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Abstract: The decontamination of food contact surfaces is a major problem for the food industry.
The radiant catalytic ionization (RCI) method, based on the ionization process, may be an alternative
for conventional decontamination procedures. The advantage of this technique is the possibility
of its application to household refrigerating appliances and industrial cold rooms. This study
aimed to assess the effect of RCI on the reduction of Campylobacter jejuni, Listeria monocytogenes,
and Salmonella Enteritidis from the biofilms formed on a glass surface under refrigeration conditions.
Bacterial biofilms were exposed to RCI for 24 h and after 12 (variant I) and 72 h (variant II) of the
glass surface contamination. In the last variant (III), the contaminated meat was placed on the glass
surface in the refrigerator and subjected to RCI treatment for 72 h. The significantly highest values of
absolute reduction efficiency coefficient E were found for the bacterial attachment stage of biofilm
formation (variant I). The research proves the efficiency of the RCI method in the reduction of bacteria
number from a glass surface.

Keywords: radiant catalytic ionization (RCI); biofilm; Campylobacter jejuni; Listeria monocytogenes;
Salmonella Enteritidis

1. Introduction

Epidemiological risk related to the consumption of food contaminated with pathogenic bacteria
is a worldwide problem. According to EFSA (European Food Safety Authority) reports [1],
campylobacteriosis and salmonellosis have been the most prevalent zoonoses in the European
Union for over a decade. In 2018, 246,571 and 91,857 confirmed cases of human campylobacteriosis
and salmonellosis, respectively, were reported. Although the incidence of L. monocytogenes infections
(2549 cases) is rather low, an extremely high fatality rate (15.6%) allows to include this bacterium as
one of the most important foodborne human pathogens. Due to its ability to survive and grow in the
low-temperature range, which is a crucial factor of the food cold chain efficacy, Listeria monocytogenes is
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considered a microorganism of special concern for the food industry. The largest foodborne Listeria
outbreak, with more than 1000 confirmed listeriosis cases and more than 200 fatalities, was reported
in 2017–2018 in South Africa [2,3]. In 2018, as a result of the multi-country (Denmark, Finland,
UK) outbreak of L. monocytogenes ST6, linked to frozen vegetables, 46 individuals were hospitalized
and 5 died [1]. In the same year, in Australia, the consumption of rockmelon contaminated with L.
monocytogenes contributed to the death of 7 people [4]. In 2019, outbreaks in Spain [5] and Germany [6]
including 3 and 2 deaths, respectively, were noted.

Since Campylobacter, Salmonella, and Listeria spp. are foodborne pathogens of major importance,
a number of research studies on their prevalence and survival in food products have been carried
out [7–15]. It has been proven that these bacteria are commonly present on poultry carcasses and
in poultry processing plants, making poultry meat one of the main risk factors for the infections.
Poultry meat, due to its high content of proteins and water activity, provides favorable conditions for
the growth of both saprotrophic and pathogenic microorganisms. The contamination of poultry may
occur in the slaughterhouse or in the processing, packaging, and handling environments. Due to the
direct contact with food, working surfaces and equipment are also a serious source of the pathogens in
the food. Bacteria may form a biofilm both on the biotic surface (fruits, vegetables, meat, bones) and
the abiotic surface (steel, glass, polypropylene, glaze) [16]. Biofilm is a community of surface-attached
microorganisms encased in a self-produced extracellular matrix. The ability of some pathogenic
bacteria to form biofilm on different materials, used in food processing plants, increases the risk
of food recontamination during production. Specific properties of bacterial biofilm make the cells
highly resistant to the action of many stress factors, namely, desiccation, temperature, chemical
disinfectants, or antibiotics [17,18]. The major part of biofilm structure is the hydrated extracellular
polymeric substance (EPS) matrix. The EPS matrix consists mainly of polysaccharides, proteins, lipids,
and extracellular DNA (eDNA) that protect bacterial cells. The biofilm formation depends on the
availability of the nutrients, synthesis and secretion of the extracellular material, environmental stress,
and the competition with other microorganisms. The EPS molecules mediate in the formation of the
biofilm architecture, which is a dynamically changing spatial structure. The biofilm structure resembles
a sponge that easily absorbs all the molecules secreted in the environment [19,20].

