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Featured Application: Fault diagnosis and fault-tolerant control.

Abstract: A robot manipulator is a multi-degree-of-freedom and nonlinear system that is used in
various applications, including the medical area and automotive industries. Uncertain conditions
in which a robot manipulator operates, as well as its nonlinearities, represent challenges for fault
diagnosis and fault-tolerant control (FDC) that are addressed through the proposed FDC technique.
A machine-learning-based neural adaptive, high-order, variable structure observer for fault diagnosis
(FD) and adaptive, modern, fuzzy, backstepping, variable structure control for use in a fault-tolerant
control (FC) algorithm, are proposed in this paper. In the first stage, a variable structure observer
is proposed as an FD technique for the robot manipulator. The chattering phenomenon associated
with the variable structure observer(VSO) is solved using a high-order variable structure observer.
Then, the dynamic behavior estimation performance in the high-order variable structure observer
is improved by incorporating a neural network algorithm in the FD pipeline. This adaptive
technique is also effective in improving the robustness of the fault signal estimation. Moreover,
support vector machines (SVMs) that can derive adaptive threshold values are used to categorize
faults. To design an effective fault-tolerant controller (FC), an adaptive modern fuzzy backstepping
variable structure controller is used in this study. First, a new variable structure controller is
designed. Next, to increase robustness and reduce high-frequency oscillations in uncertain conditions,
a backstepping algorithm is used in parallel with the variable structure controller to design the
backstepping variable structure controller. To design an effective hybrid controller, a fuzzy algorithm
is integrated into the backstepping variable structure controller to create a fuzzy backstepping
variable structure controller. Then, to improve the robustness and reliability of the FC, a neural
adaptive. high-order. variable structure observer is applied to the fuzzy backstepping variable
structure controller to design a modern fuzzy backstepping variable structure controller. An adaptive
algorithm is used to fine-tune the variable structure coefficients and reduce the effect of faults on
the robot manipulator. The effectiveness of the selected algorithm is validated using a PUMA robot
manipulator. The neural adaptive. high-order variable structure observer improves the average
performance for the identification of various faults by about 27% and 29.2%, compared with the
neural high-order variable structure observer and variable structure observer, respectively.
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1. Introduction

Robot manipulators have been used in diverse applications, including the medical, scientific,
military and industrial fields. The development of fault diagnosis and fault-tolerant control (FDC)
for robot manipulators is a challenging task because of the nonlinearities and coupling effects of the
robot’s dynamics [1]. Numerous types of failures may occur in robot manipulators, and these can be
divided into three main categories: actuator faults, sensor faults and plant faults [2]. The condition
monitoring of a robot manipulator can be achieved through different techniques. This research focuses
on a torque and position signature analysis method, because these signals are suitable for FDC in
robot manipulators.

Diverse methods have been introduced for fault diagnosis and can be classified into four groups:
(a) model-based techniques [2,3], (b) signal-based approaches [4,5], (c) artificial intelligence [6,7] and (d)
hybrid-based methods [8]. Various model-based techniques have been proposed for fault estimation
(FE) in industrial components, with observation-based techniques being some of the most important
algorithms. These techniques can be categorized into two main groups: linear (e.g., PI observer)
and nonlinear approaches (e.g., variable structure observer (VSO), feedback linearization observer,
and backstepping observer) [2,3,8–10]. Compared to linear observers, nonlinear observers have more
edges, such as accuracy and reliability [9]. Due to the lack of robustness in the feedback linearization
observers and backstepping observers, a VSO is used in this research. The VSO is reliable and robust,
but is prone to high-frequency oscillations, especially in faulty conditions. These oscillations can
be reduced using a high-order VSO [3,9]. To modify the performance of high-order VSOs, various
techniques have been introduced, including the quasicontinuous, high-order VSO [11], suboptimal
high-order VSO [12], and the twisting high-order VSO [13]. These techniques encounter a challenge
at the first-order derivative of the variable structure surface. To address this issue, a super twisting
high-order VSO (HVSO) is recommended in this work. Despite its satisfactory stability, robustness and
high-frequency attenuation, the fault estimation accuracy of this method must be increased to improve
the rate of fault identification [9]. To increase the fault estimation accuracy and fault identification
performance, a neural network algorithm is used in parallel with the HVSO to design a neural HVSO
(NHVSO) for FE in the robot manipulator. The main challenge of the VSO, HVSO, and NVSO is in
finding the optimal value for the variable structure surface slope in unknown (faulty) conditions.
In this research, this issue is resolved using an online tuning algorithm in parallel with the NHVSO to
design an adaptive NHVSO (ANHVSO).

In the past decade, different machine learning solutions that utilize statistical feature parameters as
attributes to learn how to solve various fault diagnosis problems, have been proposed. The most popular
approaches reported in the literature include k-nearest neighbor (k-NN) classification algorithms (fault
diagnosis) [14], classification and regression trees (CARTs) (fault diagnosis and prognosis) [15,16],
artificial neural networks (fault diagnosis) [17,18], and other various types of regression algorithms
(fault prognosis) [19]. However, these fault diagnosis methods have some limitations. Specifically,
k-NN does not learn any specific mathematical function during its training, so the classification result
is completely dependent on the quality and scale of the features used in the training set. Moreover,
the value of k and the distance function used in this algorithm must be chosen, and a proper tradeoff

between accuracy and the time needed for training must be found. Similarly, CART algorithms are
also sensitive to the quality of the features used for training; however, they are insensitive to the scale
of the data. Like k-NN, CART methods do not manipulate the input data during training, and in
cases of overlapping feature spaces, the classification performance of the decision trees can be poor.
During the training stage, ANNs may neglect some data problems while adjusting the weights and
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hyperparameters. However, ANNs have some limitations, such as gradient pitfalls and longer training
times for large data sets that may not allow for an optimal solution.

To avoid these issues and to address the problem of fault diagnosis, the support vector machines
(SVMs) [20–23] machine learning algorithm is utilized in this paper. This algorithm has a strong
mathematical background, and better addresses feature dimensionality due to the availability of the
different types of kernels that can be used for training. For this paper, a linear kernel [24] was chosen
as the kernel function due to the small number of extracted features and the linear separability of the
available data. To extend the capabilities of SVM and solve the multiclass classification problem, a
“one-against-one” [25] strategy was employed for training.

