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Abstract: The evaluation of clustering results plays an important role in clustering analysis. However,
the existing validity indices are limited to a specific clustering algorithm, clustering parameter, and
assumption in practice. In this paper, we propose a novel validity index to solve the above problems
based on two complementary measures: boundary points matching and interior points connectivity.
Firstly, when any clustering algorithm is performed on a dataset, we extract all boundary points
for the dataset and its partitioned clusters using a nonparametric metric. The measure of boundary
points matching is computed. Secondly, the interior points connectivity of both the dataset and all
the partitioned clusters are measured. The proposed validity index can evaluate different clustering
results on the dataset obtained from different clustering algorithms, which cannot be evaluated by the
existing validity indices at all. Experimental results demonstrate that the proposed validity index can
evaluate clustering results obtained by using an arbitrary clustering algorithm and find the optimal
clustering parameters.

Keywords: clustering evaluation; clustering algorithm; cluster validity index; boundary point;
interior point

1. Introduction

Clustering analysis is an unsupervised technique that can be used for finding the structure in a
dataset [1–3]. The evaluation of clustering results plays a vital role in clustering analysis and usually is
performed by a clustering validity index or several [4,5]. In the past decades, a large number of validity
indices have been proposed to evaluate the clustering results and to determine the optimal number of
clusters, which is an essential character of a dataset. These frequently used validity indices contain
Davies-Bouldin measure [6], Tibshirani Gap statistics [7], Xie-Beni’s separation measure [8], and etc.
Moreover, the commonly used Bayesian Information Criterion (BIC) has been applied to estimate the
number of clusters [9,10]. For example, [11] provided a closed-form BIC expression by imposing the
multivariate Gaussian assumption on the distribution of the datasets. Then, a novel two-step cluster
enumeration algorithm has been proposed by combining the cluster analysis problem. Thus, this new
BIC method contains information about the dataset in both data-fidelity and penalty terms. Compared
with the existing BIC-based cluster enumeration algorithms, the penalty term of the proposed criterion
involves information about the actual number of clusters. Arbelaitz et al. [12] made comparisons
among the existing validity indices. Recently, an unsupervised validity index [13] independent of any
clustering algorithm was proposed for any dataset of spherical clusters. In addition, the idea has been
proposed to deal with the clustering evaluation under the condition of big data [14,15], while very little
work is available in the literature that discusses validity indices for big data. One of the few papers on
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this topic that we are aware of is [16], but the method does not consider the complex data structures in
today’s computing environment.

However, the existing validity indices are greatly restrained by the following three disadvantages
at least.

Specific algorithm. Usually, the existing validity indices can only evaluate the clustering results
obtained by a specified algorithm (e.g., C-means [17,18] or Fuzzy C-means [19,20]) rather than an
arbitrary clustering algorithm. If the clustering algorithm chosen for the dataset is not suitable,
the evaluating results will not be guaranteed.

Specific parameter. Different parameters in a clustering algorithm lead to different clustering
results. Most cluster validity indices aim to select the best one among all clustering results, and thus they
regard the clustering parameter as their variable. These existing indices can only regard the number
of clusters as a variable rather than other clustering parameters, such as the density threshold in
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) algorithm [21] and the grid size
in the CLIQUE algorithm [22]. Recently, a density peak-point-based clustering (DPC) algorithm [23]
and its variants [24–26] have attracted considerable attention; but the number of peak points therein
remains so uncertain that the correctness of clustering results is difficult to guarantee.

Untapped result. A cluster consists of a high-density center and a group of relatively low-density
neighbors around the center in DPC, a group of core points and corresponding boundary points around
these core points in DBSCAN, a center and a group of points that are assigned to the cluster by the
nearest neighbor principle in C-means. Consequently, all points in a cluster are partitioned into two
types. An accurate clustering partition must result from the correct identification of the two types of
points. Although the existing algorithms may partition all points into the two types of points, and the
partitioning results fail to be taken into a validity index to evaluate the clustering results. Especially
when several clustering algorithms are performed in the same dataset, it is impossible to choose the
best clustering result.

To solve the above problems, we propose a nonparametric measure to find all the boundary [27,28]
and interior points in any dataset at first. Moreover, once a clustering algorithm is performed, all the
boundary and interior points in any cluster can be found. After the measurement of boundary points
matching and interior points connectivity between the entire dataset and all partitioned clusters, a novel
validity index is proposed. Three typical clustering algorithms, i.e., C-means, DBSCAN, and DPC, are
applied to evaluate the generality of the novel validity index. Two groups of artificial and CT datasets
with different characteristics validate the correctness and generalization of the proposed validity index.