To eliminate pathogens from food contact surfaces, various disinfection procedures are applied in
food processing plants. Chemical methods are the most common and effective means of controlling
and reducing the number of microorganisms in the food industry. However, considering the increased
persistence of the biofilm to the chemicals, the efficiency of this disinfection type may be doubtful
or, at least, unpredictable. Moreover, an increased consumer awareness about the negative effects of
chemicals on human health results in the search for new methods allowing the elimination of bacteria
in the production environment [9,21]. A reasonable alternative for a chemical disinfection might be the
application of different types of radiation [22]. One of them is a technology defined as radiant catalytic
ionization (RCI) [8,23–28]. The RCI technique was initially applied in hospitals and offices to purify air,
which in consequence reduced also the level of indoor surface contamination [8]. The effect of RCI
on microorganism cells results from the generation of various reactive oxygen species (ROS), among
which hydroxyl radical (•OH) and singlet oxygen (1O2) are extremely toxic [29]. ROS effectively inhibit
growth of Gram-positive and Gram-negative bacteria, fungi, and viruses. Their preventive action
against biofilm formation has also been proven [22,30]. The main mechanisms by which ROS affect
pathogens activity are as follows: damage of various cellular sites, destruction of proteins and genetic
material, inactivation of cellular enzymes, or disturbance of metabolic pathways [28,29].

Since the contamination of food contact surfaces contributes to the recontamination of food
products, increasing the risk of human infections, it is extremely important to find methods allowing
the elimination of both planktonic forms of bacteria and biofilms from the food production environment.
RCI is a cutting-edge technology that has no direct contact with the food and does not leave any
chemicals on the treated surface. According to the manufacturer, this method has no negative impact
on the food and humans. This is the first study to determine its antibacterial efficacy under refrigeration
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conditions. As glass is the most popular material used in refrigerators, we decided to use this type of
surface in our experiments. In addition, in previous studies, the effectiveness of RCI against bacteria
on a glass surface was not determined.

The aim of this study was to assess the effect of the RCI method on the reduction of Campylobacter
jejuni, Salmonella Enteritidis, and Listeria monocytogenes from the biofilm formed on a glass surface
under refrigeration conditions.

2. Materials and Methods

2.1. Materials

The study materials consisted of 3 Campylobacter jejuni strains (one reference strain ATCC 33560 and
two isolated from poultry meat), 3 Listeria monocytogenes strains (one reference strain ATCC 19111 and
two isolated from poultry meat), and 3 Salmonella Enteritidis strains (one reference strain ATCC
13076 and two isolated from poultry meat).

The microbial carriers were 3 × 3 cm pieces of chicken breast. The meat samples were thoroughly
washed, dried, and packed in paper and foil bags for sterilization before examination. The packages
were transported at 4 ◦C to the Institute of Nuclear Chemistry and Technology in Warsaw and sterilized
with a high-energy electron beam (EB). The transport time of the samples took 4 h in each direction.
The sterility of the meat was determined after delivery to the laboratory. For this purpose, the samples
were homogenized and the obtained suspensions were plated on appropriate media and incubated.
The procedure was as described in point 4.

The glass shelf from the refrigerator was cut into 5 × 5 cm fragments. The prepared coupons were
thoroughly washed using a detergent, rinsed with distilled water, dried and disinfected with Virusolve
+ EDS (Amity International, Barnsley, United Kingdom), and finally rinsed with sterile distilled water
and wiped with a sterile towel. The effectiveness of the procedure was checked by placing randomly
selected disinfected glass fragments (5 coupons) on the surface of Columbia Agar plates with 5% sheep
blood and incubation in aerobic and microaerophilic conditions at 37 ◦C for 72 h.

2.2. Preparation of Bacterial Suspension

For all the strains tested, standardized microbial suspensions in sterile PBS (BTL, Warsaw Poland)
with an optical density of 0.5 McFarland standard were prepared. For each suspension, serial 10-fold
dilutions in PBS were prepared and a 100 µL portion of each dilution was plated on Columbia Agar
with 5% sheep blood (bioMerieux, Craponne, France). Media inoculated with C. jejuni were incubated
at 42 ◦C under microaerophilic conditions (microaerophilic generator CampyGen, Oxoid, Hampshire,
United Kingdom) for 48 h, and Listeria and Salmonella cultures were kept at 37 ◦C for 24 h. After the
incubation, the number of bacteria in 1 mL was determined. The bacterial suspensions of 107 CFU ×
mL−1 were used to contaminate the meat.