Numerous procedures have been introduced for fault-tolerant control (FC). These strategies are
classified into two groups: a) active fault-tolerant control and b) passive fault-tolerant control [3].
The active fault-tolerant control includes two steps. First, the fault is detected and identified.
Then, the effect of the fault is reduced. In the passive fault-tolerant control, the impact of the fault
is decreased directly based on control techniques [10]. In this investigation, active fault-tolerant
control is adopted for fault-tolerant control in the robot manipulator. The active fault-tolerant
control is classified into two main groups: a) linear and b) nonlinear. Linear procedures lead
to unsatisfactory fault-tolerant control due to coupling effects parameters, noisy conditions, and
increased gear. To address these issues, the use of a nonlinear fault-tolerant controller is suggested.
Various nonlinear active fault-tolerant controllers have been presented in the literature, including
model-based [3], artificial intelligence-based [26] and hybrid [10]. The model-based active fault-tolerant
controllers have numerous advantages, such as stability, robustness and reliability, but its performance
under unknown conditions is the main argument against its use. To address this weakness, artificial
intelligence-based and hybrid controllers can be used. However, artificial intelligent active fault-tolerant
controllers procedures have many issues concerning robustness and reliability. To address the faults
in model-based and artificial intelligence, a hybrid fault-tolerant controller was presented in [10].
Various hybrid algorithms have been defined for fault-tolerant control in robot manipulators, such as
the modern fuzzy feedback linearization technique [8], fuzzy sliding mode controller [10] and neuro
sliding mode approach [27]. In this research, the adaptive modern (adaptive neuro observation) fuzzy
backstepping variable structure controller is selected for fault-tolerant control of a robot manipulator.
A variable structure controller (VSC) is a robust and reliable model-based technique, and is one of
the most suitable candidates for fault-tolerant control of robot manipulators. Three basic problems
must be addressed: (a) the chattering phenomenon, (b) the system’s dynamic dependency and c)
robustness in faulty conditions [3]. Based on the literature, to decrease chattering, multiple procedures,
such as the boundary layer method, sliding mode fuzzy technique, and PID sliding mode control
algorithm, have been devised [10]. Similarly, the robustness of a VSC can be improved using the
adaptive techniques reported in [10]. Therefore, to improve robustness and reduce high-frequency
oscillations (chattering phenomenon) under faulty conditions, the backstepping algorithm is used
in parallel with the VSC to design a BVSC. Further, to address the system’s dynamic dependency,
the proportional–integral–derivative (PID) fuzzy technique is used along with a BVSC to design an
FBVSC. To design a PID fuzzy controller with a minimum rule-base, the PD-fuzzy-plus-PI-fuzzy
algorithm is used. To allow for fault modification in the controllers, the active fault-tolerant control is
suggested. Thus, the proposed neural adaptive observer (ANHVSO) is applied to the FBVSC to design
a modern FBVSC (MFBVSC). Furthermore, to increase robustness and decrease chattering, the adaptive
technique is used to fine-tune the variable structure parameters in faulty conditions. The adaptive
MFBVSC (AMFBVSC) is used to reduce the effects of faults in the robot manipulator.

Figure 1 shows a block diagram of the SVM-based neural adaptive, high-order variable structure
observer fault diagnosis and fault-tolerant control for a robot manipulator. The diagram has four main
parts: (a) modeling the dynamic behavior of the robot manipulator based on the Lagrange technique [28],
(b) estimation of the normal and abnormal signals based on the neural adaptive high-order variable
structure observer, (c) detection and identification of faults based on the machine learning (SVM)
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algorithm, and (d) fault-tolerant control of the robot manipulator using an adaptive modern (neural
adaptive high-order variable structure observer) fuzzy backstepping variable structure controller.Appl. Sci. 2019, 8, x FOR PEER REVIEW  5 of 27 
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structure observer fault diagnosis and fault-tolerant control of robot manipulator. 

Figure 1. Block diagram of the Support Vector Machine (SVM)-based adaptive neuro variable structure
observer fault diagnosis and fault-tolerant control of robot manipulator.
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Estimating normal and abnormal signals based on the neural adaptive high-order variable
structure observer has four principal sub-blocks: (i) designing the variable structure observer
(VSO), (ii) implementing a high-order VSO to reduce chattering, and evaluating it using the
super-twisting method, (iii) evaluating the accuracy of the high-order super-twisting VSO (HVSO)
using a neural-network technique, and (iv) improving the reliability and robustness of the neural
higher-order super-twisting variable structure observer (NVSO) using the adaptive approach. Detection
and identification of faults based on the support vector machine (SVM) algorithm has three main
sub-blocks: (i) generation of the residual signal based on the difference between the original and
estimated signals, (ii) characterization of windows by the energy feature for position and torque signals,
and (iii) the detection and classification of the fault types using the SVM technique. Fault-tolerant
control of the robot manipulator using the adaptive, modern (ANHVSO), fuzzy, backstepping variable
structure controller has five main sub-blocks: (i) the variable structure controller (VSC) is designed, (ii)
a backstepping control algorithm to reduce chattering is expressed and evaluated using a backstepping
variable structure controller (BVSC), (iii) the difficulty of determining a system’s BVSC dynamics
under uncertain conditions is evaluated using a fuzzy procedure, (iv) the accuracy and extent of
fault-tolerance in the fuzzy BVSC (FBVSC) is evaluated using a modern (ANHVSO) approach, and
(v) the robustness and reliability of the fault-tolerant controller in the modern FBVSC (MFBVSC) is
improved using an adaptive procedure. The main contributions of this research can be summarized
as follows:

(1) Improved estimation accuracy of normal and abnormal signals based on the neural adaptive,
high-order, variable structure observer.

(2) Implementation of the SVM-based neural adaptive, high-order, variable structure observer to
improve fault detection and identification accuracy in a robot manipulator.

(3) Improvement of the fault-tolerant control in the fuzzy variable structure controller of a robot
manipulator using three important algorithms: (a) backstepping control technique, (b) neural
adaptive high-order variable structure observer and (c) an adaptive technique.

The rest of this research paper is organized as follows. In Section 2, the dynamic formulation of the
Programmable Universal Machine for Assembly (PUMA) robot manipulator is briefly presented. The
proposed method for fault diagnosis and fault-tolerant control is presented in Section 3. This section
includes three main parts. In the first, the fault/signal is estimated accurately using the neural adaptive
high-order variable structure observer. In the second, the faults are detected and identified based
on the machine learning approach. In this technique, a support vector machine (SVM) algorithm is
introduced to increase the accuracy of fault detection and identification. In the third, to design the
fault-tolerant control algorithm, an adaptive modern fuzzy backstepping variable structure controller
is proposed. In Section 4, the results and a discussion related to fault diagnosis and fault-tolerant
control are presented. Finally, the work is concluded in Section 5.

2. Robot Manipulator Modeling

A robot manipulator is a highly nonlinear, uncertain, complex, multi-degree-of-freedom (DOF)
system. Therefore, modeling this system is a major challenge in the design of a model-based technique
for FDC. The mathematical model of a robot manipulator based on the Lagrange equation is represented
as follows:

τ− τ f = α(q)
..
q + β

(
q,

.
q
) .
q + γ(q) + Θ. (1)

Here, τ, τ f ,α(q), β
(
q,

.
q
)
,γ(q), Θ, and q are the torque, fault torque, inertial matrix, Coriolis and

centrifugal (nonlinear) matrix, gravity vector, robot manipulator fault and manipulator joint vector,
respectively.Therefore, based on Equation (1), the expression for

(
τ− τ f

)
requires the acceleration of
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the robot manipulator. To rule out the need for acceleration, a low pass filter (LPF) and the integral
term of Equation (1) are used to derive the following equation:

τLPF = ψ

∫
(T− τLPF)dt, (2)

where τLPF, T and ψ are the torque LPF, the difference between the torque and fault torque, and the
coefficient to find the cut-off frequency, respectively. Based on Equations (1) and (2), the acceleration
matrix is represented as follows:

d
dt

(
α(q)

.
q
)
=

.
α(q)

.
q + α(q)

..
q, (3)

Based on the skew-symmetry of
.
α(q) − 2γ

(
q,

.
q
)
, and according to [28], it follows that:

.
α(q) = βT

(
q,

.
q
)
+ β

(
q,

.
q
)
+ γ(q), (4)

Thus, the LPF torque is represented by Equation (5):

τLPF = ψ

{∫
(γ(q) − βT

(
q,

.
q
) .
q− τLPF + Θ)

}
dt + α(q)

.
q. (5)

In a real application, the LPF torque can be calculated using the following equation:

τ̂LPF = ψ

{∫
(γ̂(q) − β̂T

(
q,

.
q
) .
q− τLPF + Θ̂)

}
dt + α̂(q)

.
q. (6)

Here, τ̂LPF, α̂(q),−β̂
(
q,

.
q
)
, Θ̂, and γ̂(q) are the estimated LPF torque, the estimated inertial matrix,

the estimated Coriolis and centrifugal (nonlinear) matrix, the fault estimation based on the system
model, and the estimated gravity vector, respectively. Therefore, the actual and estimated low pass
filter torque can be used to find the torque in the robot manipulator without any need to find the
acceleration. Based on Equation (6), the mathematical modeling of the robot manipulator includes
uncertainties and unknown conditions. To address this drawback, and to increase the accuracy of the
signal estimation, an adaptive neuro structure variable observer (ANSVO) can as described in the
following section.

