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Abstract: Engineering systems typically go through complicated degradation processes, partially due
to their multiple operating modes. Therefore, how to accurately estimate their remaining useful life
is a critical issue. To address this challenge, a hybrid degradation modeling and prognostic method
for the multi-modal system is proposed. Firstly, the cumulative dynamic differential health indicator
is constructed for the multi-modal switching system using a multi-objective optimization approach.
The long-term cumulative degradation assessment model is constructed based on the gated recurrent
unit. Then, considering that the damage in the latest stage has a significant impact on the remaining
useful life, the time window is used to extract local features of the sequence, including energy features
and statistical features. The latest stage degradation is predicted based on the light gradient boosting
machine. Finally, model averaging is used to integrate the two predicted results, which is expected
to improve the prognostic robustness. The proposed model is evaluated with synthetic analysis
and NASA turbofan aero-engine datasets. Extensive experimental results demonstrate the proposed
method provides a better characterization of the degradation status of the system and provides a
higher estimation accuracy than existing methods.

Keywords: remaining useful life; multi-modal system; prognostic; health indicator; local feature

1. Introduction

Prognostic health management is a critical piece of technology for providing early warnings of
system failure [1], aiming to minimize economic loss and potentially catastrophic accidents. As a
vital issue of prognostic health management, the remaining useful life (RUL), which is defined as the
duration from the current time to the failure time, should be predicted accurately. Therefore, remaining
useful life prediction has drawn much attention from both industry and academia.

An engineering system can work under a single operating condition or multiple operating
conditions depending the application scenario. The sensor data often have stationary aging trends
or features when the system works under a simple condition. Most researchers concentrate on
the prognostic health management of system with the single operation condition [2–10]. However,
in practice, the engineering system often works under multiple operating conditions [11] and switches
operation modes according to the changes in the operating environment and its states. For example,
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the battery charger typically works either on the constant-current (CC) mode or constant-voltage
(CV) mode, depending on the battery voltage [12]. When the system works under multiple operating
conditions, the stationary feature is difficult to select and cannot be utilized merely to master the
underlying physical processes [13]. Therefore, it is necessary to extract and utilize the features of the
collected information to the maximum extent. In conclusion, there are two problems for the prognostic
analysis of multi-modal systems.

On the one hand, the different number and order of mode switching makes the aging trend of
systems more complicated. The aging data of the single-mode system is often used to predict remaining
useful life directly. But for multi-modal systems, inter-frame dynamic information hides in aging
data [14]. Thus, there is an urgent requirement to study the physical description of mode switching in
the life and the cumulative effect of mode switching on the aging degree of the system. Ref. [15] used
sensor sequence information to reveal the hidden characteristics of the data with multiple operating
conditions to some extent. However, the work ignores the time interval between signals in the same
operating mode to make the degradation characteristics of signals under varying operating modes.

Health indicator (HI) has shown superiority in the problem of systematic health management [16].
The suitable health indicator could simplify prognostic modeling and calculate accurate prediction
results [17]. Some work has constructed physics health indicators related to the physics of degradation
from sensor signals based on statistical methods or signal processing methods, such as root mean
square [18] and kurtosis [19]. Each physical feature can be considered as a physical health indicator [20]
which contains partial information about the aging process. For multi-modal systems, many physical
indicators will be proposed based on the mode switching rule. Remaining useful life prediction with
only one physical feature is one-sided [21], but information overlaps between a large number of
physical features. Besides, the collected sensor data usually includes noise signals, which may lead
to mutual exclusion or invalid information between features. Using all physical health indicators
of sensors to predict consumes a lot of computing resources, especially for large-scale datasets.
Therefore, the physics health indicators are fused to construct the virtual health indicator. Virtual health
indicators usually present the degradation trends without physics meanings; see [22,23]. Therefore,
the establishment of an explanatory health indicator applicable to the complex working state of
multi-modal systems is a challenge for the accurate prediction of remaining useful life.

The system aging is a long-term cumulative process. [24] selected a recurrent neural network
for remaining useful life prediction from the perspective of long-term prediction performance and
obtained an excellent prediction effect. To get better results for long sequences, the long short-term
memory neural network was used to estimate remaining useful life in [25]. Less computation was
required in [26] based on the gated recurrent unit. However, these works did not consider the impact
of the switching of the working state on the machine. The prediction model should be established
more suitably for cumulative aging characteristics of a multi-modal system.

On the other hand, the system’s ability to withstand the damage is different for the system in
different aging states. The ability decreases gradually with the increase of action times. The same shock
will cause more severe damage to the system in a relatively late aging stage than in an earlier aging
stage. Thus, it is significant to study the latest physical degradation description of mode switching in
the life and the effect of mode switching on the aging degree of the system. The authors in [27] used the
time window to extract the data features in segments, but did not consider the change of the system’s
ability to withstand damage. The statistical features of short sequence sensor data were extracted
in [28], but the frequency-domain features of wave data remained unexplored. It is necessary to study a
comprehensive local feature extraction method to analyze the latest-stage aging predictions specifically.

