some studies
have been undertaken to generate cose automatically, from this formalization of the models [32–34],
but few analyses have been undertaken regarding how to map a conceptual model to one of the
more popular all-purpose simulation tools [35] so that through this mapping these generic simulation
tools can be used and to take advantage of the features that for a specific project may be needed,
without losing the independence of the model with respect to the tool used for the codification. Some
applications that combines the use of Petri Nets and FlexSim environment exist, like [36,37], with a
mapping in the context of Arena environment [38] and Petri Nets [39], but no description on how to
undertake mapping between Petri Nets and the FlexSim environment is detailed. Doing so gives the
modelers a clearer picture of how the final tool will encode the different assumptions. Moreover, it
guides the encoding process which is simplified and highly automatized.

3. Petri Nets

Petri nets have become established as a powerful modeling formalism in computer science, system
engineering, and many other disciplines. They combine well-defined mathematical theory with a
graphical representation of dynamic system behavior. The theoretical component provides a precise
model of the system behavior for analysis while the graphical component simplifies the visualization
of complex systems and enables the representation of changes in the system. This combination is the
main reason for the huge spread of the use of Petri Nets [40].

3.1. Basic Definition

A Petri net, see Figure 2, is a specific type of graph comprising three kinds of objects: places,
represented by circles; transitions, represented by bars, and directed arcs, which connect places and
transitions. The dynamic nature of the system is represented by the movement of entities, in a Petri
net, and this can be represented as tokens (drawn as dots) that are dynamically created and destroyed
through the net.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 18

have been undertaken to generate cose automatically, from this formalization of the models [32–34],
but few analyses have been undertaken regarding how to map a conceptual model to one of the
more popular all-purpose simulation tools [35] so that through this mapping these generic
simulation tools can be used and to take advantage of the features that for a specific project may be
needed, without losing the independence of the model with respect to the tool used for the
codification. Some applications that combines the use of Petri Nets and FlexSim environment exist,
like [36,37], with a mapping in the context of Arena environment [38] and Petri Nets [39], but no
description on how to undertake mapping between Petri Nets and the FlexSim environment is
detailed. Doing so gives the modelers a clearer picture of how the final tool will encode the different
assumptions. Moreover, it guides the encoding process which is simplified and highly automatized.

3. Petri Nets

Petri nets have become established as a powerful modeling formalism in computer science,
system engineering, and many other disciplines. They combine well-defined mathematical theory
with a graphical representation of dynamic system behavior. The theoretical component provides a
precise model of the system behavior for analysis while the graphical component simplifies the
visualization of complex systems and enables the representation of changes in the system. This
combination is the main reason for the huge spread of the use of Petri Nets [40].

3.1. Basic Definition

A Petri net, see Figure 2, is a specific type of graph comprising three kinds of objects: places,
represented by circles; transitions, represented by bars, and directed arcs, which connect places and
transitions. The dynamic nature of the system is represented by the movement of entities, in a Petri
net, and this can be represented as tokens (drawn as dots) that are dynamically created and
destroyed through the net.

Figure 2. Example of a basic Petri net.

A Petri net is formally defined as a 5-tuple N = (P, T, A, W, M0), where:

• P = {P1, P2, P3,....., Pnp} is a finite set of places;
• T = {T1, T2, T3,....., Tne} is a finite set of transitions;
• A = {A1, A2, A3,....., Ana} is a finite set of arcs that connect places to transitions and vice

versa;
• W: Ai → {1, 2, 3,....} ∀ Ai is the weight associated with each arc;
• M0: Pi → {1, 2, 3,....} ∀ Pi is the initial number of entities in each place (initial

marking).

Figure 2. Example of a basic Petri net.

A Petri net is formally defined as a 5-tuple N = (P, T, A, W, M0), where:

• P = {P1, P2, P3,, Pnp} is a finite set of places;
• T = {T1, T2, T3,, Tne} is a finite set of transitions;
• A = {A1, A2, A3,, Ana} is a finite set of arcs that connect places to transitions and vice versa;
• W: Ai→ {1, 2, 3,} ∀ Ai is the weight associated with each arc;
• M0: Pi→ {1, 2, 3,} ∀ Pi is the initial number of entities in each place (initial marking).

The current location and distribution of entities in a Petri net is called a marking.

Appl. Sci. 2020, 10, 1395 4 of 17

A transition can be fired if each transition input has the required number of entities specified by
the weight associated with the arc from the place to the transition. Firing the transitions (that represent
the simulation events) removes entities from the input places and adds entities to the output places.
The number of entities removed or added equals the weight of the associated arc [3].

3.2. Timed Petri Nets

Time is a crucial aspect when dealing with dynamic logistics, manufacturing or transportation
processes, such as automatic guided vehicle (AGV) systems. Therefore, the notion of time must be
included in the Petri nets. The most commonly used model shows the associated delay time for
enabling a transition to be fired.

The firing of a transition in a Petri net corresponds to an event that changes the state of the system.
This may be the result of the verification of a logical condition in the system, as discussed in the
previous section (immediate transitions) or induced by the completion of an activity, which naturally
takes a certain amount of time (timed transitions); see Figure 3.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 4 of 18

The current location and distribution of entities in a Petri net is called a marking.
A transition can be fired if each transition input has the required number of entities specified by

the weight associated with the arc from the place to the transition. Firing the transitions (that
represent the simulation events) removes entities from the input places and adds entities to the
output places. The number of entities removed or added equals the weight of the associated arc [3].

3.2. Timed Petri Nets

Time is a crucial aspect when dealing with dynamic logistics, manufacturing or transportation
processes, such as automatic guided vehicle (AGV) systems. Therefore, the notion of time must be
included in the Petri nets. The most commonly used model shows the associated delay time for
enabling a transition to be fired.

The firing of a transition in a Petri net corresponds to an event that changes the state of the
system. This may be the result of the verification of a logical condition in the system, as discussed in
the previous section (immediate transitions) or induced by the completion of an activity, which
naturally takes a certain amount of time (timed transitions); see Figure 3.

Figure 3. Graphical representation of an immediate (top) and a timed transition (bottom).

As a convention, this document will use the PIPE software representation [41,42]: black
rectangles for immediate transitions and white rectangles for timed transitions. The white rectangle
must have a time function (tf), which specifies the duration of the transition [3].

4. FlexSim

FlexSim® [43] is a commercial simulation package that allows the execution of discrete and
continuous simulation models. Being a commercial suite, it allows the definition of the simulation
models following a proprietary and graphical approach, based on the connection of different simulation
objects that allows representing the model behavior in a process interaction paradigm [44], see Figure 4.

Figure 3. Graphical representation of an immediate (top) and a timed transition (bottom).

As a convention, this document will use the PIPE software representation [41,42]: black rectangles
for immediate transitions and white rectangles for timed transitions. The white rectangle must have a
time function (tf), which specifies the duration of the transition [3].