3. Fault Diagnosis: Machine Learning-based Adaptive Neuro High-Order Variable
Structure Observer

Based on Figure 1, the SVM-based, adaptive, neuro variable structure observer fault diagnosis
and fault-tolerant control for a robot manipulator are presented in this research. Therefore, the main
objectives of this research are fault diagnosis and fault-tolerant control. The fault diagnosis of the robot
manipulator based on the proposed algorithm has two main steps. To increase the fault detection
and classification, the signal estimation accuracy of the normal and abnormal signals based on the
neural adaptive variable structure observer is presented in the first step. The VSO is a robust observer
that can be used for signal estimation. A high-order super twisting technique is used to mitigate the
issue of chattering in VSO. In addition to effectively estimate the signal, accuracy is the other challenge
that needs to be addressed. To increase the signal estimation accuracy, a neural-network technique
is introduced. Moreover, the adaptive technique is used to improve the reliability and robustness.
The second step for fault diagnosis is fault detection and classification. To increase the fault detection
and identification accuracy, SVM is considered in this research.

A variable structure controller (VSC) is a robust and reliable control algorithm, and is one of
the most suitable candidates for the fault-tolerant control of robot manipulators. This technique has
three basic problems: (a) the chattering phenomenon; (b) the system’s dynamic dependency; and (c)
robustness in faulty conditions. A backstepping control algorithm is used in the work to address the
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chattering issue. Next, the difficulty of determining a system’s dynamics under uncertain conditions
is evaluated using a fuzzy algorithm. Moreover, the robustness and reliability of the fault-tolerant
controller is improved using an adaptive procedure.

3.1. Adaptive Neuro High-Order Variable Structure Observer

Based on Figure 1 and the robot manipulator model, an adaptive neuro high-order variable
structure observer (ANHVSO) can be designed to estimate faults in the presence of uncertainties
and external distortion. Based on Equations (5) and (6), the state-space robot manipulator model is
represented by the following equation:

.
X1 = X2 = q

.
X2 = α−1(X1)τLPF + α−1(X1)β

(
X1 X2

)
− γ(X1) − α−1Θ

Y = X1

. (7)

Here, (X1, X2),
( .
X1,

.
X2

)
and Y are the state estimation, the change of the state estimation, and the

measured output state-space signal for the robot manipulator, respectively. The robust classical VSO
technique used to estimate the faulty signal is as follows [3,9].

.
X̂1−VSO = X̂2 + µ1sgn

(
X1 − X̂1

)
.

X̂2−VSO = α̂−1
(
X̂1

)
τ̂LPF + α̂−1

(
X̂1

)
β̂
(

X̂1 X̂2
)
+ γ̂

(
X̂1

)
+ α̂−1Θ̂VSO + µ2sgn

( .
X̂1 − X̂2

)
,

ŶVSO =
(
εT

)
X̂1

(8)

The VSO for fault (Θ̂) estimation is represented by the following equation:

Θ̂VSO = µ3sgn
(
X1 − X̂1

)
. (9)

Here, (µ1,µ1,µ3),
(
X̂1−VSO, X̂2−VSO

)
, ŶVSO, Θ̂VSO, and εT are variable structure coefficients, the

observation state estimation based on the VSO, the estimated output based on the VSO, the fault
estimation based on the VSO technique, and the coefficient for the output estimation based on the
VSO, respectively. To reduce high-frequency oscillations in the VSO, application of the higher-order
VSO (HVSO) is recommended. The super-twisting (ST) technique for the HVSO is represented by the
following Equation [9]:  % = µ4‖X1 − X̂1‖

1
2 sgn

(
X1 − X̂1

)
− ∆

.
∆ = −µ5sgn

(
X1 − X̂1

) , (10)

Here, %, ∆, and (µ4,µ5) are the performance enhancement function of the VSO, a variable in the
ST function to reduce the estimation error, and a coefficient, respectively. Thus, the following equation
is used to represent the HVSO in a robot manipulator to reduce chattering in the VSO:

.
X̂1−HVSO = X̂2 + µ1sgn

(
X1 − X̂1

) 2
3 sgn

(
X1 − X̂1

)
,

.
X̂2−HVSO = α̂−1

(
X̂1

)
τ̂LPF + α̂−1

(
X̂1

)
β̂
(

X̂1 X̂2
)
+ γ̂

(
X̂1

)
+ α̂−1Θ̂HVSO + µ2sgn

( .
X̂1 − X̂2

)
+

µ6‖X1 − X̂1‖
1
2 sgn

( .
X̂1 − X̂2

)
− ∆,

.
∆ = −µ5sgn

(
X1 − X̂1

)
,

ŶHVSO =
(
εT

)
X̂1

, (11)

The fault can be estimated and represented using the HVSO as described in the following equation:

Θ̂HVSO = µ3sgn
(
X1 − X̂1

)
+ µ7‖X1 − X̂1‖

1
2 sgn

(
X1 − X̂1

)
. (12)
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Here, (µ6,µ7),
(
X̂1−HVSO, X̂2−HVSO

)
, ŶHVSO and Θ̂HVSO are high-order variable structure

coefficients, the observation state estimation based on the HVSO, the estimated output based on the
HVSO, and the fault estimation based on the HVSO technique, respectively. The HVSO reduces
high-frequency oscillations in the classical VSO, but suffers in terms of accuracy for signal estimation
and fault identification. To improve signal estimation and reduce estimation error in the HVSO, use of
a neural network (NN) is recommended. Thus, a three-layer NN with a nonlinear hidden layer and a
linear output layer is used to improve the observation-based signal estimation, creating a neuro HVSO
(NHVSO). The activation function based on the tangent hyperbolic and the derivative of the function
can be defined through the following equations, respectively [27]:

g(x) = 2
( 1

1 + ex

)
− 1, (13)

.
g(x) =

1− g2(x)
2

. (14)

The NN-based LPF torque is represented by the following equation:

τ̂LPF,NN,k =

 m∑
n=1

ω2
nk

2

 1

1 + e−
∑
ω1

njx j+b1
n

− 1


+ bk

2. (15)

Here, τ̂LPF,NN,k,ω1
nj,ω

2
nk, b1

n, b2
k , x j, and m are the estimated filtered torque for every joint based on

the neural network algorithm, the weight of the first layer, the weight of the second layer, the input and
the number of hidden layer neurons, respectively. To optimize the biases and weights of the NN robot
dynamic estimation, a backpropagation algorithm (BP) is applied. Thus, the following equation is used
to represent the NHVSO in the robot manipulator to improve the estimation accuracy in the HVSO:

.
X̂1−NHVSO = X̂2 + µ1sgn

(
X1 − X̂1

) 2
3 sgn

(
X1 − X̂1

)
,

.
X̂2−NHVSO = α̂−1

(
X̂1

)
τ̂LPF,NN,k + α̂−1

(
X̂1

)
β̂
(

X̂1 X̂2
)
+ γ̂

(
X̂1

)
+ α̂−1Θ̂NHVSO+

µ2sgn
( .
X̂1 − X̂2

)
+ µ6‖X1 − X̂1‖

1
2 sgn

( .
X̂1 − X̂2

)
− ∆,

.
∆ = −µ5sgn

(
X1 − X̂1

)
,

ŶNHVSO =
(
εT

)
X̂1

, (16)

The fault can be estimated based on the NHVSO and represented by the following equation:

Θ̂NHVSO = µ3sgn
(
X1 − X̂1

)
+ µ7‖X1 − X̂1‖

1
2 sgn

(
X1 − X̂1

)
. (17)

Here,
(
X̂1−NHVSO, X̂2−NHVSO

)
, ŶNHVSO, and Θ̂NHVSO are the observation state estimation based on

the NHVSO, the estimated output based on the NHVSO, and the fault estimation based on the NHVSO
technique, respectively. To increase robustness and reliability in the presence of unknown parameters,
system uncertainties and faulty conditions, the adaptive (online tuning) technique is added to the
NHVSO to produce the proposed ANHVSO. From Equation (17), µ3 and µ7 are the main coefficients
used to estimate the signals and faults in unknown conditions. To optimize these coefficients, the
adaptive technique, based on a fuzzy algorithm, is implemented as follows:{

µ3−New = µ3 ×Υ

µ7−New = µ7 ×Υ
, (18)

where (µ3−New,µ7−New) and Υ are the adaptive tuning coefficients for improving the fault and signal
estimation accuracy, and the output of the fuzzy technique that is used to tune the NHVSO coefficients.
The proportional and derivative (PD) Mamdani-based fuzzy technique is used to design an adaptive
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technique. This technique has two inputs (error (e) and the derivative of the error
( .
e
)
) and one output

(Υ). The membership functions of the fuzzy set for tuning the fault and signal estimation coefficients
for (e) in the interval

[
−0.6, 0.6

]
are the triangular and linguistic variables, which are defined as

negative high (NeH), negative medium (NeM), negative low (NeL), zero (Ze), positive low (PoL),
positive medium (PoM) and positive high (PoH). The fuzzy membership functions for tuning the fault
estimation coefficients of

( .
e
)

in the interval
[
−1.5, 1.5

]
are the triangular and linguistic variables,

which are defined as NEH, NEM, NEL, ZE, POL, POM and POH. In addition, the fuzzy linguistic
variables for (Υ) in the interval

[
0.15, 3

]
are the Gaussian and fuzzy sets, which are defined as

positive small (PoS), positive medium (PoM), and positive big (PoB). An example of the fuzzy If-Then
rule is defined by the following equation. Table 1 illustrates the fuzzy rule table used for tuning the
coefficients to design the ANHVSO.

I f e is NeH and
.
e is NeH Then Υ is PoB. (19)

Table 1. The fuzzy rule table for tuning the coefficients in the adaptive neural high order variable
structure observer (ANVSO).

error
(e)

Change of Error
.
e

NeH NeM NeL Ze PoL PoM PoH
NeH PoB PoB PoB PoB PoB PoM PoS
NeM PoB PoB PoB PoB PoM PoM PoS
NeL PoB PoB PoB PoM PoM PoM PoS
Ze PoB PoB PoM PoM PoM PoS PoS

PoL PoB PoM PoM PoM PoM PoS PoS
PoM PoM PoM PoM PoM PoS PoS PoS
PoH PoM PoM PoM PoS PoS PoS PoS

Consequently, the following equation is used to represent the ANHVSO in the robot manipulator
to improve the estimation accuracy of the NHVSO:

.
X̂1−ANHVSO = X̂2 + µ1sgn

(
X1 − X̂1

) 2
3 sgn

(
X1 − X̂1

)
,

.
X̂2−ANHVSO = α̂−1

(
X̂1

)
τ̂LPF,NN,k + α̂−1

(
X̂1

)
β̂
(

X̂1 X̂2
)
+ γ̂

(
X̂1

)
+ α̂−1Θ̂ANHVSO+

µ2sgn
( .
X̂1 − X̂2

)
+ µ6‖X1 − X̂1‖

1
2 sgn

( .
X̂1 − X̂2

)
− ∆,

.
∆ = −µ5sgn

(
X1 − X̂1

)
,

ŶANHVSO =
(
εT

)
X̂1

, (20)

The fault is estimated based on the ANHVSO and denoted by the following:

Θ̂ANHVSO = µ3−Newsgn
(
X1 − X̂1

)
+ µ7−New‖X1 − X̂1‖

1
2 sgn

(
X1 − X̂1

)
. (21)

Here,
(
X̂1−ANHVSO, X̂2−ANHVSO

)
, ŶANHVSO and Θ̂ANHVSO are the observation state estimation, the

estimated output, and the fault estimation based on the ANHVSO technique, respectively. When the
accuracy of the signal estimation increases, the estimated output

(
ŶANHVSO

)
converges to the measured

output Y. This means that the difference between these two signals converges to zero. Thus, the
residual signal can be calculated as follows:

r = Y − ŶANHVSO, (22)

where r is the residual signal.
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3.2. Fault Diagnosis Using Support Vector Machine

Based on Figure 1, after estimating the normal and abnormal signals using the ANHVSO
technique and finding the residual signals, the decision-making ability can be introduced into the
pipeline using a support vector machine (SVM) technique. A SVM has two main steps: a) residual
signal characterization, and b) SVM-based fault detection and identification (FDI). The residual signals
obtained for normal and abnormal conditions are utilized for the FDI of the robot manipulator. First,
numerical attributes such as feature parameters are used for SVM-based FDI [20–25]. Various types of
features can be used. For this research, the energy of residual signals was selected. The value of the
energy attribute can be computed as follows:

E =
M∑

i=1

r2
xi (23)

where E, M and rxi are the energy of the residual signals in different conditions, the total number of
instances, and the residual signal, respectively. After extracting the feature (e.g., energy) from the
position and torque signals in normal and abnormal conditions, the SVM technique is used for FDI.
The soft margin SVM is defined by the following equation:

yi
(
ωTρ(xi) + b

)
≥ yi − ϑi, (24)

where (xi, yi), (ω, b),ρ(xi), and ϑi are the inputs, outputs, features and maximum distance, respectively.
Thus, the primal problem is defined by the following equation:

min 1
2 ωTω+∅

∑
i
ϑi

s.t. yi
(
ωTρ(xi) + b

)
≥ yi − ϑi ϑi ≥ 0

(25)

Here, ∅ is a penalty coefficient. To solve the primal problem, two Lagrange coefficients (αi,µi) are
defined, and then the minmax (saddle) point can be represented as follows:

Lp =
1
2
ωTω+∅

∑
i

ϑi −
∑

i

αi
[
yi
(
ωTρ(xi) + b

)
− yi + ϑi

]
−

∑
i

µiϑi, (26)

where Lp is the saddle point which should be minimized with respect to ω, b,ϑi and maximized with
respect to αi,µi. First, ω, b,ϑi are removed to find the maximum of αi,µi. Thus, the dual problem of
(25) can be defined as

∂Lp
∂ω = 0→ ω−

∑
i
αiyiρ(xi) = 0→ ω =

∑
i
αiyiρ(xi)

∂Lp
∂b = 0→

∑
i
αiyi = 0

∂Lp
ϑi

= 0→ ∅− αi − µi = 0→ αi + µi = ∅.