The multi-dimensional local features lead to a large amount of computation for the prediction
model. Thus, the algorithm with less computational overhead is selected as the prediction model
that could improve the prediction speed. The decision tree ensemble methods are popular in
solving practical prediction problem based on the interpretability and effectiveness, such as gradient
boosting decision tree [29] and extreme gradient boosting [30]. However, these methods calculate
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the information gain and find the optimal partition point by scanning all samples. Efficiency and
scalability are difficult to satisfy when calculating large amounts of data. The light gradient boosting
machine (LightGBM) has proven to have a faster and more accurate performance in [31]. In addition,
the light gradient boosting machine has great potential in remaining useful life estimation when the
sensor data contains a lot of noise, which is very common in industrial applications.

After solving the above problems, a decision-level fusion model is needed to get the final aging
prediction result. Most previous researchers intended to remedy the lack of performance of one of the
algorithms, such as convergence and computational complexity [32,33], rather than focusing on the
physical characteristics of the system, which are important for remaining useful life prognostic and are
analyzed in this paper. The averaging method has the advantages of low computational complexity
and the ability to adjust parameters online. In [34], the strategy, which uses different methods to
construct the degradation models and combines them for remaining useful life prediction, is defined
as the hybrid prognostics approach.

In this paper, a hybrid degradation modeling and prognostic method for multi-modal systems is
proposed to address shortcomings mentioned above. First, a cumulative dynamic differential health
indicator (CDD-HI) is proposed based on the physical characteristics with the existence of mode
switching. The proposed health indicator is used to predict long-term cumulative degradation by the
gated recurrent unit network. Then, local features are constructed to predict latest-stage degradation
by light gradient boosting machine. Finally, based on averaging method, the results of the gated
recurrent unit and light gradient boosting machine are integrated to obtain remaining useful life.
In conclusion, this paper aims to construct a hybrid degradation modeling and prognostic method
for multi-modal systems, which combines the long-term cumulative degradation assessment and
latest-stage degradation assessment, and takes into account changes in system capabilities to withstand
damage under different aging conditions. The main contributions of this paper are as follows:

(1) The cumulative dynamic physical difference feature is constructed to deal with the
superposition effect of different operation modes, and gains the physical characteristics with the
existence of mode switching, which is hidden in the inter-frame data. The health indicators are
constructed based on the physical properties to improve the interpretability and robustness of a
prediction model. The combination of a cumulative dynamic differential health indicator and the gated
recurrent unit will further enhance the accuracy of cumulative degradation prediction.

(2) During the latest stage of system operation, the system’s ability to resist damage is usually the
worst in its life time. The time window is used to extract local features, including statistical and energy
features, which could mine aging information more fully to predict latest-stage degradation with the
light gradient boosting machine.

(3) The experiments on theoretical examples and the accessible turbofan aero-engine degradation
dataset from NASA, and comparisons with the related model validate the effectiveness and superiority
of the proposed method.

The rest of this paper is organized as follows. The proposed model is detailed in Section 2.
Section 3 evaluates the proposed model on the NASA degradation dataset and presents an analysis of
the results. The conclusion and prospects are given in Section 4.

2. Degradation Modeling and Prognostic Hybrid

This paper develops a hybrid degradation modeling and prognostic method for the multi-modal
system to characterize the underlying degradation process accurately. Considering that different
combinations of modes have different effects on the degradation process, the method predicts
remaining useful life from two aspects: the long-term cumulative degradation assessment based
on a cumulative dynamic differential health indicator, and the latest stage degradation assessment
based on local features.

As shown in Figure 1, the proposed method works in an offline stage and an online stage. In the
offline stage, the degradation model is learned from history monitoring data. The learned model is
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used to predict the remaining useful life in real-time in the online stage. S is defined as the input
dataset. si,k(t) is the data sequence of kth sensor data of the ith sample (system) to represent the change
in data as the number of actions in time t changes. Then, the remaining useful life estimation process
is as follows.
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Figure 1. Structure of the proposed hybrid degradation model. The offline data are used to adjust
parameters of prognostic model. The learned prognostic model is used to predict remaining useful life
based on the online data.

2.1. Long-Term Cumulative Degradation Assessment with Cdd-Hi

2.1.1. Cumulative Dynamic Difference Feature Extraction

For the single mode system, static features are extracted from the raw sensor data to represent the
degradation trend. For multi-modal systems, different combinations of switching order have different
effects on the degradation. So for multi-modal systems, the whole degradation cannot be built only
based on stationary features. To solve it, the proposed cumulative dynamic difference features consist
of four parts, which are sthe mooth feature (F1), cumulative modes (F2), difference times (F3) and
difference data (F4).

In order to leave out the noise in the original signal S, smoothing is used to obtain the smoothed
feature F1. The size of F1 is the number of sensor K. F2 represents the cumulative action times of each
operation mode. The size of F2 equals the number of modes M. To present the information of mode
switching, F3 and F4 are constructed. F3 represents the forward differences of action times of each
operation mode, each of which is gained by calculating the time interval between the current action
time and the last action time of each mode. F4 represents the forward differences of the sensor data of
each operation mode (d). The differences of sensor data between the current action time and the last
action time of each mode are calculated to characterize data changes between different modes.

The cumulative dynamic physical difference feature consists of the above four parts for the
multi-modal system to extract the switching order of modes. Figure 2 illustrates an example of the
cumulative dynamic difference feature extraction process for a sensor. The number of modes is m = 6;
the length of data sequence is 40. The cumulative dynamic difference feature is the Ft = [F1, F2,1,
F2,2, F2,3, F2,4, F2,5, F2,6, F3,1, F3,2, F3,3, F3,4, F3,5, F3,6, F4,1, F4,2, F4,3, F4,4, F4,5, F4,6] for the system in tth
action time.