4. FlexSim

FlexSim® [43] is a commercial simulation package that allows the execution of discrete and
continuous simulation models. Being a commercial suite, it allows the definition of the simulation
models following a proprietary and graphical approach, based on the connection of different simulation
objects that allows representing the model behavior in a process interaction paradigm [44], see Figure 4.

Like several simulation packages, one of the main features of the tool is the simplification of
the model definition and the faster execution of the simulation models. Some interesting features of
FlexSim is the capability to generate C++ code from the models and the integration with the internet
of things (IoT) through some well-known protocols, like OPC-UA [45]; the OPC (Open Platform
Communications) is a set of standards and specifications for industrial telecommunication released in
1996; the UA stands for Unified Architecture (UA), released in 2008, which expands OPC to become a
platform-independent service-oriented architecture. OPC-UA integrates all the functionality of the
individual OPC classic specifications into one extensible framework.

Appl. Sci. 2020, 10, 1395 5 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 18

Figure 4. FlexSim environment with a basic model. The construction of the model is based on the
selection of the elements that are presented on the left side and the configuration of those elements
on the right side of the environment.

Like several simulation packages, one of the main features of the tool is the simplification of the
model definition and the faster execution of the simulation models. Some interesting features of
FlexSim is the capability to generate C++ code from the models and the integration with the internet
of things (IoT) through some well-known protocols, like OPC-UA [45]; the OPC (Open Platform
Communications) is a set of standards and specifications for industrial telecommunication released
in 1996; the UA stands for Unified Architecture (UA), released in 2008, which expands OPC to
become a platform-independent service-oriented architecture. OPC-UA integrates all the
functionality of the individual OPC classic specifications into one extensible framework.

The use of proprietary tools to define and codify the model implies that the model
recodification in other tools (because a requirement in the project changes or because of the end of
the live cycle of the product) becomes a complex and time-consuming task. Also, it increases the
possibility of errors due to this recodification process.

In order to avoid these drawbacks but without avoiding the use of tools like FlexSim, we
propose to define an automatic mapping between a well-known formalism widely used in the
simulation frame, timed Petri nets, to FlexSim. Also, FlexSim, allowing the definition of new logics
and element templates, can include easily the proposed mapping, allowing an automatic execution
of models based on timed Petri net formalism.

5. Mapping Petri Nets to a FlexSim Model

Once a Petri net conceptual model has been created and validated by the problem owners, it is
important to determine the validity of the model and its relevance to the executable model. This is
achieved using the mapping approaches explained below and finally confirmed in the verification
phase.

This state-space and causal or flow process logic expressed in the Petri net must be mapped into
a model that uses the FlexSim library blocks. It is convenient to use a table to map the Petri net
process model and the transition specifications to a FlexSim model [46]. The Petri net models can
then be mapped into the equivalent FlexSim model code.

Figure 4. FlexSim environment with a basic model. The construction of the model is based on the
selection of the elements that are presented on the left side and the configuration of those elements on
the right side of the environment.

The use of proprietary tools to define and codify the model implies that the model recodification
in other tools (because a requirement in the project changes or because of the end of the live cycle of
the product) becomes a complex and time-consuming task. Also, it increases the possibility of errors
due to this recodification process.

In order to avoid these drawbacks but without avoiding the use of tools like FlexSim, we propose
to define an automatic mapping between a well-known formalism widely used in the simulation
frame, timed Petri nets, to FlexSim. Also, FlexSim, allowing the definition of new logics and element
templates, can include easily the proposed mapping, allowing an automatic execution of models based
on timed Petri net formalism.

5. Mapping Petri Nets to a FlexSim Model

Once a Petri net conceptual model has been created and validated by the problem owners, it is
important to determine the validity of the model and its relevance to the executable model. This is
achieved using the mapping approaches explained below and finally confirmed in the verification phase.

This state-space and causal or flow process logic expressed in the Petri net must be mapped into a
model that uses the FlexSim library blocks. It is convenient to use a table to map the Petri net process
model and the transition specifications to a FlexSim model [46]. The Petri net models can then be
mapped into the equivalent FlexSim model code.

5.1. Sequential Execution

In the Petri net shown in Figure 5, transition T1 can only be fired after T0 has fired. This construct
a sequential relationship between activities. The place/timed transition pair can be coded in FlexSim
using the Delay activity.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

5.1. Sequential Execution

In the Petri net shown in Figure 5, transition T1 can only be fired after T0 has fired. This
construct a sequential relationship between activities. The place/timed transition pair can be coded
in FlexSim using the Delay activity.

Figure 5. Sequential execution in Petri net (left) and FlexSim (right).

5.2. Conflict

Transitions T0 and T1 are in conflict in this Petri net: both are enabled, but the firing of either
one disables the other, see Figure 6. This situation will arise, for example, when an AGV must choose
at an intersection between two different routes. The resulting conflict may be resolved in a
non-deterministic or probabilistic way. This situation, in which the entity must choose between two
different transitions, can be coded in FlexSim using the Decide activity and can also be solved in
either of the two ways.

Figure 6. Conflict in Petri net (left) and FlexSim (right).

The Decide activity can have one or multiple inputs as well as one or multiple outputs, see
Figure 7. Each output is assigned a positive integer number (the first option is 1, the second option is
2, etc.) All inputs enter the Decide activity and exit to the assigned output. Therefore, the
deterministic or probabilistic solution of the conflict will depend on the number that is “assigned” to
each token, as the number assigned for each output is not changeable. For a deterministic solution,
labels (equivalent to colors in a colored Petri net) can be used. These labels can be assigned before the
Decide activity or may exist from previous processes.

Figure 7. Example of a deterministic decision with FlexSim (label version).

Let us imagine that, depending on the weight of the cargo, we will choose one option or another
(deterministic decision). Specifically, if the cargo weighs less than 1000 u, it will exit by option 1;
otherwise, it will exit by option 2. This can be configured in FlexSim by assigning the labels
previously, see Figure 8.

Figure 5. Sequential execution in Petri net (left) and FlexSim (right).

Appl. Sci. 2020, 10, 1395 6 of 17

5.2. Conflict

Transitions T0 and T1 are in conflict in this Petri net: both are enabled, but the firing of either one
disables the other, see Figure 6. This situation will arise, for example, when an AGV must choose at an
intersection between two different routes. The resulting conflict may be resolved in a non-deterministic
or probabilistic way. This situation, in which the entity must choose between two different transitions,
can be coded in FlexSim using the Decide activity and can also be solved in either of the two ways.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

5.1. Sequential Execution

In the Petri net shown in Figure 5, transition T1 can only be fired after T0 has fired. This
construct a sequential relationship between activities. The place/timed transition pair can be coded
in FlexSim using the Delay activity.

Figure 5. Sequential execution in Petri net (left) and FlexSim (right).