2.3. Assessment of the Biofilm Formation by the Tested Strains

Bacterial suspensions of the tested strains were prepared in sterile brain heart infusion (BHI,
Becton-Dickinson, Franklin Lakes, New Jersey, USA) according to the procedure described in Section 2.
The sterile fragments of the glass shelves from the refrigerator were immersed in bacterial suspensions
and placed for 72 h at 4 ◦C. Then, glass coupons were washed 3 times with sterile PBS, placed in a fresh
sterile PBS and sonicated for 5 min. After15 min of shaking (400 rpm), serial ten-fold dilutions in sterile
PBS were prepared and a 100 µL portion of each dilution was inoculated onto Columbia Agar medium
with 5% sheep blood (bioMerieux, bioMerieux, Craponne, France). After the incubation (conditions
described in Section 2.2), the grown colonies were counted and expressed as log CFU × cm−2.
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2.4. Contamination of Meat and Glass Coupons

Prepared pieces of chicken breast were injected with the standardized bacterial suspensions
and immersed for 1 min in the appropriate suspension (each strain to a separate meat sample).
Then, the meat samples were placed separately in sterile Petri dishes in a sterile laminar chamber and
allowed to dry for 30 min. The meat contamination procedure was carried out in triplicate for each
strain tested. After drying, the number of bacteria in the samples was determined. For this purpose,
the meat pieces were placed in sterile bags containing 100 mL of sterile PBS and were homogenized for
10 min in a laboratory stomacher (Bag Mixer 400 VW, Bag Mixer Interscience, Saint-Nom-la-Breteche,
France). Next, serial ten-fold dilutions in sterile PBS were prepared and a 100 µL portion of each
dilution was plated onto Columbia Agar medium with 5% sheep blood (bioMerieux, bioMerieux,
Craponne, France). After the incubation (conditions described in Section 2.2), the grown colonies
were counted. The ratio (C) of the number of bacteria recovered from the meat (M, [log CFU ×mL−1])
to the number of bacteria in the suspension (S, [log CFU × g−1]) was determined according to the
following formula:

C =
M
S

The contaminated pieces of chicken breast were then placed on the glass coupons and left under
refrigeration conditions for 12 (variant I) or 72 h (variants II and III) (temperature 4 ◦C). The number of
Listeria isolated from the contaminated glass surface directly after the meat was removed and before
carrying out further experimental procedures was determined (I).

2.5. Experimental Design

The tests were carried out in three variants. In variant I, the contaminated meat fragments
were placed on a sterile glass piece and left for 12 h in the refrigerator. Then, the meat sample was
removed and radiant catalytic ionization (RCI) was applied for 24 h (Induct 750, ActivTek, Kielce,
Poland). In variant II, the contaminated meat samples were left on the glass surface for 72 h and then
removed, and the device generating radiant catalytic ionization was turned on in the refrigerator
for 24 h (Induct 750, ActivTek, Kielce, Poland). In variant III, the contaminated meat was placed on
sterile glass fragments in the refrigerator and exposed to RCI (Induct 750, ActivTek, Kielce, Poland) for
72 h. The applied variants of the experiment allowed to check the effect of RCI under refrigeration
conditions on the cell attachment (variant I), mature biofilm (variant II), and the process of biofilm
formation (variant III).

Next, the glass fragments were washed 3 times with sterile PBS, placed in sterile PBS and subjected
to 5 min sonication (Ultrasonic DU-4 sonicator, Nickel-Electro, Weston-super-mare, United Kingdom).
After 15 min of shaking (400 rpm), serial ten-fold dilutions in sterile PBS were prepared and a 100 µL
portion of each dilution was plated onto Columbia Agar medium with 5% sheep blood (bioMerieux).
After the incubation (conditions described in Section 2.2), the grown colonies were counted and
expressed as log CFU × cm−2. The positive controls were glass fragments contaminated with the
poultry meat according to the procedure appropriate for the individual experimental variant (I, II,
or III), but not treated with RCI. The negative controls were sterile pieces of poultry meat and fragments
of glass shelves.

The level of reduction (R) of the number of bacteria recovered from RCI-treated (+RCI) and
non-treated (K+; -RCI) glass coupons relative to the initial number of bacteria on glass coupons after
contact with the contaminated meat was calculated according to the following formula:

R =
I − B

I

where:
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R—bacterial count reduction
I—initial number of bacteria on glass coupons after contact with the contaminated meat [log CFU
× cm−2]
B—the number of bacteria recovered in a given experimental variant for the control (K+; -RCI)
and tested samples (+RCI) [log CFU × cm−2]

In the case of the experimental variant III, the formula was as follows:

R =
(−RCI) − (+RCI)

(−RCI)

where:

R—bacterial count reduction
(-RCI)—number of bacteria determined on glass plates in the control variant without the RCI
technology [log CFU × cm−2]
(+RCI)—number of bacteria recovered after RCI technology [log CFU × cm−2]

The coefficient of absolute RCI efficiency was also calculated, according to the following formula:

E = R+RCI −R−RCI

E—RCI absolute effectiveness coefficient
R+RCI—level of bacterial reduction as a result of RCI application
R-RCI—level of bacterial reduction without RCI application

2.6. Statistical Analysis

The obtained results were analyzed with Statistica 13.0 PL software (StatSoft). Multivariate analysis
of variance was performed based on general linear models (GLMs). To check whether significant
differences existed between the tested experimental groups, the post-hoc Tukey’s test at the significance
level α = 0.05 was applied.