2.1.2. Composite Health Indicator Construction

To avoid the redundancy among different features, this paper develops a feature-level fusion
method to combine cumulative dynamic physical difference features to get a composite health indicator
based on the multi-objective optimization model. The health indicator H(t) is regarded as a linear
combination of each cumulative dynamic physical difference feature fo, as Equation (1),

H(t) = w1 f1(t) + w2 f2(t) + · · ·+ wo fo(t), (1)
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where o is the dimension of cumulative dynamic physical difference feature, and w is the weight
coefficient of each cumulative dynamic difference feature, −1 < w < 1. To represent the actual
degradation trend of system, the interpretable health indicator is constructed based on three properties.
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Figure 2. The example of cumulative dynamic physical difference feature construction. Calculate the
proposed features of t = 25. Compared points are the last action times of all modes. F1 is the value of
smooth data. F2,1, F2,2 . . . F2,6 is the cumulative time of each mode. F3,1, F3,2 . . . F3,6 are the difference
times to compared points. F4,1, F4,2 . . . F4,6 are the difference data to compared points.

Property 1: The degradation of the system should be monotonic in general without
external maintenance.

To establish the monotonic health indicator, the slack variable εi,t is introduced to measure
the violation of monotonicity of health indicator. The εi,t of system i and action time t is εi,t =

max(Hi,t − Hi,t+1, 0). Assuming that the indicator is monotonically increasing, Equation (2) tries to
minimize the total weighted sum of violations to ensure the monotonicity of the health indicator.

minw,εi,t

p
∑

i=1

qi−1
∑

t=1
εi,t

s.t. w′M′1 = 1, Mw ≥ 0, εi,t ≥ 0,
(2)

where p is number of system samples, and q is the maximum observation epochs (action times) of
each sample. M is a diagonal matrix to express the degradation trend information. For example, if the
feature shows an increasing (decreasing) trend, the diagonal entry of M is 1 (−1). The different system
i varies in the life cycle length qi.

Property 2: The first hitting time of failure is regarded as the failure threshold θi of each system.
The systems with the same functions and components should have similar fault thresholds under the
same environmental conditions.
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The predictability is expressed by minimizing the variance of θi, as ∑
p
i=1 (θi − θ̄)

2/(p − 1).
Assuming A ∈ Rp×o is the matrix recording the feature of the last observation epoch in full life-cycle
of each system, the variance can be translated as the quadratic term w′A′BAw based on Equation (3):

((Aw)′(Aw)− p((1′Aw)/(p))2)/(p− 1)
= (w′A′Aw− (w′A′11′Aw)/p)/(p− 1)
= w′A′((I − (11′)/p)/(p− 1))Aw
= w′A′BAw,

(3)

where B is a symmetric matrix; B = (I −O/p)/(p− 1). I is the identity matrix, and O is the matrix
which each entry equals 1. Above all, Property 2 could be formulated with an optimization problem,
as Equation (4):

minww′A′BAw
s.t.w′M′1 = 1, Mw ≥ 0.

(4)

Property 3: For multi-modal systems, although different mode combinations would result in
different short-term fluctuations of each sample, there are still similar degradation trends for those
samples from the long-term perspective.

Samples of multi-modal systems with identical structures usually have different lengths of life
cycle. Therefore, it is necessary to calculate the similarities between different lengths of degradation
sequences. In this paper, the dynamic time warping (DTW) method is used to measure the similarities
of different health indicator series.

The similarity between Hα(tα), tα ∈ [0, qα] and Hβ(tβ), tβ ∈
[
0, qβ

]
is calculated with the dynamic

programming method based on finding the min-distance warp path. D = D1, D2, ..Dd., DNpath , Npath ∈[
max(qα, qβ), qα + qβ

]
. The obtained warp path D indicates the correspondence between Hα(tα) and

Hβ(tβ), permissible point-to-point, and many-to-one point correspondences.
The obtained warp path D should satisfy three constraints: (1) The constraint of endpoint

ensures that the starting point and the endpoint are consistent when the sequences are aligned,
as D1 = (1, 1), DNpath = (qα, qβ). (2) The continuity constraint is used to limit the excessive expansion
of the dynamic time warping and limit the jump correspondence, as tβd+1

− tβd ≤ ζ, tαd+1 − tαd ≤ ζ,
where ζ is a positive integer. (3) The monotonicity constraint requires tβd+1

− tβd ≥ 0, tαd+1 − tαd ≥ 0.
Then, the minimum distance of dynamic time warping is revised as Equation (5),

DTW(Hα, Hβ) = min
p ∑

Npath
d=1 d(Hα(tαd), Hβ(tβd)), (5)

where d(Hα(tαd), Hβ(tβd)) is the euclidean distance between two points. To reduce the amount of
calculation, the upper triangular matrix of the DTW matrix which consists of DTW(Hα, Hβ), 1 ≤ α ≤ p,
1 ≤ β ≤ p is used to calculate the distance sum of samples. Then, the Property 3 could be formulated
as Equation (6),

minw
p−1
∑

α=1

p
∑

β=α

2DTW(Hα ,Hβ)

(p−1)2

s.t.w′M′1 = 1, Mw ≥ 0.
(6)

Above all, the optimization problem of composite health indicator construction model could be
formulated as Equation (7),

minw λ1

p
∑

i=1

qi−1
∑

t=1
εi,t + λ2w′A′BAw

+ λ3

p−1
∑

α=1

p
∑

β=α

2DTW(Hα ,Hβ)

(p−1)2

s.t.w′M′1 = 1, Mw ≥ 0, εi,j ≥ 0, λ′1 = 1,
− 1 < w < 1,

(7)
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where λ is the parameter adjusting the relative importance of the three properties. Based on solving
the multi-objective programming equation to calculate (w1, w2, ...wo), the composite health indicator
H(t) with good monotonicity and generalization will be calculated from cumulative dynamic physical
difference feature with Equation (1).