(27)

Therefore, the dual of the saddle point can be defined as follows:

LD = − 1
2 (

∑
j α jy jρ(x j))

T(
∑

i αiyiρ(xi)) +∅
∑

i ϑi −
∑

i αi
[
yi
(
(
∑

j α jy jρ(x j))
Tρ(xi) + b

)
− yi + ϑi

]
−

∑
i µiϑi

→ LD = − 1
2
∑

i
∑

j αiα jyiy jρ(xi)
Tρ(x j) +

∑
i αi ,

(28)

max −
1
2
∑

i
∑

j αiα jyiy jρ(xi)
Tρ

(
x j

)
+

∑
i αi

s.t.
∑

i αiyi = 0
0 ≤ αi ≤ ∅ ∀i

, (29)
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where ρ(xi)
Tρ

(
x j

)
= K

(
xi, x j

)
is a nonlinear kernel function,

min 1
2
∑

i
∑

j αiα jyiy jρ(xi)
Tρ

(
x j

)
−

∑
i αi

s.t.
∑

i αiyi = 0
0 ≤ αi ≤ ∅ ∀i

. (30)

If yiy jK
(
xi, x j

)
= hi j, (26) can be represented as follows:

min( 1
2
∑

i
∑

j αiα jhi j −
∑

i αi) =
1
2α

THα+ f Tα, f =


−1
−1
...
−1



α =



α1

α2
...
...
αn


,

−
∑

i αi =
[
−1 −1 · · · −1

]
α

H =


h11 · · · h1n

...
. . .

...
hn1 · · · hnn

 =
[
hi j

]
. (31)

Therefore, the dual problem can be represented by the quadratic programming problem defined in
Equation (32):

min 1
2α

THα+ f Tα

s.t.
∑

i αiyi = 0
0 ≤ αi ≤ ∅ ∀i

. (32)

After finding α, the Karush–Kuhn–Tucker (KKT) optimization algorithm is defined by the
following equation:

αi
[
yi
(
ωTxi + b

)
− yi + ϑi

]
= 0

µiϑi = (∅− αi)ϑi = 0
. (33)

Based on Equation (33), the KKT has various conditions. These conditions are represented by
Equations (34)–(36). The non-support vector (NSV) is defined by the following equation:

αi = 0→ µi = ∅→ ϑi = 0[
yi
(
ωTxi + b

)
− yi ≥ 0

] . (34)

The outlier can be defined as:
αi = ∅→ µi = 0→ ϑi ≥ 0[
yi
(
ωTxi + b

)
− yi + ϑi = 0

] . (35)

The support vector (SV) can be defined as:

0 < αi < ∅→ 0 < µi < ∅→ ϑi = 0[
yi
(
ωTxi + b

)
− yi = 0

] . (36)

Therefore, ω and b can be defined based on the following equations, respectively:

ω =
∑

i

αiyiK(xi, x), (37)

b =
1
|S|

∑
i∈S

(yi −
∑

j

α jy jK
(
xi, x j

)
). (38)
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Here, S are support vectors and are defined by the following equation:

S = {i|0 ≤ αi ≤ ∅}. (39)

The output based on the SVM leveraging soft margin and the kernel trick is defined as

y = sign

∑
i

αiyiK
(
xi, x j

)
+ b

. (40)

In this research, the Gaussian technique is used to define the nonlinear kernel function.

3.3. Fault Tolerant Control Using an Adaptive Modern Fuzzy Backstepping Variable Structure Controller

After designing a machine learning (SVM)-based ANHVSO for fault detection and identification,
an active, modern, adaptive, fuzzy, backstepping, variable structure controller (AMFBVSC) is designed
for fault tolerance. Based on Figure 1, the fault-tolerant control (FTC) algorithm for a robot manipulator
has the following sub-blocks: (i) A robust backstepping variable structure controller (BVSC) for FTC is
implemented. (ii) To reduce the effects of system uncertainties, a new fuzzy BVSC (FBVSC) based on
the PID fuzzy technique is designed and implemented. (iii) To reduce the effect of faults and chattering,
an SVM-based ANHVSO is used in parallel with the FBVSC and the new FBVSC (MFBVSC).

(iv) To increase robustness and reduce chattering in faulty conditions, an adaptive algorithm is
used for the online tuning of the coefficient in the MFBVSC to design the AMFBVSC. Based on [28],
the mathematical definition of the VSC technique is obtained by the following equation:

UVSC = U f + UM

U f = α̂
(
X̂1

)
×

[
µ1sgn

(
X1 − X̂1

)
+ µ2sgn

(
X2 −

.̂
X1

)]
UM = α̂

(
X̂1

)
×

[
β̂
( .̂

X1
.̂

X2

)
+ γ̂

(
X̂1

)
+ µ1

d
dt

{(
X1 − X̂1

)
+

(
X2 −

.̂
X1

)}]
× α̂−1

(
X̂1

)
+α̂−1

(
X̂1

)
Θ̂ANHVSO

. (41)

where UVSC, U f , and UM are the VSC output, the function based on the VSC, and the dynamic model
based on the VSC, respectively. To improve robustness and unmodeled disturbance, a backstepping
technique is used in parallel with the VSC and the designed BVSC.

UBVSC = UVSC + UB

UVSC = α̂
(
X̂1

)
×

[
µ1sgn

(
X1 − X̂1

)
+ µ2sgn

(
X2 −

.̂
X1

)]
+ α̂

(
X̂1

)
×[

β̂
( .̂

X1
.̂

X2

)
+ γ̂

(
X̂1

)
+ µ1

d
dt

{(
X1 − X̂1

)
+

(
X2 −

.̂
X1

)}]
× α̂−1

(
X̂1

)
+ α̂−1

(
X̂1

)
Θ̂ANHVSO

UB = α̂−1
(
X̂1

)
×

[
µ1

(
X1 − X̂1

)
+ µ2

(
X2 −

.̂
X1

)]
+

[
α̂
(
X̂1

)
+ β̂

( .̂
X1

.̂
X2

)
+ γ̂

(
X̂1

)] . (42)

Here, UBVSC, and UB are the BVSC output and the backstepping technique to find the robot output,
respectively. In order to obtain an accurate response and a finite-time convergence based on the BVSC,
the sliding surface is defined as the following equation. S =

∫
(k1e + k2

.
e)

e =
(
X1 − X̂1

) . (43)

Here, k1 and k2 are coefficients. The integral term is used to reduce the effect of the transient response
and to reduce the steady state error. Therefore, when the sliding surface S converges to zero, we have:

S = k1e + k2
.
e = 0 (44)
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The first and second derivative of the sliding surface can be defined as follows:
.
S = k1e + k2

.
e

..
S = k1

.
e + k2

..
e

, (45)

Therefore, based on Equations (43) and (45), the order of the system is changed from second-order to
third-order.

.
S1 = S2.
S2 = S1.