5.2. Conflict

Transitions T0 and T1 are in conflict in this Petri net: both are enabled, but the firing of either
one disables the other, see Figure 6. This situation will arise, for example, when an AGV must choose
at an intersection between two different routes. The resulting conflict may be resolved in a
non-deterministic or probabilistic way. This situation, in which the entity must choose between two
different transitions, can be coded in FlexSim using the Decide activity and can also be solved in
either of the two ways.

Figure 6. Conflict in Petri net (left) and FlexSim (right).

The Decide activity can have one or multiple inputs as well as one or multiple outputs, see
Figure 7. Each output is assigned a positive integer number (the first option is 1, the second option is
2, etc.) All inputs enter the Decide activity and exit to the assigned output. Therefore, the
deterministic or probabilistic solution of the conflict will depend on the number that is “assigned” to
each token, as the number assigned for each output is not changeable. For a deterministic solution,
labels (equivalent to colors in a colored Petri net) can be used. These labels can be assigned before the
Decide activity or may exist from previous processes.

Figure 7. Example of a deterministic decision with FlexSim (label version).

Let us imagine that, depending on the weight of the cargo, we will choose one option or another
(deterministic decision). Specifically, if the cargo weighs less than 1000 u, it will exit by option 1;
otherwise, it will exit by option 2. This can be configured in FlexSim by assigning the labels
previously, see Figure 8.

Figure 6. Conflict in Petri net (left) and FlexSim (right).

The Decide activity can have one or multiple inputs as well as one or multiple outputs, see
Figure 7. Each output is assigned a positive integer number (the first option is 1, the second option is 2,
etc.) All inputs enter the Decide activity and exit to the assigned output. Therefore, the deterministic
or probabilistic solution of the conflict will depend on the number that is “assigned” to each token, as
the number assigned for each output is not changeable. For a deterministic solution, labels (equivalent
to colors in a colored Petri net) can be used. These labels can be assigned before the Decide activity or
may exist from previous processes.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 18

5.1. Sequential Execution

In the Petri net shown in Figure 5, transition T1 can only be fired after T0 has fired. This
construct a sequential relationship between activities. The place/timed transition pair can be coded
in FlexSim using the Delay activity.

Figure 5. Sequential execution in Petri net (left) and FlexSim (right).

5.2. Conflict

Transitions T0 and T1 are in conflict in this Petri net: both are enabled, but the firing of either
one disables the other, see Figure 6. This situation will arise, for example, when an AGV must choose
at an intersection between two different routes. The resulting conflict may be resolved in a
non-deterministic or probabilistic way. This situation, in which the entity must choose between two
different transitions, can be coded in FlexSim using the Decide activity and can also be solved in
either of the two ways.

Figure 6. Conflict in Petri net (left) and FlexSim (right).

The Decide activity can have one or multiple inputs as well as one or multiple outputs, see
Figure 7. Each output is assigned a positive integer number (the first option is 1, the second option is
2, etc.) All inputs enter the Decide activity and exit to the assigned output. Therefore, the
deterministic or probabilistic solution of the conflict will depend on the number that is “assigned” to
each token, as the number assigned for each output is not changeable. For a deterministic solution,
labels (equivalent to colors in a colored Petri net) can be used. These labels can be assigned before the
Decide activity or may exist from previous processes.

Figure 7. Example of a deterministic decision with FlexSim (label version).

Let us imagine that, depending on the weight of the cargo, we will choose one option or another
(deterministic decision). Specifically, if the cargo weighs less than 1000 u, it will exit by option 1;
otherwise, it will exit by option 2. This can be configured in FlexSim by assigning the labels
previously, see Figure 8.

Figure 7. Example of a deterministic decision with FlexSim (label version).

Let us imagine that, depending on the weight of the cargo, we will choose one option or another
(deterministic decision). Specifically, if the cargo weighs less than 1000 u, it will exit by option 1;
otherwise, it will exit by option 2. This can be configured in FlexSim by assigning the labels previously,
see Figure 8.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18

Figure 8. Example of a deterministic decision with FlexSim (conditional version).

Conflict can also be solved probabilistically using this system, but in this case, a statistical
expression must be added. For instance, in Figure 9 the condition is selected by a normal distribution.
There are several different statistical distributions, such as Bernoulli, Uniform, Poisson, etc.

Figure 9. Example of a probabilistic decision with FlexSim.

5.3. Concurrency with Temporal Entities

In Figure 10, T1 and T2 transitions are concurrent. Concurrency is an important attribute of
system interactions. In order to create concurrent transitions, there must be a forking transition that
deposits a temporal entity at two or more output places. This might represent, for example, an AGV
that transports two packages and splits the cargo indiscriminately between two conveyor belts. The
Split activity in FlexSim deposits temporal entities at two (or more) output places.

Figure 10. Concurrency with temporal entities in FlexSim.

5.4. Synchronization with Temporal Entities

In Figure 11, places P0 and P1 need to receive an entity in order for T0 to be enabled.
Synchronization is common in a dynamic system for an event to occur. This can be represented, for
example, by a situation in which two pieces need to be assembled before being transported. The

Figure 8. Example of a deterministic decision with FlexSim (conditional version).

Appl. Sci. 2020, 10, 1395 7 of 17

Conflict can also be solved probabilistically using this system, but in this case, a statistical
expression must be added. For instance, in Figure 9 the condition is selected by a normal distribution.
There are several different statistical distributions, such as Bernoulli, Uniform, Poisson, etc.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18

Figure 8. Example of a deterministic decision with FlexSim (conditional version).

Conflict can also be solved probabilistically using this system, but in this case, a statistical
expression must be added. For instance, in Figure 9 the condition is selected by a normal distribution.
There are several different statistical distributions, such as Bernoulli, Uniform, Poisson, etc.

Figure 9. Example of a probabilistic decision with FlexSim.

5.3. Concurrency with Temporal Entities

In Figure 10, T1 and T2 transitions are concurrent. Concurrency is an important attribute of
system interactions. In order to create concurrent transitions, there must be a forking transition that
deposits a temporal entity at two or more output places. This might represent, for example, an AGV
that transports two packages and splits the cargo indiscriminately between two conveyor belts. The
Split activity in FlexSim deposits temporal entities at two (or more) output places.

Figure 10. Concurrency with temporal entities in FlexSim.

5.4. Synchronization with Temporal Entities

In Figure 11, places P0 and P1 need to receive an entity in order for T0 to be enabled.
Synchronization is common in a dynamic system for an event to occur. This can be represented, for
example, by a situation in which two pieces need to be assembled before being transported. The

Figure 9. Example of a probabilistic decision with FlexSim.