2.1.3. Cumulative Degradation Assessment with Gated Recurrent Unit

The recurrent neural network has good performance when processing arbitrary time-sequences,
based on the network structure in which neurons could connect to themselves across time. Because the
problem of long-term dependencies, it is hard for the recurrent neural network to learn to store
information for very long [35]. To solve the above problems, this paper adopts the gated recurrent unit,
which is another recurrent neural network variant, to estimate remaining useful life with a long-term
cumulative degradation health indicator.

In the gated recurrent unit, the gradient disappearance or explosion problem is alleviated by
introducing an additive structure of the gate. There are two gates to process data information.
The reset gate r(t) is used to adjust the incorporation of current input with the previous memory.
The preservation of the previous memory is controlled by the update gate u(t). The transition function
is formulated as Equations (8) and (9),

u(t) = σ(Wu H(t) + Vuŷ(t− 1) + bu), (8)

r(t) = σ(Wr H(t) + Vr ŷ(t− 1) + br), (9)

where W and V represent the weight matrices of H(t) and ŷ(t− 1), respectively, and b is the bias vector
for the update gate and reset gate. Since the reset gate controls the degree of ignoring the information
and the update gate controls the impact of the previous information, the output of current status can
be represented as Equation (10):

ỹ(t) = tanh(Wh H(t) + Vh(r(t)� ŷ(t− 1)))
ŷ(t) = (1− u(t))� ŷ(t− 1) + U(t)� ỹ(t).

(10)

Regarding the cumulative dynamic differential health indicator H(t) as input, the corresponding
forecast result ŷ(t) could be obtained, which is the long-term cumulative degradation assessment ŷ(t)c.

2.2. Latest-Term Degradation Assessment Based on Local Features

The aging of an engineering system is usually slow in the early stage and rapid in the later stage.
Therefore, it is necessary to study the latest-stage aging data of the system in detail.

2.2.1. Construction of Local Aging Features

Constructing local aging features of these complex signal series is significant for obtaining useful
aging information. In order to predict latest stage degradation, the overlapped time window is used to
decompose the time series. The size of the time window is L. Two kinds of features, statistical features
and energy features, are extracted, as shown in Figure 3.

The statistical features are used to represent the mathematical rules of sequence, which are the
average value v1, variance v2 and skewness v3. For multi-modal systems, the ensemble empirical
mode decomposition (EEMD) algorithm is used to decompose the original signal to intrinsic mode
function (IMF) components based on the local characteristic time scale of the raw signal. Among them,
the white Gaussian noise with uniform distribution is added in the time-frequency space to reduce the
mixing degree of IMF component model and achieve signal continuity in different frequency regions.
The algorithm’s steps are as follows.
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Figure 3. The process of local feature extraction based on a sample from NASA’s Prognostics Repository.
The local features include statistical features (average value v1, variance v2 and skewness v3) and the
energy features (e0, e1 . . . ez) which are calculated based on intrinsic mode function (IMF) components.

Firstly, the number of empirical mode decomposition executions is N and the amplitude coefficient
of white noise. In execution epoch n, the white Gaussian noise series g(t) is added to the signal data s(t),
as the snoise

n = s(t)+ gn(t). In order to obtain IMF components of snoise
n , the mean of the upper and lower

envelope m(t) is obtained between the local maximum and minimum of snoise
n . Let l(t) = snoise

n −m(t);
if ln(t) satisfies the condition of intrinsic mode function component, it means that it is the first IMF.
When it does not, replace snoise

n with ln(t) and repeat calculation ln(t) until the IMF conditions are
satisfied. The ln(t) from snoise

n is subtracted to obtain the remainder. The process of extracting an IMF
component is repeated until all components are separated from the snoise

n . The remainder becomes a
monotonic function rn(t), Equation (11):

snoise
n =

Z

∑
z=1

sim f
nz (t) + rn(t), (11)

where Z is the number of IMFs which contains the local characteristics of original signal. In each
empirical mode’s decomposition execution time, a different white noise series is added to s(t).
After that, we calculate the mean value of all IMFs in N times as in Equation (12):

sim f
z (t) =

1
N

N

∑
n=1

sim f
nz (t). (12)

sim f
z (t) is the zth IMF based on signal decomposition. After the signal is decomposed, each IMF

component represents a stable signal of different frequency. The frequency contains important aging
information too. The energy variation of each frequency band could show the aging state of the system.
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Therefore, the energy entropies of different IMF components are extracted as the local aging features,

which can be calculated as esim f (t) =
L
∑

t=1

∣∣∣sim f (t)
∣∣∣2.