S3 = d
dt

(
k1

.
e + k2 ×

[
α−1(X1)τLPF + α−1(X1)β

(
X1 X2

)
+ γ(X1) + α−1Θ −

..
X1

]) , (46)

To design an effective control input of system (46), and based on (42), the backstepping technique
is proposed. Therefore, the Equation (46) can be rewritten by:

ϑ1 = S1

ϑ2 = S2 −$1

ϑ3 = S3 −$2

, (47)

where $1 and $2 are virtual controllers. Hence, the derivative of ϑ1 can be defined by: .
ϑ1 =

.
S1 = ϑ2 +$1

i f $1 = −ζϑ1, ζ > 0
, (48)

The Lyapunov function and the derivative of the Lyapunov function can be introduced: V1 = 0.5ϑ1
2

.
V1 = ϑ1(ϑ2 +$1) = ϑ1(ϑ2 − ζ1ϑ1) = −ζ1|ϑ1|

2 + ϑ1ϑ2
, (49)

So, if ϑ2 = 0, then ϑ1 will be stable. The derivative of ϑ2 is

.
ϑ2 =

.
S2 −

.
$1 = ϑ3 +$2 −

.
$1 = ϑ3 +$2 + ζ1S2. (50)

The Lyapunov function and the derivative of the Lyapunov function are
i f $2 = −ζ2ϑ2 − ϑ1 − ζ1S2

V2 = V1 + 0.5(ϑ2)
2

.
V2 =

.
V1 + ϑ2

.
ϑ2 = −ζ1|ϑ1|

2 + ϑ1ϑ2 + ϑ2(ϑ3 − ζ2ϑ2 − ϑ1) = −ζ1|ϑ1|
2
− ζ2|ϑ2|

2 + ϑ2ϑ3

, (51)

So, if ϑ3 = 0, then ϑ1 and ϑ2 will be stable. The Lyapunov function is defined by the
following equation.

V3 = V2 + 0.5(ϑ3)
2. (52)

Based on Equations (46) and (47), the derivative of the Lyapunov function is defined by the
following equation.

.
V3 =

.
V2 + ϑ3

.
ϑ3 = −ζ1|ϑ1|

2
− ζ2|ϑ2|

2 + ϑ2ϑ3 + ϑ3 × {
d
dt

(
k1

.
e + k2

×[α−1(X1)τLPF + α−1(X1)β
(

X1 X2
)
+ γ(X1) + α−1Θ −

..
X1]) −

.
$2}

(53)
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So,

.
V3 = −ζ1|ϑ1|

2
− ζ2|ϑ2|

2
− ζ3|ϑ3|

2 + ϑ3

×

{
d
dt

(
k1

.
e + k2 ×

[
α−1(X1)τLPF + α−1(X1)β

(
X1 X2

)
+ γ(X1) + α−1Θ −

..
X1

])
−

.
$2

}
≤ −ζ1|ϑ1|

2
− ζ2|ϑ2|

2
− ζ3|ϑ3|

2
− (ζ1 + ζ2)|ϑ3|

≤ −ζ1|ϑ1|
2
− ζ2|ϑ2|

2
− ζ3|ϑ3|

2

(54)

So, the ϑ1, ϑ2 and ϑ3 converge to the zero in the finite time. Therefore, it can be concluded that
the BVSC is stable. To reduce the effects of uncertain conditions, a PID fuzzy technique is designed
and implemented in the robot manipulator. The classical PID fuzzy technique has three inputs; i.e.,
error (e), differential of the error

( .
e
)
, and an integral of the error (

∑
e). Therefore, the number of rules

in the classical PID fuzzy controller is dramatically increased, causing an increase in the computational
load. To design a minimum, rule-based, PID fuzzy controller, the PD-fuzzy-plus-PI-fuzzy algorithm
is introduced. If the number of linguistic variables for the error, the differential of the error, and the
integral of the error, is defined by (N), the number of rules for the classical PID fuzzy controller is(
N3

)
, but the number of rules for the PD-fuzzy-plus-PI-fuzzy algorithm is

(
2N2

)
. Thus, by applying

this technique, the number of rules is reduced. However, while the number of rules is reduced, the
PD-fuzzy-plus-PI-fuzzy approach requires a separate technique to design the PD and PI rule tables.
To address this, a PI-like fuzzy algorithm can be designed based on the PD fuzzy technique. In this
method, the integral term is used to change the PD-like fuzzy controller into a PI-like fuzzy controller
by implementing the following steps. The membership functions of the PD fuzzy set for the system
estimation of the error (e) in the interval

[
−0.3, 0.3

]
are the triangular and linguistic variables, which

are defined as negative high (NeH), negative medium (NeM), negative low (NeL), zero (Ze), positive
low (PoL), positive medium (PoM) and positive high (PoH). The fuzzy membership functions for the
system estimation of the differential of the error

( .
e
)

in the interval
[
−1.8, 1.8

]
are the triangular

and linguistic variables, which are defined as NeH, NeM, NeL, Ze, PoL, PoM and PoH. In addition,
the fuzzy linguistic variables for the fuzzy output

(
UPD− f uzzy

)
in the interval,

[
−18, 18

]
are the

triangular and fuzzy sets, which are defined as NeH, NeM, NeL, Ze, PoL, PoM and PoH. Table 2
illustrates the PD fuzzy rule table used to improve the performance of the fuzzy BVSC (FBVSC).

Table 2. The proportional and derivative (PD) fuzzy rule table for the fuzzy backstepping variable
structure controller (FBVSC).

error (e)

Differential of the Error
( .
e
)

NeH NeM NeL Ze PoH PoM PoL
NeH PoH PoH PoH PoH PoM PoL Ze
NeM PoH PoH PoH PoM PoL Ze NeL
NeL PoH PoH PoM PoL Ze PeL NeM
Ze PoH PoM PoL Ze NeL NeM NeH

PoH PoM PoL Ze NeL NeM NeH NeH
PoM PoL Ze NeL NeM NeH NeH NeH
PoL Ze NeL NeM NeH NeH NeH NeH

Therefore, the FBVSC is represented by the following equation:

UFBVSC = UVSC + UB + UPID− f uzzy

UVSC = α̂
(
X̂1

)
×

[
µ1sgn

(
X1 − X̂2

)
+ µ2sgn

(
X2 −

.̂
X1

)]
+ α̂

(
X̂1

)
×[

β̂
( .̂

X1
.̂

X1

)
+ γ̂

(
X̂1

)
+ µ1

d
dt

{(
X1 − X̂1

)
+

(
X2 −

.̂
X1

)}]
× α̂−1

(
X̂1

)
+ α̂−1

(
X̂1

)
Θ̂ANHVSO

UB = α̂−1
(
X̂1

)
×

[
µ1

(
X1 − X̂1

)
+ µ2

(
X2 −

.̂
X1

)]
+

[
α̂
(
X̂1

)
+ β̂

( .̂
X1

.̂
X2

)
+ γ̂

(
X̂1

)]
UF = UPID− f uzzy = UPD− f uzzy + UPI− f uzzy = UPD− f uzzy +

∫
UPD− f uzzy

. (55)
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After improving the performance of the BVSC based on the FBVSC technique, to reduce the
effects of faults and chattering, an SVM-based ANHVSO is used in parallel with the FBVSC to design
a modern FBVSC (MFBVSC) technique. In this scenario, the proposed observer is used to estimate
and identify a fault and its location. To improve the fault-tolerant control scenario, the MFBVSC is
represented as follows:

UMFBVSC = UVSC + UB + UPID− f uzzy + UO,

UVSC = α̂
(
X̂1

)
×

[
µ1sgn

(
X1 − X̂1

)
+ µ2sgn

(
X2 −

.̂
X1

)]
+ α̂

(
X̂1

)
×[

β̂
( .̂

X1
.̂

X2

)
+ γ̂

(
X̂1

)
+ µ1

d
dt

{(
X1 − X̂1

)
+

(
X2 −

.̂
X1

)}]
× α̂−1

(
X̂1

)
+ α̂−1

(
X̂1

)
Θ̂ANHVSO.