3. Results

3.1. Biofilm Formation

The research confirmed the biofilm formation ability by all tested strains. The strongest biofilm
was formed by S. Enteritidis. The average bacteria number for Salmonella spp. was 8.80 log CFU × cm−2

(Figure 1). The intensity of biofilm formation between Salmonella spp. strains was not significant and
varied from 8.74 log CFU × cm−2 (S. Enteritidis ATCC) to 8.86 log CFU × cm−2 (S. Enteritidis strain 2).
The number of cells recovered from the biofilms of each Salmonella strain was significantly higher
compared to C. jejuni, which had the weakest biofilm-formation capabilities. The average bacteria
number of C. jejuni was 7.37 log CFU × cm−2 (from 7.14 log CFU × cm−2 for C. jejuni strain ATCC
to 7.53 log CFU × cm−2 for C. jejuni strain 2) (Figure 1). The number of bacteria reisolated from the
biofilm formed by L. monocytogenes varied from 7.85 log CFU × cm−2 for L. monocytogenes ATCC strain
to 7.95 log CFU × cm−2 for L. monocytogenes strain 1 (the average of 7.91 log CFU × cm−2 (Figure 1).
No significant differences were observed between individual strains within the species investigated.
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3.3. Assessment of the Effectiveness of Surface Disinfection Using Radiant Catalytic Ionization during 

Bacterial Attachment (Experimental Variant I) 

Figure 1. The average number of bacteria recovered from the biofilm (CJE—Campylobacter jejuni strains,
LMO—Listeria monocytogenes strains, SENT—Salmonella Enteritidis strains; a,b,c—values marked with
different letters differ statistically significantly).

3.2. Recovery Ratio of Bacteria from Contaminated Samples

The average number of bacteria reisolated from the contaminated poultry meat samples varied
from 5.966 log CFU × g−2 for S. Enteritidis strains to 6.395 log CFU × g−2 for C. L. monocytogenes strains
(Figure 2). No significant differences between individual strains of the examined species were noted.
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Figure 2. The average number of Campylobacter jejuni (CJE), L. monocytogenes (LMO), and Salmonella
Enteritidis (SENT) isolated from the contaminated meat sample (M), glass surface after contact with
the meat sample (I), non-radiant catalytic ionization (RCI)-treated (-RCI) glass surface, RCI-treated
(RCI+) glass surface in experimental variant I (a,b,c—values marked with different letters differ
statistically significantly).

The C ratio, describing the effectiveness of the bacteria recovery from the contaminated food
samples, ranged from 0.709 (S. Enteritidis strain 2) to 0.822 (L. monocytogenes ATCC 19111), but these
differences were not statistically significant.
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3.3. Assessment of the Effectiveness of Surface Disinfection Using Radiant Catalytic Ionization during Bacterial
Attachment (Experimental Variant I)

In the case of experimental variant I, the average number of bacteria reisolated from the glass surface
after 12 h contact with the meat sample ranged from 4.332 log CFU × cm−2 for S. Enteritidis strains
(from 4.182 log CFU × cm−2 for S. Enteritidis strain 2 to 4.448 log CFU × cm−2 for S. Enteritidis strain 1)
to 4.837 log CFU × cm−2 for L. monocytogenes strains (from 4.823 log CFU × cm−2 for L. monocytogenes
strains ATTC and 2 to 4.864 log CFU × cm−2 for L. monocytogenes strain 1). The differences were not
statistically significant (Figure 2). In all cases, no significant differences were noted between strains of
the tested species. After 24 h, the bacteria count on the glass surface not subjected to RCI treatment
remained at a similar level. The average number of bacteria reisolated from the glass surface for C. jejuni,
L. monocytogenes, and S. Enteritidis was 4.681 log CFU × cm−2, 4.810 log CFU × cm−2, and 4.285 log
CFU × cm−2, respectively (Figure 2). The number of C. jejuni varied from 4.492 log CFU × cm−2 (strain
2) to 4.778 log CFU × cm−2 (strain 1), L. monocytogenes from 4.795 log CFU × cm−2 (strain ATCC) to
4.838 log CFU × cm−2 (strain 1), and S. Enteritidis from 4.138 CFU × cm−2 (strain 2) to 4.401 log CFU ×
cm−2 (strain 1). Application of RCI for 24 h resulted in a statistically significant decrease of C. jejuni
(varied from 1.192 CFU × cm−2 for strain 2 to 1.308 CFU × cm−2 for ATCC strain), L. monocytogenes
(varied from 1.678 CFU × cm−2 for ATCC strain to 1.811 CFU × cm−2), and S. Enteritidis (varied from
1.646 CFU × cm−2 for ATCC strain to 1.708 CFU × cm−2 for strain 1). The average number of bacteria
reisolated in this experimental variant was 1.258 log CFU × cm−2 for C. jejuni, 1.764 log CFU × cm−2

for L. monocytogenes, and 1.683 log CFU × cm−2 for S. Enteritidis (Figure 2). The differences between
species were not statistically significant.