2.2.2. Latest-Term Degradation Assessment Based on Local Features and LightGBM

In present research, the gradient boosting decision tree has good performance when predicting
short sequences, but the computational complexity needs to be improved. In this paper, the improved
gradient boosting decision tree, the light gradient boosting machine, is used to predict the remaining
useful life of latest stage series based on local features. LightGBM used the leaf-wise growth with
depth-limiting strategy instead of the traditional level-wise strategy to train decision trees to reduce
errors and improve accuracy. The leaf-wise strategy is used to find the leaf with the largest split gain
from all current leaves, and then split each time to reduce more errors and obtain higher accuracy at
the same split time. To ensure high efficiency and prevent over-fitting, the maximum depth limit is
added to the leaf-wise strategy.

For the local features (v1, v2, v3, e0, e1 . . . ez), J decision trees are trained to predict the residuals of
the prior models. If ϕj is the learning function of the jth decision tree and the ŷ(j)

i is the prediction of
for ith sample at the jth iteration; the process can be expressed as Equation (13):

ŷ(0)i = 0

ŷ(1)i = ϕ1(xi) = ŷ(0)i + ϕ1(xi)

ŷ(2)i = ϕ1(xi) + ϕ2(xi) = ŷ(1)i + ϕ2(xi)

. . .

ŷ(J)
i =

J
∑

j=1
ϕj(xi) = ŷ(J−1)

i + ϕj(xi)

(13)

In each iteration, the current model ŷ(j)
i is reserved and the learning residual function ϕ is learned

by minimizing the objective function, as in Equation (14):

`(J) =
p

∑
i=1

loss(yi, ŷ(J)
i ) +

J

∑
j=1

Ω(ϕj), (14)

The function consists of two parts. One is a loss function regarding the difference between the

prediction ŷ(J)
i and the actual yi. The other is the regular term

J
∑

j=1
Ω(ϕj) that penalizes the complexity

of model, as in Equation (15):

Ω(ϕj) = µZ +
1
2

τ
Z

∑
z=1

ω2
z , (15)

where µ is the penalty parameter for the number of leaves Z, ω is the weight of a leaf and τ is the
penalty parameter. Considering that the samples with larger gradients play a more important role
in calculating information gain, the gradient-based one-side sampling (GOSS) strategy [31] is used
to segment the data. Firstly, the local feature dataset is sorted in descending order based on absolute
values of gradients. Then, data instances with large gradients are retained, and samples with small
gradients are randomly sampled while splitting out the set according to the estimated variance gain.

ŷi =
J

∑
j=1

ϕj(xi),ϕj ∈ Stree. (16)

As Equation (16) shows, predictions of all decision trees are added to obtain the latest stage
prediction. Stree is a space that contains all possible structures of trees.
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2.3. Decision-Level Fusion Based on Model Averaging

The system’s ability to withstand the damage is different for the system in different aging states.
In order to integrate the long-term cumulative degradation and the latest stage degradation, the fusion
model is used in this paper. The fusion model includes two kinds of methods, one is based on a
bagging, boosting or stacking method, which consumes a lot of training time. Therefore, the averaging
method is used to make a final decision in this paper. The long-term cumulative prediction ŷc is
obtained as in Section 2.2. The latest stage prediction ŷl is obtained as in Section 2.2.2. Finally, the final
result ŷ is calculated as in Equation (17) using the averaging method.

ŷ = γŷc + (1− γ)ŷl . (17)

where coefficient γ is set as in [36].

3. Experiment and Discussion

In this section, we investigate the performance of proposed method using a synthetic dataset
and an aero-engine turbofan dataset from NASA. The synthetic dataset is used to theoretical
analysis. The turbofan aero-engine degradation dataset was published publicly in NASA’s Prognostics
Repository [37]; it simulates the degradation of engines in four working environments, so should
verify the generality of the proposed model.

3.1. Evaluation Metrics

Samples working in different environments have different life cycle lengths. In this paper,
therefore, the remaining useful life is set as the percentage of useful times. A linear function represents
the degradation trajectory of system, and the remaining useful life yt is expressed by Equation (18).

y(t) = 1− t
q

. (18)

ŷ and y represent the predicted result and the real result. If ŷ < y, the prediction result is
considered as an early prediction. If ŷ > y, the prediction result is considered as a late prediction.
Considering that late predictions have more serious consequences, two evaluation metrics, the root
mean squared error (RMSE) and scores are used to evaluate the performance of the proposed method.
Root mean squared error gives an equal penalty to late and early predictions, as in Equation (19):

RMSE =

√√√√1
q

q

∑
t=1

y′(t)2, (19)

which is y′(t) = ŷ(t)− y(t). The score metric was proposed in the PHM 2008 Data Challenge [38]
and defined as an asymmetric function that penalizes late predictions more than the early predictions.
The expression of score function is a weighted sum of remaining useful life errors, as in Equation (20):

Scores =
q
∑

t=1
score(t),

score(t) =

 e−
y′(t)

13 − 1, i f y′(t) < 0

e
y′(t)

10 − 1, i f y′(t) ≥ 0.

(20)
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3.2. Theoretical Analysis

This section is used to discuss the performance of the proposed method based on different trend
synthetic data. The unchanged data has constant outputs throughout the life of the system, which
cannot provide useful information to facilitate prediction [1]. Most of the systems show a slow aging
trend in the early stage and a fast aging trend in the later stage. Therefore, the synthetic data is
constructed with exponential functional form (Equation (21)).