5.3. Concurrency with Temporal Entities

In Figure 10, T1 and T2 transitions are concurrent. Concurrency is an important attribute of
system interactions. In order to create concurrent transitions, there must be a forking transition that
deposits a temporal entity at two or more output places. This might represent, for example, an AGV
that transports two packages and splits the cargo indiscriminately between two conveyor belts. The
Split activity in FlexSim deposits temporal entities at two (or more) output places.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 18

Figure 8. Example of a deterministic decision with FlexSim (conditional version).

Conflict can also be solved probabilistically using this system, but in this case, a statistical
expression must be added. For instance, in Figure 9 the condition is selected by a normal distribution.
There are several different statistical distributions, such as Bernoulli, Uniform, Poisson, etc.

Figure 9. Example of a probabilistic decision with FlexSim.

5.3. Concurrency with Temporal Entities

In Figure 10, T1 and T2 transitions are concurrent. Concurrency is an important attribute of
system interactions. In order to create concurrent transitions, there must be a forking transition that
deposits a temporal entity at two or more output places. This might represent, for example, an AGV
that transports two packages and splits the cargo indiscriminately between two conveyor belts. The
Split activity in FlexSim deposits temporal entities at two (or more) output places.

Figure 10. Concurrency with temporal entities in FlexSim.

5.4. Synchronization with Temporal Entities

In Figure 11, places P0 and P1 need to receive an entity in order for T0 to be enabled.
Synchronization is common in a dynamic system for an event to occur. This can be represented, for
example, by a situation in which two pieces need to be assembled before being transported. The

Figure 10. Concurrency with temporal entities in FlexSim.

5.4. Synchronization with Temporal Entities

In Figure 11, places P0 and P1 need to receive an entity in order for T0 to be enabled. Synchronization
is common in a dynamic system for an event to occur. This can be represented, for example, by a
situation in which two pieces need to be assembled before being transported. The existence of two
different parts makes no sense at the point at which they are joined to form a single entity.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

existence of two different parts makes no sense at the point at which they are joined to form a single
entity.

Figure 11. Synchronization with temporal entities in FlexSim.

5.5. Concurrency and Synchronization with Resources

The timed Petri net shown in Figure 12 models a single-queue single-server process. This is a
classic queuing model in which arriving entities (T0) wait in a queue (P0) for the resource. When the
resource becomes available (P2) it starts to process the entity (if there is an entity in P0), remaining at
P1 (working) until T2 is fired. The resource returns to P2 and final pieces go to P3. As can be seen, the
model provides resource synchronization (P0-P2-T1) and concurrency (T2-P2-P3).

Figure 12. Petri net for a queue-server model.

This whole Petri net can be simulated using Join and Split activities, as explained above.
However, because resources are so common in Petri nets, and in order to provide a rapid and
comprehensive view of the scheme (imagine using the same resource for several concurrent Petri
nets), they have specific activities. Therefore, Figure 12 can be represented in FlexSim as shown in
Figure 13.

Figure 13. Resource activities in FlexSim.

Figure 11. Synchronization with temporal entities in FlexSim.

Appl. Sci. 2020, 10, 1395 8 of 17

5.5. Concurrency and Synchronization with Resources

The timed Petri net shown in Figure 12 models a single-queue single-server process. This is a
classic queuing model in which arriving entities (T0) wait in a queue (P0) for the resource. When the
resource becomes available (P2) it starts to process the entity (if there is an entity in P0), remaining at
P1 (working) until T2 is fired. The resource returns to P2 and final pieces go to P3. As can be seen, the
model provides resource synchronization (P0-P2-T1) and concurrency (T2-P2-P3).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

existence of two different parts makes no sense at the point at which they are joined to form a single
entity.

Figure 11. Synchronization with temporal entities in FlexSim.

5.5. Concurrency and Synchronization with Resources

The timed Petri net shown in Figure 12 models a single-queue single-server process. This is a
classic queuing model in which arriving entities (T0) wait in a queue (P0) for the resource. When the
resource becomes available (P2) it starts to process the entity (if there is an entity in P0), remaining at
P1 (working) until T2 is fired. The resource returns to P2 and final pieces go to P3. As can be seen, the
model provides resource synchronization (P0-P2-T1) and concurrency (T2-P2-P3).

Figure 12. Petri net for a queue-server model.

This whole Petri net can be simulated using Join and Split activities, as explained above.
However, because resources are so common in Petri nets, and in order to provide a rapid and
comprehensive view of the scheme (imagine using the same resource for several concurrent Petri
nets), they have specific activities. Therefore, Figure 12 can be represented in FlexSim as shown in
Figure 13.

Figure 13. Resource activities in FlexSim.

Figure 12. Petri net for a queue-server model.

This whole Petri net can be simulated using Join and Split activities, as explained above. However,
because resources are so common in Petri nets, and in order to provide a rapid and comprehensive
view of the scheme (imagine using the same resource for several concurrent Petri nets), they have
specific activities. Therefore, Figure 12 can be represented in FlexSim as shown in Figure 13.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 18

existence of two different parts makes no sense at the point at which they are joined to form a single
entity.

Figure 11. Synchronization with temporal entities in FlexSim.

5.5. Concurrency and Synchronization with Resources

The timed Petri net shown in Figure 12 models a single-queue single-server process. This is a
classic queuing model in which arriving entities (T0) wait in a queue (P0) for the resource. When the
resource becomes available (P2) it starts to process the entity (if there is an entity in P0), remaining at
P1 (working) until T2 is fired. The resource returns to P2 and final pieces go to P3. As can be seen, the
model provides resource synchronization (P0-P2-T1) and concurrency (T2-P2-P3).

Figure 12. Petri net for a queue-server model.

This whole Petri net can be simulated using Join and Split activities, as explained above.
However, because resources are so common in Petri nets, and in order to provide a rapid and
comprehensive view of the scheme (imagine using the same resource for several concurrent Petri
nets), they have specific activities. Therefore, Figure 12 can be represented in FlexSim as shown in
Figure 13.

Figure 13. Resource activities in FlexSim. Figure 13. Resource activities in FlexSim.

This simple scheme is the basis for resource use in our manufacturing systems. For example, it
might signify the use of an AGV (the resource), and the delay is the product transportation time from
the source to the destination.

6. Example: Bridge Crossing Deadlock

In this example, we analyze the use of Petri nets to detect a deadlock (using an AGV example)
before encoding the resulting scenarios in FlexSim. The most basic deadlocks in AGV systems would
be when two of the vehicles use the same bidirectional lane but travel in opposite directions. An
example of this is shown in Figure 14.

Appl. Sci. 2020, 10, 1395 9 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 18

This simple scheme is the basis for resource use in our manufacturing systems. For example, it
might signify the use of an AGV (the resource), and the delay is the product transportation time
from the source to the destination.

6. Example: Bridge Crossing Deadlock

In this example, we analyze the use of Petri nets to detect a deadlock (using an AGV example)
before encoding the resulting scenarios in FlexSim. The most basic deadlocks in AGV systems would
be when two of the vehicles use the same bidirectional lane but travel in opposite directions. An
example of this is shown in Figure 14.