UB = α̂−1
(
X̂1

)
×

[
µ1

(
X1 − X̂1

)
+ µ2

(
X2 −

.̂
X1

)]
+

[
α̂
(
X̂1

)
+ β̂

( .̂
X1

.̂
X2

)
+ γ̂

(
X̂1

)]
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Here, UO and UMFBVSC are observation feedback to improve the performance of the fault-tolerant
control algorithm in uncertain and unknown conditions and the output of the MFBVSC, respectively. In
addition, to increase robustness and reduce chattering in uncertain and faulty conditions, an adaptive
algorithm is used for the online tuning of the coefficients in the MFBVSC, thus defining the AMFBVSC.
In this scenario, based on Equation (56), various coefficients are used to tune UFBVSC. Of these, the
coefficients used to reduce chattering, increase stability and improve reliability of the variables in
UVSC play the main roles. Therefore, the adaptive technique is used for online tuning of µ1 and µ2.
A fuzzy algorithm can be used to accomplish this. Therefore, the AMFBVSC is represented by the
following equation:
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. (57)

A PD-like fuzzy algorithm is used for online tuning of the coefficients as in the following equation:{
µ1(adaptive) = µ1 × ∂ f

µ2(adaptive) = µ2 × ∂ f
. (58)

Here, UAMFBVSC, UAVSC,
(
µ1(adaptive)& µ2(adaptive)

)
, and ∂ f are the output of the proposed algorithm for

fault-tolerant control of the robot manipulator, the output of the online tuning VSC technique, the
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online tuning coefficients to reduce chattering, the fuzzy output for tuning the coefficients based on the
error, and the derivation of the error, respectively. This is a powerful algorithm for reducing the effects
of faults in the robot manipulator, and is based on the variable structure observer, a backstepping
technique, a fuzzy algorithm, the proposed observation method, and an adaptive algorithm. Algorithm
1 shows the 12 steps used to design the proposed algorithm for fault detection, estimation, identification
and fault-tolerant control.

4. Results and Analysis

The effectiveness of the proposed ANHVSO, NHVSO and VSO methods for fault detection and
identification was evaluated using a 6-DOF PUMA robot arm. The same robot manipulator was
used to test the effectiveness of the proposed AMFBVSC, FBVSC and VSC methods for fault-tolerant
control. The mathematical model of this 6-DOF PUMA robot manipulator can be found in [1] and [28].
Sinusoidal signals for all joints are defined as desired reference signals. To test the accuracy and
robustness of the proposed algorithm, three different faults were seeded on the desired signal at
different locations: actuator, sensor, and actuator-sensor. The results are presented in two parts: a)
fault detection and identification, and b) fault-tolerant control analysis.

4.1. Training and Testing Subset Configuration

For analyzing the fault detection and fault identification capabilities of the proposed methodology,
the modeled dataset consisting of 2,000,000 samples (500,000 data instances per class) was randomly
split into training and testing subsets. Specifically, 1,500,000 samples (375,000 instances per class)
were used for training SVM classification algorithms, whereas the remaining previously unobserved
500,000 samples (125,000 instances per class) were utilized for the testing process. The similar dataset
perturbations were applied to the residual signals obtained by the referenced NHVSO and VSO
methods in order to perform the comparison between them and the proposed technique used in
conjunction with the SVM classification algorithm.

4.2. Fault Detection and Fault Identification

To analyze the effectiveness of the proposed algorithm for fault detection and identification,
normal and abnormal operating conditions (actuator fault, sensor fault, and actuator–sensor fault) are
considered. Figure 2 illustrates the torque and position of the robot manipulator’s joint in normal and
faulty actuator conditions. The actuator fault, sensor fault and actuator–sensor fault for the PUMA
robot manipulator are defined by Equations (59)–(61), respectively.

Actuator Fault =
{

Θa = |0.2| (N.m)

Θs = 0
(59)

Sensor Fault =
{

Θa = 0
Θs = |0.015| (Deg)

(60)

Actuator− Sensor Fault =
{

Θa = |0.2| (N.m)

Θs = |0.015| (Deg)
(61)

where Θa and Θs are actuator fault and sensor fault values, respectively. To test the accuracy, robustness
and repeatibility of the proposed algorithm, three different faults were seeded on the desired signal at
different locations and absolute value: actuator, sensor and actuator-sensor.

To test the robustness of the proposed ANHVSO, NHVSO and VSO methods under noisy
conditions, Gaussian noise was added to the original signals in the normal and faulty conditions.
Figures 3–5 illustrate the position and torque joint residual signals in normal and faulty conditions
based on the VSO, NHVSO and ANHVSO for the robot manipulator, respectively. Regarding Figure 3,
the VSO is prone to high frequency oscillation, especially under faulty conditions. To improve the
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robustness and accuracy, and to reduce the high frequency oscillation, NHVSO is used in the current
work. Figure 4 illustrates the torque and position residual signals in the presence of noise for the robot
manipulator under normal and faulty conditions. According to the residual signals computed through
Equation (22) and illustrated in Figures 3 and 4, we can see that the VSO and NHVSO have problems
to effectively estimate the signals under normal and abnormal conditions. Specifically, it means that
the residual signals corresponding to some system states that were derived by the aforementioned
methods have severe overlap (i.e., they are not discriminative enough). This problem can affect the
final fault classification accuracy and increase the misclassification rates. From these figures, it can
be observed that the residual signals are well differentiable in normal conditions, which means that
they can be used for fault detection (i.e., differentiation between normal and abnormal conditions);
but these techniques are not suitable for classification of the faults. Figure 5 illustrates the position
and torques residual signals under the proposed ANHVSO algorithm, considering the normal and
abnormal conditions of the PUMA robot manipulator.

Algorithm 1. Support vector machined (SVM)-based adaptive neuro variable structure observer for fault
diagnosis and fault-tolerant control of the robot manipulator.

1 Robot manipulator modeling based on the Lagrange method (6).
2 Run the second order VSO (8,9).
3 Improve the performance of the second order based on the HVSO (11,12).
4 Increase the reliability of this HVSO based on the neural algorithm and design the NHVSO (16,17).
5 Increase the fault estimation reliability and accuracy in the NHVSO with the ANHVSO (18,20,21).
6 Run the residual signal characterization by energy (22,23).

7
Run the learning process for SVM and apply the SVM classification technique for fault detection and
identification (24-40).

8 Run the robust FTC based on the VSC (41).
9 Increase the robustness of the VSC based on a backstepping technique to design the BVSC (42).

10
Increase the accuracy of the BVSC in uncertain conditions using a fuzzy algorithm and design
FBVSC (55).

11
Reduce the effects of faults and increase the reliability of the FBVSC based on the proposed
observation technique and the designed MFBVSC (56).

12
Increase the robustness, stability, accuracy and performance, and reduce chattering in the MFBVSC
using the adaptive technique and the designed AMFBVSC (57,58).