Ssyn(t) = exp(t) + Gaussian(t), (21)

where, exp(t) = eaexpt+bexp is the exponential function to generate exponential data for different trends
by adjusting parameter aexp and bexp. Gaussian(t) is the Gaussian random variables with the mean µg

and the variance σ2 to simulate noise. The probability density of Gaussian noise follows the standard
normal distribution (Equation (22)).

Nexp(t) =
1√
2πσ

e
−(t−µg)

2σ2 . (22)

The normal distribution is symmetrical about t = µg. µg and σ are used to adjust the data
fluctuation. Therefore, different parameter settings, (aexp, bexp, µg, σ2), are used to generate synthetic
data for different trends. In the theoretical analysis, small scale samples are used for simulation
analysis. The parameter settings of synthetic data samples are shown in Table 1.

Table 1. Parameter settings of synthetic data samples.

aexp, bexp Parameter No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

(0.01, 0.25) µg 1.58 1.93 2.94 3.45 3.62 3.88 4.22 4.60 4.80 4.84
σ2 0.04 0.06 0.08 0.10 0.10 0.11 0.12 0.13 0.14 0.14

(0.02, 0.5) µg 4.91 4.99 5.36 6.86 12.21 12.52 17.20 17.84 18.44 19.98
σ2 0.14 0.15 0.16 0.20 0.37 0.379 0.52 0.54 0.55 0.60

(−0.04, 1.3) µg 20.02 22.43 23.27 24.67 25.81 25.92 28.11 28.45 29.07 33.13
σ2 0.60 0.67 0.70 0.74 0.78 0.79 0.85 0.86 0.88 1.00

(−0.06, 1.6) µg 33.80 33.84 33.91 34.04 34.08 35.59 35.86 37.51 37.68 39.32
σ2 1.02 1.02 1.02 1.03 1.03 1.07 1.08 1.13 1.14 1.19

The dataset has 40 synthetic data samples, which have four different exponential forms and
forty different Gaussian random variables. When aexp > 0, the trend is ascending and the trend is
descending for aexp < 0. Then, the synthetic dataset is used to study the sensitivity of the proposed
method to different types of input data. The results are shown in Figure 4.

RMSE are (0.100, 0.101, 0.102, 0.103) and scores are (0.174, 0.120, 0.131, 0.149) for different
exponential forms (aexp = 0.01, bexp = 0.25), (aexp = 0.02, bexp = 0.5), (aexp = −0.04, bexp =

1.3), (aexp = −0.06, bexp = 1.6). Experimental results show that the method has good prediction
performance on samples with different trends. The conclusions in the section are used as the basis for
sensor selection during the experimental phase. More discussion on the method performance will be
given in the experimental simulation section based on NASA’s dataset.

3.3. Experimental Simulation

3.3.1. Benchmark Data Description

The commercial modular aero-propulsion system simulation (C-MAPSS) turbofan aero-engine
dataset [39] is widely used in prognostic studies. This dataset simulated the degradation of aero-engine
in four working environments to get the corresponding sub-datasets FD001, FD002, FD003 and FD004.
Each subset consists of a training set, a test set and corresponding remaining useful life values.
The training samples degrade until the system failure, and the last time is regarded as the failure time
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of the engine unit. For test samples, the sensor data recording is stopped before the system fails and
the failure period is recorded for verification. The details and statistical data of each subset are listed in
Table 2. The monitoring data in each sample consist of 21 sensors (e.g., total temperature, pressure at
fan inlet, physical core speed, etc.) and three operational settings which jointly determine the system’s
working mode [40].
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Figure 4. The prediction results of the proposed model for synthetic data. (a) The sample of
exponential function with (aexp = 0.01,bexp = 0.25). (b) The sample of exponential function with
(aexp = 0.02, bexp = 0.5). (c) The sample of exponential function with (aexp = −0.04, bexp = 1.3).
(d) The sample of exponential function with (aexp = −0.06, bexp = 1.6).

Table 2. Detailed information of C-MAPSS dataset.

Subset Fault Type Operation Mode Training Scale Testing Scale Max-Lifespan Selected Sensor

FD001 1 1 100 100 362 13

FD002 1 6 260 259 378 -

FD003 2 1 100 100 525 11

FD004 2 6 249 248 543 -

The sample of FD001 suffered high-pressure compressor failure under a single operating condition.
For FD002, the sample suffered the high pressure compressor failure under six operating conditions.
In FD003, the sample suffered high pressure compressor and fan failure under a single operating
condition, while in FD004 the sample suffered high pressure compressor and fan failure under six
operating conditions. The proposed method was applied to four sub-datasets which have different
working environments to verify the generality of the proposed model.
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3.3.2. Data Preprocessing

Different sensors have different physical meanings and numerical ranges. In order to eliminate
the influence of ranges of value on the degree of contribution, a standardized method is used to adjust
the range of each sensor. The standardized rules are learned in the training set. Then, the sensors are
selected based on the trends of the raw data.

To the system working under the single operating condition, sensors can be divided into three
categories, which are ascending, descending and unchanged, according to the trend of the data,
as shown in Figure 5a. Data without obvious changes throughout the life time of the system do not
contribute to predicting the remaining useful life of system. Thus, 13 kinds of sensors are selected as
the raw data of the aging status, including sensor data with ascending trends (2, 3, 4, 8, 9, 11, 13, 15, 17)
and descending trends (7, 12, 20, 21) for FD001, and 11 kinds of sensors (the 3, 4, 8, 13, 15, 17 have an
ascending trend and the 7, 11, 12, 20, 21 have a descending trend) are selected for FD003.