Figure 14. Case IV: Screenshot of the bridge crossing deadlock problem represented in FlexSim.

In this example, AGV1 needs to move cargo from Load1 to Unload1 and analogously for AGV2.
Eventually, AGV1 and AGV2 may enter the same lane from opposite sides, blocking the whole
system. This situation arises because AGV1 wants to access Unload1 and AGV2 wants to access
Unload2, but they cannot collide or pass over one another, leaving us with two vehicles that want to
move but whose paths are blocked.

6.1. Petri Net Model

The case shown in Figure 12 can be transformed into a Petri net. While one AGV covers part of
the tracks, the other AGV cannot. Ideally, every inch of the tracks should be a resource, but this is not
helpful. Therefore, the representation is divided into different sections according to their use by the
AGVs. The different paths are divided as shown in Figure 15, where they are represented with
different colors.

Figure 14. Case IV: Screenshot of the bridge crossing deadlock problem represented in FlexSim.

In this example, AGV1 needs to move cargo from Load1 to Unload1 and analogously for AGV2.
Eventually, AGV1 and AGV2 may enter the same lane from opposite sides, blocking the whole system.
This situation arises because AGV1 wants to access Unload1 and AGV2 wants to access Unload2, but
they cannot collide or pass over one another, leaving us with two vehicles that want to move but whose
paths are blocked.

6.1. Petri Net Model

The case shown in Figure 12 can be transformed into a Petri net. While one AGV covers part of
the tracks, the other AGV cannot. Ideally, every inch of the tracks should be a resource, but this is
not helpful. Therefore, the representation is divided into different sections according to their use by
the AGVs. The different paths are divided as shown in Figure 15, where they are represented with
different colors.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18

Figure 15. Case IV: different sectors for the automatic guided vehicle (AGV) network.

Now that each path has been labeled, the Petri net can be constructed as shown in Figure 16.

Figure 16. Case IV: initial marking of Petri net.

In this case, we had to assume that there is just one part waiting to be loaded at both load
stations; when it returns it waits to be loaded again so it can be represented in the PIPE simulator.
Figure 17 shows the different terminal states in which two different systems can be found (S10 and
S11).

Figure 15. Case IV: different sectors for the automatic guided vehicle (AGV) network.

Now that each path has been labeled, the Petri net can be constructed as shown in Figure 16.
In this case, we had to assume that there is just one part waiting to be loaded at both load stations;

when it returns it waits to be loaded again so it can be represented in the PIPE simulator. Figure 17
shows the different terminal states in which two different systems can be found (S10 and S11).

Appl. Sci. 2020, 10, 1395 10 of 17

Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 18

Figure 15. Case IV: different sectors for the automatic guided vehicle (AGV) network.

Now that each path has been labeled, the Petri net can be constructed as shown in Figure 16.

Figure 16. Case IV: initial marking of Petri net.

In this case, we had to assume that there is just one part waiting to be loaded at both load
stations; when it returns it waits to be loaded again so it can be represented in the PIPE simulator.
Figure 17 shows the different terminal states in which two different systems can be found (S10 and
S11).

Figure 16. Case IV: initial marking of Petri net.
Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 17. Case IV: reachability/coverability graph obtained by PIPE simulator.

The corresponding deadlocks are represented in Figure 18. Note that it is particularly easy to
interpret the problem of two vehicles on a one-lane bridge: they cannot use it at the same time
because they are traveling in opposite directions.

Figure 18. Case IV: deadlocks represented in Petri nets (S10 on the left, S11 on the right).

There are only two deadlock situations because the bridge has been divided into three sections.

Figure 17. Case IV: reachability/coverability graph obtained by PIPE simulator.

Appl. Sci. 2020, 10, 1395 11 of 17

The corresponding deadlocks are represented in Figure 18. Note that it is particularly easy to
interpret the problem of two vehicles on a one-lane bridge: they cannot use it at the same time because
they are traveling in opposite directions.

There are only two deadlock situations because the bridge has been divided into three sections.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 18

Figure 17. Case IV: reachability/coverability graph obtained by PIPE simulator.

The corresponding deadlocks are represented in Figure 18. Note that it is particularly easy to
interpret the problem of two vehicles on a one-lane bridge: they cannot use it at the same time
because they are traveling in opposite directions.

Figure 18. Case IV: deadlocks represented in Petri nets (S10 on the left, S11 on the right).

There are only two deadlock situations because the bridge has been divided into three sections.

Figure 18. Case IV: deadlocks represented in Petri nets (S10 on the left, S11 on the right).

Alternative 1: Avoiding Deadlock

The system becomes deadlocked if both AGVs attempt to use the middle path at the same time
from opposite sides. One possible solution is, for the first AGV to reach the middle path road, traps all
the resources until the vehicle departs. The other AGV, if idle, must wait until the first vehicle releases
the resource. The new Petri pet is displayed in Figure 19.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 18

Alternative 1: Avoiding Deadlock

The system becomes deadlocked if both AGVs attempt to use the middle path at the same time
from opposite sides. One possible solution is, for the first AGV to reach the middle path road, traps
all the resources until the vehicle departs. The other AGV, if idle, must wait until the first vehicle
releases the resource. The new Petri pet is displayed in Figure 19.

Figure 19. Case IV: proposed deadlock solution (blocking the middle path).

Note that the different sub-paths (green, yellow, and pink) no longer exist. This is because in the
new situation it does not make sense to describe the path as three different resources since one
catches them all up at the same time. The corresponding reachability graph can be seen in Figure 20,
which shows that the system is totally cyclical and, therefore, not susceptible to deadlocks.

Figure 19. Case IV: proposed deadlock solution (blocking the middle path).

Note that the different sub-paths (green, yellow, and pink) no longer exist. This is because in the
new situation it does not make sense to describe the path as three different resources since one catches

Appl. Sci. 2020, 10, 1395 12 of 17

them all up at the same time. The corresponding reachability graph can be seen in Figure 20, which
shows that the system is totally cyclical and, therefore, not susceptible to deadlocks.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 18

Figure 20. Case IV: reachability/coverability graph obtained by the PIPE simulator for the first
proposed solution.

6.2. FlexSim Process Simulation Flow

The two proposed solutions need to be simulated in FlexSim to obtain results for different state
systems so that they can be compared. This is different to the previous cases, as there are two
possible alternatives to prevent deadlocks: (i) original case (possible deadlock) and (ii) solution
(blocking the middle path with only one AGV), see Figure 21 for the original case with possible
deadlock, and Figure 22 for the proposed solution (blocking the middle path).

Figure 20. Case IV: reachability/coverability graph obtained by the PIPE simulator for the first
proposed solution.