In Figure 5, there is a clear difference among residual signals used for differentiating normal
and abnormal signals for fault detection and identification. In view of Figures 3–5, the ANHVSO
algorithm allows more accurate and more differentiable residual signals compared with the ones
obtained through the NHVSO and VSO algorithms. The energies of torque and position residual
signals are illustrated in Figure 6. Based on this figure, in the normal condition, the residual signals of
position and torque are lower than the ones corresponding to abnormal conditions. In sensor faulty
conditions, the position residual signal is bigger than the one corresponding to the actuator fault, but
the torque residual signal is smaller than the one corresponding to the actuator fault. For fault detection
and classification, the types of faults such as actuator fault, sensor fault and actuator–sensor fault,
SVM is used in this research. Therefore, the SVM+VSO, SVM+NHVSO and SVM+ANHVSO methods
are used for fault detection and identification. The results are presented in Figure 7 and Table 3.
The confusion matrices from Figure 7 demonstrate that all of the methods show high fault detection
accuracies (i.e., differentiating between normal and abnormal states). Regarding the fault identification
(i.e., differentiating between types of faults), it can be seen that the SVM+ANHVSO method resulted
in the smallest numbers of misclassified samples for all of the signal classes in comparison with the
SVM+VSO and SVM+NHVSO methods.
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Table 3. Fault diagnosis results for the robot manipulator based on ANHVSO, NHVSO and VSO.

Algorithms ANHVSO NHVSO VSO

Normal State 100% 95.7% 96.6%
Actuator Fault 97.4% 72.4% 60%
Sensor Fault 99.1% 55.2% 59.5%

Actuator–sensor Fault 98.3% 63.8% 62.1%

Average 98.7% 71.7% 69.5%

The results shown in Table 3 indicate that the SVM+ANHVSO method outperforms the SVM+VSO
and SVM+NHVSO techniques in terms of average accuracy with a value of 98.7%. Moreover,
from Table 3, it can be observed that for all of the signal classes, the accuracy of fault detection
and identification through the SVM+ANHVSO method is higher compared to the one of the
aforementioned methods.

Overall, it can be concluded that the SVM-based ANHVSO (SVM+ANHVSO) method is highly
effective in detecting and identifying the operating conditions of the robot manipulator. The best
results shown by the ANHVSO technique outperform the best results achieved by the NHVSO and
VSO approaches by 27% and 29.2%, respectively.
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In addition, we compare our proposed approach with the following state-of-the-art methods:
ARX-Laguerre fuzzy PID observer (ALFPIDO) [2], fuzzy ARX-Laguerre fuzzy extended feedback
linearization observer (FALFEFLO) [8], ARX-Laguerre fuzzy extended PI observer (ALFEPIO) [10],
fuzzy PI feedback linearization observer (FPIFLO) [29] and ARX-Laguerre extended PI observer
(ALEPIO) [30] in terms of performance. As shown in Table 4, the proposed method for robot
fault diagnosis outperforms the state-of-the-art ALFPIDO method, FALFEFLO technique, ALFEPIO
procedure, FPIFLO algorithm and ALEPIO method, yielding average performance improvements of
13.2%, 5.5%, 7.8%, 13.1% and 15.6% for three faults, respectively.Appl. Sci. 2019, 8, x FOR PEER REVIEW  19 of 27 
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conditions based on the neural high-order variable structure observer (NHVSO) algorithm.

Table 4. Fault diagnosis results for the robot manipulator based on various state-of-art techniques.

Algorithms Proposed Method Alfpido [2] Falfeflo [8] Alfepio [10] Fpiflo [29] Alepio [30]

Normal State 100% 94.8% 97.4% 96.1% 91% 88%
Actuator Fault 97.4% 91.1% 94% 92% 89.2% 86%
Sensor Fault 99.1% 73.8% 91.6% 86.7% 74.2% 70.2%

Actuator–sensor Fault 98.3% 82.4% 89.8% 89% 88% 88.2%

Average 98.7% 85.5% 93.2% 90.9% 85.6% 83.1%
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Figure 7. Confusion matrices for the ANHVSO, NHVSO and VSO algorithms based on the
SVM technique.

4.3. Fault-Tolerant Control

After designing an SVM-based ANHVSO for fault detection and identification, an active modern
adaptive fuzzy backstepping variable structure controller (AMFBVSC) is designed for fault tolerance.
Figure 8 shows the performance of the algorithm: AMFBVSC, FBVSC and VSC, in abnormal conditions.
It is clear from the figure as to the efficiency of the AMFBVSC method in reducing the effects of the
FBVSC and VSC techniques.
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From Figure 8 and Equation (42), it can be seen that the BVSC method is weak regarding the
properties of robustness and accuracy, especially in faulty conditions. To improve the robustness and
accuracy, FBVSC is applied in the study. According to the power of fault-tolerant control computed
through Equations (42,55) and demonstrated in Figure 8, we can see that the BVSC and FBVSC have
problems reducing the effect of actuator–sensor fault in the joint position. Based on Figure 8 and
Equation (57), the proposed fault-tolerant control algorithm (AMFBVSC) has effectively reduced the
effect of the fault. Regarding Figure 8, the fault-tolerant control algorithm based on the AMFBVSC
method is more powerful compared to the BVSC and FBVSC methods. The efficiencies under various
faulty conditions of the fault-tolerant control algorithms based on the AMFBVSC, FBVSC and BVSC
are presented in Figures 9–11.
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Figure 9 shows the error of the position for the fault-tolerant control based on the AMFBVSC,
FBVSC and BVSC methods in the presence of an actuator fault. It is evident that the AMFBVSC
method is more robust than the other two. According to this figure, the difference between the normal
and actuator faulty joint position when using the algorithm based on the AMFBVSC is close to zero
(e.g., � 0.2× 10−3). Figure 10 shows the performance of the three fault-tolerant control algorithms in
reducing the effects of a sensor fault in the robot manipulator. The effectiveness of the sensor fault
tolerant control in the robot manipulator when using the AMFBVSC is higher compared to the one
corresponding to the other two methods. According to Figure 10, the difference between the normal
and sensor faulty joint position when using the algorithm based on the AMFBVSC is about 1× 10−3.

Figure 11 shows the actuator–sensor (multi) fault reduction in the robot manipulator for the
algorithms based on the AMFBVSC, FBVSC and BVSC. As in the previous cases, it can be seen that the
power of actuator–sensor fault reduction based on the AMFBVSC algorithm is better than the one of
the other two methods. According to Figure 11, the difference between the normal and actuator–sensor
faulty joint position when using the algorithm based on the AMFBVSC is close to zero

(
� 0.25× 10−3

)
.

Overall, it can be concluded that the AMFBVSC is highly-effective in controlling various types of faults
(e.g., actuator fault, sensor fault and actuator–sensor fault) in the robot manipulator.

5. Conclusions

This paper proposed a fault diagnosis and fault-tolerant controller for a robot manipulator using
an SVM-based neural adaptive, high-order, variable, structure observer and an adaptive modern
(ANHVSO) fuzzy backstepping variable structure controller, respectively. To increase the signal
estimation accuracy, a neural adaptive, high-order, variable, structure observer is implemented. This
technique improves the robustness, reliability and accuracy in unknown (faulty) conditions. A residual
signal is generated and characterized by energy. In addition, a machine learning technique known as
SVM is used for fault detection and identification. To improve the effectiveness of the fault-tolerant
control algorithm, an adaptive modern fuzzy backstepping variable structure controller is suggested
in this research. Chattering in the VSC is addressed through a backstepping technique. The fuzzy
technique reduces the effect of the BVSC. The new observation technique improves fault reduction in
the FBVSC. Moreover, an adaptive technique is used to improve the robustness and reliability of the
MFBVSC. The effectiveness of the selected algorithm was validated using a PUMA robot manipulator.
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The use of the ANHVSO improved the average fault identification performance for various types
of faults by about 27% and 29.2% compared with the NHVSO and VSO, respectively.
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