The calculated reduction rates of the tested bacteria during experimental variant I are presented
in Figure 3. The reduction rate of the bacteria reisolated from the glass surface without RCI treatment
was not higher than 0.012 and no significant differences between strains and species were found.
On the contrary, RCI most efficiently reduced the number of C. jejuni (0.734). For L. monocytogenes,
the reduction rate was 0.636 and for S. Enteritidis, 0.611. The differences calculated for tested species
were not statistically significant.
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Figure 3. The reduction rate of Campylobacter jejuni (CJE), Listeria monocytogenes (LMO), and Salmonella
Enteritidis (SENT) on non-RCI-treated (RCI-) and RCI-treated (RCI+) glass surfaces in experimental
variants I, II, and III (a,b,c—values marked with different letters differ statistically significantly).
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The absolute RCI efficiency coefficient (E) values for the experimental variant I ranged from 0.584
(S. Enteritidis strain 2) to 0.725 (C. jejuni strain 1). The differences between strains and species were not
statistically significant (Table 1).

Table 1. The E coefficient ratio values.

Experimental
Variant Strain Coefficient of Absolute

RCI Efficiency (E)
Mean Value of Coefficient of
Absolute RCI Efficiency (E)

I

CJE ATCC 0.720 (± 0.081)* a

0.723 (±0.323) aCJE 1 0.725 (± 0.125) a

CJE 2 0.723 (± 1.188) a

LMO ATCC 0.647 (± 0.089) a

0.629 (± 0.181) aLMO 1 0.622 (± 0.155) a

LMO 2 0.620 (± 0.217) a

SENT ATCC 0.612 (± 0.121) a

0.600 (± 0.076) aSENT 1 0.605 (± 0.061) a

SENT 2 0.584 (± 0.110) a,b

II

CJE ATCC 0.375 (± 0.041) c

0.232 (± 0.011) bCJE 1 0.173 (± 0.014) d

CJE 2 0.150 (± 0.030)d

LMO ATCC 0.266 (± 0.040) c.d

0.329 (± 0.061) bLMO 1 0.306 (± 0.084) c

LMO 2 0.409 (± 0.110) b,c

SENT ATCC 0.250 (± 0.051) c,d

0.261 (± 0.024) bSENT 1 0.231 (± 0.022) c.d

SENT 2 0.302 (± 0.058) c

III

CJE ATCC 0.155 (± 0.017) d

0.162 (± 0.005) cCJE 1 0.162 (± 0.008) d

CJE 2 0.171 (± 0.039) d

LMO ATCC 0.119 (± 0.016) d,e

0.087 (± 0.022) cLMO 1 0.049 (± 0.009) e

LMO 2 0.092 (± 0.014) e

SENT ATCC 0.083 (± 0.038) e 0.088 (± 0.028) c

SENT 1 0.102 (± 0.015) d,e

SENT 2 0.079 (± 0.025) e

*—standard deviation; a,b,c—values marked with different letters differ statistically significantly.

3.4. Assessment of Effectiveness of Surface Disinfection Using Radiant Catalytic Ionization during Biofilm
Maturation (Experimental Variant II)

The average number of bacteria reisolated from the glass surface, after 72 h contact with the
contaminated meat sample, for C. jejuni was 4.729 log CFU × cm−2 (Figure 4). The greatest number
of bacteria for C. jejuni strains was noted for the reference strain (5.478 log CFU × cm−2) and was
significantly higher than the values obtained for the other strains (4.355 log CFU × cm−2—strain 1,
4.354 log CFU × cm−2—strain 2) The initial number of L. monocytogenes and S. Enteritidis isolated from
the contaminated glass surface ranged from 6.082 log CFU × cm−2 (strain 2) to 6.258 log CFU × cm−2

(ATTC strain) and 5.082 log CFU × cm−2 (for strain 1) to 5.213 log CFU × cm−2 (strain 2), respectively.
The average number of bacteria for L. monocytogenes and S. Enteritidis was 6.176 log CFU × cm−2 and
5.162 log CFU × cm−2, respectively. No statistically significant differences between the individual
strains of both species were observed (Figure 4).
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Figure 4. The average number of Campylobacter jejuni (CJE), Listeria monocytogenes (LMO), and Salmonella
Enteritidis (SENT) isolated from the contaminated meat sample (M), glass surface after contact with
the meat sample (I), non-RCI-treated (-RCI) glass surface, RCI-treated (RCI+) glass surface in the
experimental variant II (a,b,c—values marked with different letters differ statistically significantly).