(a) The system working under a single mode (b) The system working under  multi-mode

Sensor 11

Sensor 20

Sensor 21

Sensor 16

Figure 5. The trends of four sensors in different working conditions. (a) System working under a single
mode in FD001. (b) System working under multi-modes in FD002.

For the system working under multiple operating conditions, the trend of sensor data depends
mainly on the switching of operating modes, so the degradation trend does not show a noticeable
monotonic trend. As shown in Figure 5b, the same sensors 11, 16, 20 and 21 show irregular trends
in FD002 (working in multi-modal). Therefore, principal component analysis method is used to
reconstruct features based on the principle of maximum difference. The threshold value of total
contribution is set to 95% to filter cumulative dynamic difference features of irregular sensors.
More details about principal component analysis may be found in [41]. The working mode of the
sample in the dataset is represented by three operational settings. To determine the mode switching
sequence, k-means clustering method is used to label six working modes. The results are as shown in
Figure 6.
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Figure 6. Mode labeled from three operational settings based on k-means clustering algorithm, where
the data are from the first sample of FD002.

3.3.3. Discussion of Results

The detailed description of the proposed method is given in the Section 2. Here, the processed
data features are input into the framework. Then, the long-term cumulative degradation prediction and
the latest stage degradation prediction are performed separately and the results are fused. After that,
the model performance is evaluated and analyzed according to the evaluation metrics.

Since each sub-dataset has larger feature dimensions, considering that there may be a linear
correlation between multi-dimensional features, the principal component analysis is used to reconstruct
the data to reduce unnecessary calculations. Based that, FD001 retains 27 dimensional features,
FD002 retains 14 dimensional features, FD003 retains 23 dimensional features and FD004 retains
14 dimensional features. Then, the multi-objective plan is used to establish health indicators based on
monotonicity, threshold similarity and trend similarity.

Figure 7 illustrates the comparison of a health indicator and three representative reconstructed
features of random samples from different sub-datasets. The points show the data and the solid line
is the smoothing data based on moving average smooth method to show the trend of the data more
clearly. The experimental results show that the proposed health indicator is more monotonic and better
model fitting.
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Figure 7. The comparison of health indicator and three representative reconstructed features of four
samples from each sub dataset. (a) The comparison of the health indicator and three representative
reconstructed features of the sample number 7 in subset FD001. (b) The same comparison with the
sample number 29 in subset FD002. (c) The same comparison with the sample number 96 in subset
FD003. (d) The same comparison with the sample number 64 in subset FD004. The trend of data is
shown more clearly by smoothing data.

Then, the gated recurrent unit model is used to predict remaining useful life for long-term
cumulative degradation. Long short term memory network (LSTM) and stacked autoencoders (SAEs)
are used to compare predictions. The results are shown in Figure 8, which indicates the proposed
CDDHI-GRU mode has a lower RMSE and score values than other algorithms. In addition, it was
found that the values of evaluation metrics of FD002 and FD004 are higher than those of FD001
and FD003, indicating that the samples working in multi-modal switching are more challenging for
obtaining accurate prediction results than those working in single mode.

0.00.0

0.10.1

0.20.2

0.30.3

R
M

S
E

GRU
LSTM
SAEs

Figure 8. The values of RMSE and scores of stacked autoencoders (SAEs), long short term memory
network (LSTM) and GRU from four sub datasets are on the chart. The differences are plotted in
the figure.
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On the other hand, the time window is used to extract energy and statistical features. It is worth
noting that during decomposing the data of the time window based on ensemble empirical mode
decomposition, the number of IMF components Nim f is different for different local data. The reason is
that the local data of the sample have various fluctuations, and there is noise in the data, so Nim f is
added as an energy feature.

The size of latest stage sequence L is a key parameter affecting the performance of model. For the
sample with periodic mode switching, a multiple of the period is selected as the time window length.
For samples with irregular mode switching, the time window length is selected by traversing. In order
to avoid late prediction as much as possible, we use the scores to choose the length of time window.
Figure 9 shows the effects of L on prediction accuracy, and the sizes of the time windows for the
sub-datasets are 30, 55, 40 and 45 respectively. The reason is that a larger time window can cover more
information to get better results, but extending the window length too much could adversely affect
near-term forecasts.

10                 20                30                40                 50               60               70        

Time window size 

S
c
o
re

s

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

S
c
o
re

s

4.5

4.0

3.5

FD002

FD004FD003

FD001

3.0

2.5

2.0

L

Figure 9. The scores of different time window sizes for four sub-datasets.

Finally, the model averaging is used to fuse the prediction results. After several experiments,
the parameters of each sub-dataset are finally determined. Figure 10 illustrates the comparison of
results for long-term cumulative degradation prediction, latest stage degradation prediction and fusion
prediction for the same sample.
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(a) The results of last-term prediction (a) The results of cumlative prediction (a) The results of hybrid prediction

Figure 10. The results of latest stage degradation prediction, long-term cumulative degradation
prediction and hybrid prediction for number 148 in FD002. (a) The comparison between latest
stage cumulative degradation prediction and actual values. (b) The comparison between long-term
degradation prediction and actual value. (c) The comparison between hybrid prediction and
actual values.
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The experimental results show that the long-term cumulative prediction model is more accurate
in predicting the remaining useful life of the system at the early stage of aging, and the latest stage
degradation prediction model is more accurate at predicting the system in the late stage of aging.
The hybrid prediction model combines the advantages of the two and has better overall prediction
performance. No matter whether the system is in an early or late stage of the fault, it has a stabler
prediction effect on the life cycle of the system.