2. Related Work

In this section, we will firstly review three typical clustering algorithms, and then discuss a group
of mostly used validity indices.

2.1. Typical Clustering Algorithms

Assume that X = {x1, x2, . . . , xn} is a dataset containing n data points, and S1, S2, . . . , Sc are disjoint
subsets of X. If the point xj belongs to the i-th subset Si, then we set uij equal to 1, or else 0. The binary
membership function can be represented as follows

ui j =

{
1, x j ∈ Si
0, x j < Si

, i = 1, 2, . . . , c; j = 1, 2, . . . , n. (1)

If each point belongs to one certain subset, then the partitioning of X is called a hard
partitioning, satisfying

X = S1 ∪ S2 ∪ . . .∪ Sc, Si ∩ S j = φ, i , j, i, j = 1, 2, . . . , c. (2)



Appl. Sci. 2020, 10, 1337 3 of 23

There is a great volume of clustering algorithms, but the following three algorithms in them
are representative.

2.1.1. C-Means Algorithm

C-means has been widely used in almost all fields owing to its simplicity and high efficiency. Its
detailed steps are listed in Algorithm 1.

Algorithm 1. C-means Clustering Algorithm

Input: the number of clusters C and a dataset X containing n points.
Output: a set of C clusters that contains all n objects.
Steps:
1. Initialize cluster centers v1, v2, . . . , vC by selecting C points arbitrarily.
2. Repeat;
3. Assign each point to one certain cluster according to the nearest neighborhood principle and a chosen
measure;
4. Update cluster centers by vi =

∑n
j=1 ui jx j/

∑n
j=1 ui j for i = 1 − C;

5. Stop if a convergence criterion is satisfied;
6. Otherwise, go to Step 2.

The key parameter in C-means is the number of clusters (C) which has to be determined in the
clustering process.

2.1.2. DBSCAN Algorithm

In comparison to the C-means, DBSCAN has two parameters: a neighborhood radius of any point
and the number of points within the neighborhood. However, in practice, the two parameters have to
be turned to a density measure, which usually is their rate and is used to find the density differences
and distributed characteristics of all points. In terms of a density threshold, DBSCAN distinguishes
core points and border ones from all points. If the density of a point is higher than ε, then this point is
called a core point; or else a border point.

DBSCAN starts with an arbitrary point p in X. If it is a core point, then assign all the points which are
density-reachable from p with εto the same cluster. If p is not a core point, then p is temporarily assigned
to noise. Afterward, DBSCAN deals with the next point until all the points in X have been visited.

The density threshold ε in DBSCAN is a crucial parameter, and significantly affect the clustering
results. As an example, a dataset with 176 points is evaluated (see Figure 1). Figure 1 shows the dataset
is clustered into 5, 2, and 1 cluster with different values of ε, where points in different clusters are
marked with different signs. It is clear that the number of clusters decreases as ε increases. Therefore,
if ε is incorrectly chosen, then the number of clusters cannot be determined. Although Ordering Points
to Identify the Clustering Structure (OPTICS) algorithm [29] can be applied to solve the value of ε,
it neither provides clustering results explicitly nor is applied in high-dimensional data space.
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2.1.3. DPC Algorithm

DPC algorithm is the latest clustering algorithm, which combines the advantages of C-means and
DBSCAN algorithms. For each point xi, DPC calculates its density ρi and its separated distance δi
as follows.

ρi =
∑

j
χ(d(xi, x j) − dc), s.t.χ(x) = 1, i f χ(•) < 0; else 0, (3)

where dc is a cutoff radius and d(xi,xj) = ||xi − xj||. δi can be measured by finding the minimum distance
between the data point xi and other higher density points, i.e.,

δi = min j:ρ j>ρid(xi, x j). (4)

The cluster centers are these points that have relatively higher δi and ρi. After the calculation of
γi = ρiδi, i = 1, 2, . . . , n, the points with higher γi are regarded as cluster centers. After determining the
number of cluster centers, the clustering process can be used after scanning all points only once.

DPC, DBSCAN, and C-means have their own applicable ranges, respectively. Figure 2 shows three
datasets with different characteristics: two nonspherical clusters in (a), three density-different clusters
in (b), and three partially-overlapped clusters in (c), respectively. The clustering results by the above
three algorithms are presented in these figures as well. Different numbers denote the real labels of the
datasets, and different colors denote the clustering results by the corresponding clustering algorithms.
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Figure 2. Three datasets with different characteristics and the clustering results by using density
peak-point-based clustering (DPC), Density-Based Spatial Clustering of Applications with Noise
(DBSCAN) and C-means: (a) two nonspherical clusters; (b) three density-different clusters; (c) three
partially-overlapped clusters.