As presented in Figure 4, no significant difference between the initial bacteria number on the glass
and the bacteria number isolated from the non-treated with RCI surface was observed. For C. jejuni,
the bacteria number ranged from 4.358 log CFU × cm−2 (C. jejuni strain 1) to 5.352 (C. jejuni strain
ATCC). For L. monocytogenes, the values ranged from 6.241 log CFU × cm−2 (L. monocytogenes strain 1)
to 6.011 log CFU × cm−2 (L. monocytogenes strain 2). For S. Enteritidis, the number of bacteria reisolated
from the glass surface not treated with RCI ranged from 5.120 log CFU × cm−2 (S. Enteritidis ATCC
strain) to 5.225 log CFU × cm−2 (S. Enteritidis strain 2). The average number of bacteria reisolated from
the biofilm of C. jejuni, L. monocytogenes, and S. Enteritidis was 4.691 log CFU × cm−2, 6.164 log CFU ×
cm−2, and 3.786 log CFU× cm−2, respectively. Significant differences between C. jejuni, L. monocytogenes,
and S. Enteritidis were noted (Figure 4). The 24 h application of radiant catalytic ionization caused a
statistically significant decrease of the bacteria number, as compared with the non-RCI-treated surface.
The average bacteria number after 24 h RCI application was 3.724, 4.145, and 2.761, for C. jejuni, L.
monocytogenes, and S. Enteritidis, respectively. The count of C. jejuni ranged from 3.393 log CFU × cm−2

(ATCC strain) to 3.668 log CFU × cm−2 (strain 2), L. monocytogenes from 3.587 log CFU × cm−2 (strain 2)
to 4.585 log CFU × cm−2 (ATCC strain), and S. Enteritidis from 3.614 log CFU × cm−2 (for strain 2)
to 3.880 log CFU × cm−2 (strain 1). Significant differences between strains of the same species were
observed in the case of L. monocytogenes reference strain and strain 2. The reduction of the S. Enteritidis
number was significantly higher than that observed for C. jejuni and L. monocytogenes (Figure 4).

The reduction of bacteria number (R) in the biofilm formed on the non-RCI-treated glass surface
ranged from 0.002 to 0.008. High effectiveness of RCI application was confirmed by the obtained
reduction rate values, ranging from 0.240 (C. jejuni) to 0.329 (L. monocytogenes). No significant differences
were observed between different species (Figure 3).

The highest value of the absolute RCI efficiency coefficient (0.409) was noted for L. monocytogenes
strain 2; however, it was not statistically significantly higher than those calculated for two other strains
of this species. On the contrary, absolute RCI efficiency coefficients calculated for C. jejuni strains
1 and 2 (0.173 and 0.150, respectively) were statistically significantly lower, as compared with C. jejuni
reference strain (0.375), L monocytogenes strains 1 and 2, and S. Enteritidis strain 2 (0.306, 0.409, and 0.302,
respectively). No significant differences in the RCI absolute efficiency coefficient were observed for S.
Enteritidis strains (Table 1).
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3.5. Assessment of Effectiveness of Surface Disinfection Using Radiant Catalytic Ionization during Biofilm
Formation (Experimental Variant III)

The average number of bacteria reisolated from the glass surface not treated with RCI was 5.472 log
CFU × cm−2, 6.124 log CFU × cm−2, and 5.162 log CFU × cm−2 for C. jejuni, L. monocytogenes, and S.
Enteritidis, respectively (Figure 5). The number of bacteria for C. jejuni ranged from 5.526 log CFU
× cm−2 (ATCC strain) to 5.439 log CFU × cm−2 (strain 2), for L. monocytogenes from 6.060 log CFU ×
cm−2 (strain 2) to 6.166 log CFU × cm−2 (ATCC strain), and for S. Enteritidis from 5.091 log CFU ×
cm−2 (ATCC strain) to 5.211 log CFU × cm−2 (strain 2). The application of radiant catalytic ionization
resulted in a decrease of bacteria number, but not statistically significant. The average number of
bacteria for C. jejuni, L. monocytogenes, and S. Enteritidis was 4.602 log CFU × cm−2, 5.366 log CFU ×
cm−2, and 4.647 log CFU × cm−2, respectively. No significant differences between RCI-treated and
non-treated samples were observed for all species (Figure 5).
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Figure 5. The average number of Campylobacter jejuni (CJE), Listeria monocytogenes (LMO), and Salmonella
Enteritidis (SENT) isolated from the contaminated meat sample (M), non-RCI-treated (-RCI) glass
surface, RCI-treated (RCI+) glass surface in the experimental variant III (a,b,c—values marked with
different letters differ statistically significantly).