The estimated results based on the proposed model and the actual values of remaining useful life
for the four sub-datasets’ test samples are compared in Figure 11. In order to observe the performance of
the prediction model intuitively, the test samples are arranged in descending order of the actual values.
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Figure 11. The prediction results of the hybrid model for four sorted sub-datasets (FD001, FD002,
FD003, FD004) are shown in (a–d) respectively.

Figure 11 shows that the prediction results of the proposed model are close to the actual value of
remaining useful life, and it is worth noting that the prediction ability of the model in the early stage of
aging is weaker than that in the late stage of aging. The result is that the fault characteristics in the early
stage of aging are not obvious, and with the aging of the system, the prediction accuracy is gradually
enhanced. In addition, with the increase in the number of faults and the number of operational modes,
it is more difficult to obtain an accurate prediction. However, the overall prediction performance of
the model remains stable. When it is difficult to predict accurately, the prediction results tend to an
early prediction as opposed to a late prediction.

The proposed method is compared with other popular methods in this dataset to verify the
superiority of the proposed method. The recurrent neural network (RNN), the long-short term
memory network (LSTM), stacked autoencodesrs (SAEs), convolutional neural networks (CNN),
the gradient boosting decision tree (GBDT) and support vector regression (SVR) as representative
methods are evaluated in Table 3.
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Table 3. The evaluation metrics values of each dataset based on different models.

Methods Metric FD001 FD002 FD003 FD004

SVR RMSE 0.147 0.241 0.205 0.272

Score 1.139 3.874 1.757 4.461

CNN RMSE 0.132 0.234 0.193 0.243

Score 1.304 2.893 1.418 3.36

LSTM RMSE 0.149 0.223 0.215 0.231

Score 1.256 3.312 1.862 3.975

SAEs RMSE 0.145 0.259 0.233 0.294

Score 1.672 4.023 2.047 4.351

GBDT RMSE 0.124 0.213 0.218 0.302

Score 1.562 2.421 1.592 3.461

Proposed RMSE 0.119 0.172 0.184 0.217
model Score 1.042 2.213 1.387 2.84

The tabular data shows that the model proposed in this paper has better evaluation metric values
and has been proven to perform well in both overall prediction and late prediction. Comparing the
predictions between four sub-datasets, it was found that to accurately predict the remaining useful
life of the system working in multiple modes is more challenging than that of the system working in
single mode.

4. Conclusions

In this paper, a hybrid degradation modeling and prognostic method is proposed for a
multi-modal system. Firstly, the cumulative dynamic differential feature is constructed to describe the
physical characteristics with the existence of mode switching. The constructed health indicator is based
on the three properties, including monotonicity, threshold similarity, and trend similarity. Based on the
cumulative dynamic differential health indicator, the long-term cumulative degradation assessment
model is constructed by gated recurrent unit. Then, the time window is used to extract energy and
statistical features to obtain local features. The latest degradation effect is predicted based on light
gradient boosting machine. Finally, the model is averaged to construct a decision-level fusion model.

In the experimental analysis section, the theoretical experiment uses synthetic data to study the
sensitivity of the proposed method to different types of input data. Most of systems show a slow aging
trend in the early stage and a fast aging trend in the later stage. The synthetic data with exponential
functional form are constructed according to based on exponential functional and Gaussian random
variable. The experimental result shows the proposed method has good performances on samples with
different trends. In addition, experimental analysis on the C-MAPSS turbofan aero-engine dataset,
which includes four different working environment sub-datasets, demonstrates the effectiveness and
generality of the proposed method. Compared with other popular methods, the proposed model has
shown very promising prognostic performance.

In the future, the proposed method will be extended in the following ways: (1) How can one
reconstruct data samples while working with different mode switchings from historic data samples?
The accuracy of prediction depends on the completeness of the dataset. An effective reconstruction
sample model could supplement the dataset to improve the accuracy of prediction. (2) How can one
construct the health indicators which have better prediction performance? This paper constructed
a health indicator based on three properties, including monotonicity, threshold similarity and trend
similarity. Exploring more properties of the health indicators and studying optimization solution of
complex multi-objective programming are the challenges. (3) A complex system may have different
kinds of failures during useful life. The type and number of failures have an impact on the aging
process of the system. Thus, how to construct a prediction model considering the impact of both the
type and number of failures on remaining useful life is a significant issue.
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The following abbreviations are used in this manuscript:

RUL Remainning useful life
HI Health indicator
CDD-HI Cumulative dynamic differential health indicator
GBDT Gradient boosting decision tree
LightGBM Light gradient boosting machine
RNN Recurrent neural network
GRU Gated recurrent unit
DTW Dynamic time warping
LSTM Long-short term memory network
EEMD Ensemble empirical mode decomposition
IMF Intrinsic mode function
CNN Convolutional neural networks
SVR Support vector regression
SAEs Stacked autoencodesrs
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