6.2. FlexSim Process Simulation Flow

The two proposed solutions need to be simulated in FlexSim to obtain results for different state
systems so that they can be compared. This is different to the previous cases, as there are two possible
alternatives to prevent deadlocks: (i) original case (possible deadlock) and (ii) solution (blocking the
middle path with only one AGV), see Figure 21 for the original case with possible deadlock, and
Figure 22 for the proposed solution (blocking the middle path).

Appl. Sci. 2020, 10, 1395 13 of 17
Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18

Figure 21. Encoding of both Petri nets in FlexSim. The original case (possible deadlock).

Figure 22. Encoding of both Petri nets in FlexSim. Proposed solution (blocking the middle path).

Figure 21. Encoding of both Petri nets in FlexSim. The original case (possible deadlock).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 18

Figure 21. Encoding of both Petri nets in FlexSim. The original case (possible deadlock).

Figure 22. Encoding of both Petri nets in FlexSim. Proposed solution (blocking the middle path).

Figure 22. Encoding of both Petri nets in FlexSim. Proposed solution (blocking the middle path).

Appl. Sci. 2020, 10, 1395 14 of 17

7. Discussion

Static analysis of the two Petri nets reveals a deadlock at design time, through the analysis of the
reachability graph. By encoding the two alternatives and performing an execution with non-validated
systemic data assumptions, we can see that the first model is very likely to lead to a deadlock in the
system. If both AGVs enter the bridge at the same time, the problem occurs in FlexSim and the process
cannot continue, as shown in Figure 23.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 15 of 18

7. Discussion

Static analysis of the two Petri nets reveals a deadlock at design time, through the analysis of
the reachability graph. By encoding the two alternatives and performing an execution with
non-validated systemic data assumptions, we can see that the first model is very likely to lead to a
deadlock in the system. If both AGVs enter the bridge at the same time, the problem occurs in
FlexSim and the process cannot continue, as shown in Figure 23.

Figure 23. Deadlock represented in FlexSim.

In this case, is clear that the analysis of the conceptual model allows detection of behavior in the
system (that can be known by the stakeholders of the system or not). This implies that the conceptual
model itself can be considered as a valuable tool, not only for the documentation of the model and to
allow multiple codifications, but also to understand and to validate the assumptions we use for
modeling.

8. Conclusions

The conceptualization of a simulation model is a necessary task that sometimes is not
undertaken because of the constraints in the time needed to finish the project or because of a
misunderstanding in the differentiation between the model and the codification of the model.
However, the conceptualization of a simulation model is a key aspect for undertaking the validation
process and to detect, as is shown here, some issues in the system structure prior to any execution of
the simulation model. For this reason, the conceptual model can be considered a product in itself
[47], being a central element in the validation, verification and accreditation cycle [48,49].

This paper has shown how we can use a widely used formalism, the Petri net, to define a
conceptual model and from it, following the proposed mapping, systematically obtain the
codification for a FlexSim platform. This process reduces the change to introduce errors due to the
codification process, implying a reduction in the time needed to undertake the verification of the
FlexSim simulation model.

Since FlexSim allows extension and personalization of the behavior of the objects in question,
one can use this mapping to create a library that automatically does this mapping, allowing the code
to be obtained in a shorter time and with few errors, keeping the distinction between the conceptual
model, and allowing all the advantages of the conceptual model to be obtained, like the possibility of
an analysis prior to any codification and the possibility to reimplement the model in other tools.
Also, this mapping allows existing Petri net models to use a commercial and powerful tool like
FlexSim to perform the codifications of its models.

Author Contributions: conceptualization, A.G.i.P. and J.F.i.J.; methodology, A.G.i.P. and J.F.i.J.; software,
D.L.H.; validation, D.L.H., P.F.i.C and, J.F.i.J.; formal analysis, D.L.H. and A.G.i.P.; writing—original draft
preparation, P.F.i.C.; writing—review and editing, P.F.i.C.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Figure 23. Deadlock represented in FlexSim.

In this case, is clear that the analysis of the conceptual model allows detection of behavior in
the system (that can be known by the stakeholders of the system or not). This implies that the
conceptual model itself can be considered as a valuable tool, not only for the documentation of the
model and to allow multiple codifications, but also to understand and to validate the assumptions we
use for modeling.

8. Conclusions

The conceptualization of a simulation model is a necessary task that sometimes is not undertaken
because of the constraints in the time needed to finish the project or because of a misunderstanding in
the differentiation between the model and the codification of the model. However, the conceptualization
of a simulation model is a key aspect for undertaking the validation process and to detect, as is shown
here, some issues in the system structure prior to any execution of the simulation model. For this
reason, the conceptual model can be considered a product in itself [47], being a central element in the
validation, verification and accreditation cycle [48,49].

This paper has shown how we can use a widely used formalism, the Petri net, to define a conceptual
model and from it, following the proposed mapping, systematically obtain the codification for a
FlexSim platform. This process reduces the change to introduce errors due to the codification process,
implying a reduction in the time needed to undertake the verification of the FlexSim simulation model.

Since FlexSim allows extension and personalization of the behavior of the objects in question, one
can use this mapping to create a library that automatically does this mapping, allowing the code to
be obtained in a shorter time and with few errors, keeping the distinction between the conceptual
model, and allowing all the advantages of the conceptual model to be obtained, like the possibility of
an analysis prior to any codification and the possibility to reimplement the model in other tools. Also,
this mapping allows existing Petri net models to use a commercial and powerful tool like FlexSim to
perform the codifications of its models.

Author Contributions: Conceptualization, A.G.iP. and J.F.iJ.; methodology, A.G.iP. and J.F.iJ.; software, D.L.H.;
validation, D.L.H., P.F.iC. and, J.F.iJ.; formal analysis, D.L.H. and A.G.iP.; writing—original draft preparation,
P.F.iC.; writing—review and editing, P.F.iC. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2020, 10, 1395 15 of 17

References

1. Doldi, L. SDL Illustrated-Visually Design Executable Models; MSO Systems: Old Main, PA, USA, 2001.
2. ITU-T. Specification and Description Language–Overview of SDL-2010; ITU-T: Geneva, Switzerland, 2011.
3. Guasch, A.; Figueras, J.; Casanovas, J. Conceptual modeling using Petri Nets. In Formal Languages Forcomputer

Simulation: Transdisciplinary Models and Applications; IGI Global: Hershey, PA, USA, 2013.
4. Cabasino, M.P.; Giua, A.; Seatzu, C. Introduction to petri nets. Lect. Notes Control Inf. Sci. 2013, 433, 191–211.