The highest bacteria number reduction rate after RCI treatment was observed for C. jejuni strains
(0.163) in variant III. L monocytogenes and S. Enteritidis reduction rates were 0.127 and 0.089, respectively.
The differences in the bacteria number reduction rate between species were not statistically significant
(Figure 3).

The coefficient of absolute RCI efficiency calculated for the tested bacteria varied from 0.049
(L. monocytogenes strain 1) to 0.171 (C. jejuni strain 2). The E values for C. jejuni strains were statistically
significantly higher than those obtained for the remaining strains, excluding L. monocytogenes reference
strain (0.119) and S. Enteritidis strain 1 (0.102). The absolute RCI efficiency coefficients of L. monocytogenes
and S. Enteritidis strains were not statistically significantly different (Table 1).

An overall analysis of E coefficient showed, for all the tested strains, statistically significantly
higher values in the experimental variant I (Table 1). Comparable and not statistically different
coefficients for variants II and III were observed for C. jejuni strains 1 and 2, L. monocytogenes reference
strain, and S. Enteritidis strain 2. For the rest of the tested strains, the E values were significantly higher
when the variant II was applied. The highest reduction of bacteria number after application of RCI
was achieved in variant I, whereas the lowest was found in variant III (Figure 3).
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4. Discussion

The elimination of pathogenic microorganisms from food contact surfaces is of great concern for
the food industry. Since many foodborne human pathogens are able to form biofilm on various surfaces,
widely used in the food processing environment, the risk of food cross-contamination during production
increases. Many pathogenic bacteria are known to adhere to, and subsequently, form biofilm on the
food and food contact surfaces, such as stainless steel, plastic, glass, or rubber [8,11,12,26,27,31,32].
In the present study, all the tested species formed biofilm on the glass surface after 72 h at 4 ◦C.
The strongest biofilm was observed for S. Enteritidis. According to Manijeh et al. [12], the number of
cells in the biofilm formed on the glass surface by S. Enteritidis ranged from 104 log CFU × cm−2 after
2 h to 107 log CFU × cm−2 after 20 h of adhesion at 35 ◦C. In our study, the number of S. Enteritidis
after 72 h at 4 ◦C ranged from 8.74 to 8.86 log CFU × cm−2.

Currently, a wide spectrum of conventional chemical methods can be applied for the efficient
eradication of pathogens from food contact surfaces. Nonetheless, the toxicity of chemical agent residues
and the potential increase of microbial resistance to the applied chemicals encourage researchers
to search for new techniques of safe and effective pathogen inactivation. Alternative processes,
including the control of quorum sensing, the use of phages, and the application of essential oils (EO),
biosanitizers, bacteriocines, blue laser light, ozone, pulsed electric field, high pressure technologies
or electrolyzed water, are currently at various stages of development [21,22,31,33]. The important
alternative antimicrobial technology is ionizing radiation. The most commonly used forms for
decontamination purposes are gamma rays, high energy electrons and X-rays; however, a number of
modern methods based on this type of radiation, that is, cold plasma or binary ionization technology
(BIT), are still intensively investigated [34–38]. Radiant catalytic ionization (RCI) is one of these novel
techniques and, according to the results of many research studies, appears to be a reasonable alternative
to the conventional decontamination procedures. The great advantage of RCI, in contrast to gamma
rays, X-rays, and high energy electrons, is the possibility of its application to household refrigeration
appliances, industrial cold rooms, and rooms with low indoor temperature, intended for raw or
processed food product storage.

The antimicrobial efficiency of RCI is attributed to the cell damaging effect of oxidative gases,
including ozone and peroxide, generated by the RCI cell [25,28]. The inhibition of pathogenic
microorganisms on various surfaces was confirmed by our previous studies [8,26,27]. The reduction
rate of the L. monocytogenes number in biofilms formed on different surfaces (rubber, milled rock
tiles, polypropylene) varied from 3.92% to 70.10%, whereas in the case of stainless steel AISI 304 and
lacquered veneer surfaces, up to 95% of L. monocytogenes and S. Enteritidis were reduced [26]. Saini et
al. [39] achieved 4.37 log CFU reduction of the L. monocytogenes number on stainless steel coupons
after 15 min of photohydroionization (PHI) treatment. According to Ortega et al. [25], the reduction of
different microorganisms, including foodborne pathogens, on stainless steel surfaces subjected to 24 h
of RCI treatment reached at least 90%. RCI efficacy against Salmonella on food contact surfaces and
animal food products was also confirmed [28,40]. The present research showed the inhibition of C.
jejuni, L. monocytogenes, and S. Enteritidis strains on a glass surface after RCI treatment. To assess the
RCI effect exclusively on bacteria, the absolute reduction rate coefficient (E) was calculated. The highest
E values for all species ranged from 0.584 to 0.725 and were obtained after 24 h of RCI application to the
surface contaminated for 12 h (experimental variant I). On the contrary, a significant reduction was not
observed on the glass surface covered with the contaminated meat sample during 72 h exposure of RCI
(variant III). In this case, the meat sample placed on the glass surface created a favorable environment
for bacterial growth, protecting the microorganisms from the harmful effect of RCI.

The efficiency of radiant catalytic ionization is determined by a variety of factors, including type
and physiological state of microorganisms, properties of the contaminated surface, environmental
conditions, and parameters of the ionization process [26,41,42]. The sensitivity to irradiation is species-
and strain-dependent and may be associated with the origin of the strain, the metabolic state of cells,
and the ability to form biofilm [26]. The results obtained by Yang et al. [40] suggest less sensitivity to
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photohydroionization of the non-antimicrobial resistant (non-AMR) Salmonella strain compared to AMR
Salmonella. Spore-forming bacteria and viruses are more resistant to radiant catalytic ionization [42].
According to Kang et al. [43], the structural differences of Gram-positive and Gram-negative bacteria
affect the resistance to ionization. It was found that S. Typhimurium inoculated in pork jerky was more
sensitive to EB-irradiation combined with the leek extract treatment than L. monocytogenes. On the
contrary, in the study by Osaili et al. [42], L. monocytogenes showed higher radiation sensitivity than
Salmonella spp. Skowron et al. [27] noted a similar level of L. monocytogenes and S. Enteritidis reduction
after RCI treatment. Mannozzi et al. [28] observed lower sensitivity of Escherichia coli, as compared to
Listeria innocua and S. Typhimurium after 60 min of RCI treatment; however, after 90 min no differences
were reported. In the present study, in most cases, we observed no significant differences in the
resistance to RCI exposure between C. jejuni, L. monocytogenes, and S. Enteritidis. No statistically
significant differences in the bacteria number reduction rate were noted for the strains of the same
species, except for C. jejuni in the experimental variant II.

The time of ionization affects the irradiation efficiency and, generally, the greater reduction is
associated with the longer time exposure [25,28,44]. According to Grinshpun et al. [45], approximately
75% of B. subtilis spores were inactivated in 10 min, and about 90% after 30 min of photocatalytic
oxidation. Ortega et al. [25] noted that RCI reduced microbial populations on stainless steel surfaces
within 2 h and the greatest reduction was achieved after a 24 h treatment. The study of Yang et al. [40]
showed no differences in Salmonella reduction resulting from the extension of photohydroionization
time from 15 to 60 s. Ionization time applied in our research ranged from 24 to 72 h. However, the longer
exposition to RCI was applied to the surface covered with the contaminated meat sample during the
whole experiment.

The lower effectiveness of disinfection agents against bacterial biofilm compared to planktonic
forms is a well-documented and undoubtful fact [26,32,46–49]. It is speculated that the biofilm
extracellular polymeric substances (EPSs) may serve as the primary target of ROS and protect the
associated bacteria cells [32]. Biofilm maturity is considered as an important factor affecting bacteria
cell sensitivity to ionization. Biofilm formation is a four-stage biological process. In the initial stage,
bacteria attach to the surface and next they proliferate, form microcolonies, and finally detach from
the mature biofilm structure [50]. According to Sommers [51], ionizing radiation is more efficient
against bacteria in the initial phase of attachment than in mature biofilm. The D10 values for most
food-borne pathogens are higher in the stationary phase of growth than in the log phase. Niemira [32]
found that reduced susceptibility to ionization was achieved for the mature 24 h biofilm and no further
differences in radiation sensitivity were observed for 48 h and 72 h samples. In the present study,
the highest effectiveness of RCI treatment was observed also against the bacteria at the initial stage of
biofilm formation—bacterial attachment (variant I). The reduction of bacteria number in the mature
biofilm, formed on the glass surface after 72 h contact with the contaminated meat sample (variant II),
was significantly lower.

The research proves the RCI efficiency against bacteria on a glass surface. Nevertheless, the state
of bacterial cells plays an important role. Satisfying results of the current research on the inhibiting
effect of RCI on microorganisms on the materials used in the food industry support the need for further
studies for the implementation of this method on an industrial scale.
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