[CrossRef]
5. Van der Aalst, W.M.P. Timed Coloured Petri Nets and Their Application to Logistics. Ph.D. Thesis, Technische

Universiteit Eindhoven, Eindhoven, The Netherlands, 1992. [CrossRef]
6. Zeigler, B.P.; Praehofer, H.; Kim, T.G. Theory of Modeling and Simulation Handbook of Simulator-BASED Training

Creating Computer Simulation Systems: An Introduction to the High Level Architecture; Academic Press: Oxford,
UK, 2000. [CrossRef]

7. Vangheluwe, H.L.M. DEVS as a common denominator for multi-formalism hybrid systemsmodelling.
CACSD. In Proceedings of the IEEE International Symposium on Computer-Aided Control System Design
(Cat. No.00TH8537), Anchorage, AK, USA, 25–27 September 2000.

8. Fonseca i Casas, P. Transforming classic Discrete Event System Specification models to Specification and
Description Language. Simulation 2015, 91, 249–264. [CrossRef]

9. Boukelkoul, S.; Redjimi, M. Mapping between Petri nets and DEVS models. In Proceedings of the 2013 3rd
International Conference on Information Technology and e-Services (ICITeS), Sousse, Tunisia, 24–26 March
2013; pp. 1–6. [CrossRef]

10. Sargent, R. Verification and validation of simulation models. In Proceedings of the 2009 Winter Simulation
Conference (WSC); Rossetti, M.D., Hill, R.R., Johansson, B., Dunkin, A., Ingalls, R.G., Eds.; WSC: Austin, TX,
USA, 2009; p. 66. [CrossRef]

11. Van Bruggen, A.; Nikolic, I.; Kwakkel, J. Modeling with stakeholders for transformative change. Sustainability
2019, 11, 825. [CrossRef]

12. Brailsford, S.C.; Bolt, T.; Connell, C.; Klein, J.H.; Patel, B. Stakeholder engagement in health care simulation.
Proc.-Winter Simul. Conf. 2009, 1840–1849. [CrossRef]

13. Proudlove, N.C.; Bisogno, S.; Onggo, B.S.S.; Calabrese, A.; Levialdi Ghiron, N. Towards fully-facilitated
discrete event simulation modelling: Addressing the model coding stage. Eur. J. Oper. Res. 2017, 263,
583–595. [CrossRef]

14. Onggo, B.S.S.; Proudlove, N.C.; D’Ambrogio, S.A.; Calabrese, A.; Bisogno, S.; Levialdi Ghiron, N. A BPMN
extension to support discrete-event simulation for healthcare applications: An explicit representation of
queues, attributes and data-driven decision points. J. Oper. Res. Soc. 2018, 69, 788–802. [CrossRef]

15. Aagesen, G.; Krogstie, J. BPMN 2.0 for Modeling Business Processes. In Handbook on Business Process
Management 1; Springer: Berlin/Heidelberg, Germany, 2015; pp. 219–250. [CrossRef]

16. Leiva, J.; Fonseca i Casas, P.; Ocana, J. Modeling anesthesia and pavilion surgical units in a Chilean hospital
with Specification and Description Language. Simulation 2013, 89, 1020–1035. [CrossRef]

17. Fonseca i Casas, P. SDL distributed simulator. In 2008 Winter Simulation Conference; Winter Simulation
Conference: Miami, FL, USA, 2008. [CrossRef]

18. PragmaDev SARL. PragmaDev Studio. Available online: http://www.pragmadev.com/product/index.html
(accessed on 15 February 2020).

19. Wainer, G.A. Modeling and simulation of complex systems with cell-DEVS. In Proceedings of the 2004 Winter
Simulation Conference, Washington, DC, USA, 5–8 December 2004; Ingalls, R.G., Rossett, M.D., Smith, J.S.,
Peters, B.A., Eds.; Winter Simulation Conference: Washington, DC, USA, 2004.

20. López, J.; Santana-Alonso, A.; Medina, M.D.C. Formal verification for task description languages. A petri
net approach. Sensors (Switzerland) 2019, 19, 4965. [CrossRef]

21. Kucera, E.; Haffner, O.; Leskovsky, R. PN2ARDUINO—A new petri net software tool for control of
discrete-event and hybrid systems using arduino microcontrollers. Proc. 2019 Fed. Conf. Comput. Sci. Inf.
Syst. FedCSIS 2019, 18, 915–919. [CrossRef]

22. Peleg, M.; Rubin, D.; Altman, R.B. Using Petri Net tools to study properties and dynamics of biological
systems. J. Am. Med. Inform. Assoc. 2005, 12, 181–199. [CrossRef]

http://dx.doi.org/10.1007/978-1-4471-4276-8-10
http://dx.doi.org/10.6100/IR381309
http://dx.doi.org/10.1002/rnc.610
http://dx.doi.org/10.1177/0037549715571623
http://dx.doi.org/10.1109/ICITeS.2013.6624067
http://dx.doi.org/10.1109/EMR.2009.5235461
http://dx.doi.org/10.3390/su11030825
http://dx.doi.org/10.1109/WSC.2009.5429190
http://dx.doi.org/10.1016/j.ejor.2017.06.002
http://dx.doi.org/10.1057/s41274-017-0267-7
http://dx.doi.org/10.1007/978-3-642-45100-3_10
http://dx.doi.org/10.1177/0037549713495742
http://dx.doi.org/10.1109/WSC.2008.4736433
http://www.pragmadev.com/product/index.html
http://dx.doi.org/10.3390/s19224965
http://dx.doi.org/10.15439/2019F20
http://dx.doi.org/10.1197/jamia.M1637

Appl. Sci. 2020, 10, 1395 16 of 17

23. Liang, X.; Zhang, S.; Liu, Y.; Ma, Y. Information Propagation Formalized Representation of Micro-blog
Network Based on Petri Nets. Sci. Rep. 2020, 10, 1–20. [CrossRef] [PubMed]

24. Balogh, Z.; Kuchárik, M. Predicting student grades based on their usage of LMS moodle using Petri nets.
Appl. Sci. 2019, 9, 4211. [CrossRef]

25. Su, Z.; Qiu, M. Airport surface modelling and simulation based on timed coloured petri net. Promet-Traffic
-Traffico. 2019, 31, 479–490. [CrossRef]

26. Tolba, C.; Lefebvre, D.; Thomas, P.; El Moudni, A. Continuous and timed Petri nets for the macroscopic and
microscopic traffic flow modelling. Simul. Model. Pract. Theory 2005, 13, 407–436. [CrossRef]

27. An, Y.; Wu, N.; Zhao, X.; Li, X.; Chen, P. Hierarchical Colored Petri nets for modeling and analysis of transit
signal priority control systems. Appl. Sci. 2018, 8, 141. [CrossRef]

28. Meghzili, S.; Chaoui, A.; Strecker, M.; Kerkouche, E. An Approach for the Transformation and Verification of
BPMN Models to Colored Petri Nets Models. Int. J. Softw. Innov. 2020, 8, 17–49. [CrossRef]

29. Gulati, U.; Vatanawood, W. Transforming Flowchart into Coloured Petri Nets. In Proceedings of the 2019 3rd
International Conference on Software and e-Business; ACM: New York, NY, USA, 2019; pp. 75–80. [CrossRef]

30. Mutarraf, U.; Barkaoui, K.; Li, Z.; Wu, N.; Qu, T. Transformation of Business Process Model and Notation
models onto Petri nets and their analysis. Adv. Mech. Eng. 2018, 10, 1–21. [CrossRef]

31. Haustermann, M. Petri Nets Tool Database. Available online: https://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools/db.html (accessed on 15 February 2020).

32. Abohamad, W.; Ramy, A.; Arisha, A. A Hybrid Process-Mining Approach for Simulation Modeling. In
Proceedings of the 2017 Winter Simulation Conference; Winter Simulation Conference: Las Vegas, NV, USA, 2017.
[CrossRef]

33. Bergmann, S.; Strassburger, S. Challenges for the Automatic Generation of Simulation Models for Production
Systems. In Proceedings of the 2010 Summer Computer Simulation Conference, Ottawa, ON, Canada, 11–14
July 2010; SCSC: Ottawa, ON, Canada, 2010; pp. 545–549.

34. Santillán Martínez, G.; Sierla, S.A.; Karhela, T.A.; Lappalainen, J.; Vyatkin, V. Automatic Generation of a
High-Fidelity Dynamic Thermal-Hydraulic Process Simulation Model From a 3D Plant Model. IEEE Access.
2018, 6, 45217–45232. [CrossRef]

35. Dias, L.M.S.; Vieira, A.A.C.; Oliveira, G.A.B.P.J.A. Discrete Simulation Software Ranking—A Top List of the
Worldwide Most Popular and Used Tools. Proc. 2016 Winter Simul. Conf. 2016, 53, 1689–1699. [CrossRef]

36. Huang, B.; Tang, H. Study of Workshop Production System Based on Petri Nets and Flexsim. In Proceedings
of the 22nd International Conference on Industrial Engineering and Engineering Management 2015; Qi, E., Shen, J.,
Dou, R., Eds.; Atlantis Press: Paris, France, 2016; pp. 833–844. [CrossRef]

37. Xu, S.Z. A Petri Net-Based Hybrid Heuristic Scheduling Algorithm for Flexible Manufacturing System. Int.
J. Simul. Model. 2019, 18, 325–334. [CrossRef]

38. Altiok, T.; Melamed, B. Simulation Modeling and Analysis with ARENA; Elsevier: Piscataway, NJ, USA, 2007.
39. Figueras, J.I.J.; Guasch, A.I.P.; Fonseca, P.I.C.; Casanovas-Garcia, J. Teaching system modelling and simulation

through Petri Nets and Arena. In Proceedings of the Winter Simulation Conference, Savanah, GA, USA,
7–10 December 2014; pp. 3662–3673. [CrossRef]

40. Wang, J. Petri Nets for Dynamic Event-Driven System Modeling. In Handbook of Dynamic System Modeling;
Fishwick, P.A., Ed.; Chapman & Hall: Gainesville, FL, USA, 2007; pp. 17–24. [CrossRef]

41. Dingle, N.; Knottenbelt, W.; Suto, T. PIPE2: a tool for the performance evaluation of generalised stochastic
Petri Nets. ACM SIGMETRICS Perform. Eval. Rev. 2009, 36, 34. [CrossRef]

42. Bonet, P.; Lladó, C. PIPE v2. 5: A Petri net tool for performance modelling. In Proceedings of the 23rd Latin
American Conference on Informatics (CLEI 2007), Osijek, Croatia, 9–12 October 2007; Faculty of Law, Josip
Juraj Strossmayer University in Osijek: Osijek, Croatia, 2007; Volume 12.

43. FlexSim Software Products Inc. FlexSim Problem Solved. Available online: https://www.flexsim.com/

(accessed on 15 February 2020).
44. Law, A.M.; Kelton, W. Simulation Modeling and Analysis; McGraw-Hill: New York, NY, USA, 2000.
45. OPC Foundation. Unified Architecture. Available online: https://opcfoundation.org/about/opc-technologies/

opc-ua/ (accessed on 15 February 2020).
46. Pels, H.J.; Goossenaerts, J. A Conceptual Modeling Technique for Discrete Event Simulation of Operational

Processes. In Advances in Production Management Systems; Springer: Boston, MA, USA, 2007; pp. 305–312.
[CrossRef]

http://dx.doi.org/10.1038/s41598-019-57237-6
http://www.ncbi.nlm.nih.gov/pubmed/31959789
http://dx.doi.org/10.3390/app9204211
http://dx.doi.org/10.7307/ptt.v31i5.2947
http://dx.doi.org/10.1016/j.simpat.2005.01.001
http://dx.doi.org/10.3390/app8010141
http://dx.doi.org/10.4018/IJSI.2020010102
http://dx.doi.org/10.1145/3374549.3374568
http://dx.doi.org/10.1177/1687814018808170
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/db.html
http://dx.doi.org/10.1360/zd-2013-43-6-1064
http://dx.doi.org/10.1109/ACCESS.2018.2865206
http://dx.doi.org/10.1017/CBO9781107415324.004
http://dx.doi.org/10.2991/978-94-6239-180-2_79
http://dx.doi.org/10.2507/IJSIMM18(2)CO6
http://dx.doi.org/10.1109/WSC.2014.7020195
http://dx.doi.org/10.1201/9781420010855.ch24
http://dx.doi.org/10.1145/1530873.1530881
https://www.flexsim.com/
https://opcfoundation.org/about/opc-technologies/opc-ua/
https://opcfoundation.org/about/opc-technologies/opc-ua/
http://dx.doi.org/10.1007/978-0-387-74157-4_36

Appl. Sci. 2020, 10, 1395 17 of 17

47. Sargent, R.G. Verification and validation of simulation models. J. Simul. 2013, 7, 12–24. [CrossRef]
48. Chew, J.; Sullivan, C. Verification, validation, and accreditation in the life cycle of models and simulations. In

2000 Winter Simulation Conference Proceedings; Winter Simulation Conference: San Diego, CA, USA, 2000;
pp. 813–818.

49. Balci, O. Golden rules of verification, validation, testing, and certification of modeling and simulation
applications. SCS M S Mag. 2010, 4, 1–7.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1057/jos.2012.20
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Literature Review
	Petri Nets
	Basic Definition
	Timed Petri Nets

	FlexSim
	Mapping Petri Nets to a FlexSim Model
	Sequential Execution
	Conflict
	Concurrency with Temporal Entities
	Synchronization with Temporal Entities
	Concurrency and Synchronization with Resources

	Example: Bridge Crossing Deadlock
	Petri Net Model
	FlexSim Process Simulation Flow

	Discussion
	Conclusions
	References