Figure 2a represents that DPC cannot work well when the investigated dataset contains a cluster
with multiple density peaks. When one cluster has multiple peaks, DPC may regard these peaks as
cluster centers, resulting in wrong clustering partition. Figure 2b shows the clustering results using the
DBSCAN algorithm. In this case, there is none value of ε to make DBSCAN find a correct clustering
result. Figure 2c shows that the two clusters in the left are partially overlapped and have a similar
density. C-means cannot find boundary points correctly, which leads to wrong clustering results.

When dealing with datasets in high dimensional (HD) spaces, these three clustering algorithms
show different characteristics. Different from C-means and DPC, DBSCAN cannot effectively cluster
points in HD datasets. First, the computed densities in DBSCAN have little difference among various
high-dimensional (HD) points and cause that core points are difficultly determined. Accordingly,
the merging condition to the same cluster from one to another core points has high uncertainty.
Second, to accelerate DBSCAN, an R* tree structure indexing all points have to be used to decrease
computational complexity, but it is challenging to be built in an HD space. Inversely, C-means depends
on distance computation rather than density computation, and the distance differences among points
can be much larger than their density differences. Also, DPC uses not only density ρ but also separation
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measure δ to find all abnormal points as cluster centers, and can significantly avoid the HD problem in
DBSCAN. Consequently, the HD problem plays little effect on C-means and DPC.

C-means algorithm needs users to provide cluster number as the input parameter, which has an
essential effect on clustering results. DPC has the same problem as C-means, which needs to provide
the number of clusters in advance. The clustering process of DBSCAN has relevance with point density.
Different values of neighborhood radius will result in different numbers of clusters, which can affect
the clustering results.

Table 1 shows the characteristics of typical clustering algorithms when dealing with different
types of datasets. The sign “×” denotes that the algorithm cannot cluster the corresponding types
of datasets effectively according to the accuracy and applicable range, while “

√
” has the opposite

meaning. The sign “
√

/×” means that the algorithm can obtain correct clustering results sometimes,
while in some cases will not.

Table 1. Applicable range of typical clustering algorithms.

Types/Algorithm C-Means DBSCAN DPC

Arbitrary shape ×
√ √

/×
Density-diversity

√
/× ×

√
/×

overlap
√

/× ×
√

High-dimension
√

×
√

/×
The number of clusters × × ×

2.2. Typical Cluster Validity Index

The validity index is a function, which regards the number of clusters (c) as its variable.
This function can obtain its maximum or minimum value when c is the correct number of clusters.
It can be formulated as follows

Max(min) z = f (c), c = 1, 2, . . . , C. (5)

The intra-cluster distances denote the compactness of a cluster while inter-cluster distances
estimate the separation among clusters [30,31]. The trial-and-error strategy can be used to find the
optimum solution in (5), as shown in Figure 3.
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Figure 2 and cmax <
√

n [32] if there is no prior knowledge, where n is the number of points in
dataset X. Afterwards, apply an applicable clustering algorithm to X with the value of c set from cmin

to cmax. Calculate the corresponding value of (5). The maximum or minimum values of (5) indicates
the optimal number of clusters. Note that different validity indices consist of different combinations of
intra- and inter-cluster distances, and thus lead to different evaluation results.

In the following, three typical validity indices DB, GS, and, DC are illustrated. The evaluation
process starts with cmin = 2, and ends with cmax that is large enough. The maximums or minimums of
the validity indices denote the optimal number of clusters, as explained below.
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2.2.1. Davies–Bouldin (DB) Index

Let ∆i and zi be the intra-cluster distance measure and cluster center of the i-th cluster, respectively.
Let δij denote the inter-cluster distance measure between clusters of Ci and Cj, and c can take values in
[cmin, cmax]. The DB index [6] can be defined as

DB =
∑c

i=1
Ri/c, s.t., Ri = max j, j,i(∆i + ∆ j)/δi j, δi j = ‖zi − z j‖, ∆i =

∑
x∈Ci
‖x− zi‖/|Ci|. (6)

2.2.2. Dual-Center (DC) Index

For any clustering center vi determined by a partitional clustering algorithm, assume
.
vi is the

closest prototype to vi, then the dual center is calculated as
..
vi = (vi +

.
vi)/2. Finally, a novel dual-center

(DC) index [33] can be constructed, i.e.,

DCc =
∑c

i=1
∆i(c)/

∑c

i=1
δi(c), s.t., ∆i =

∑ni(c)

j=1
(x j − vi)

2, δi =
∑ ..

ni(c)

j=1
(x j −

..
vi)

2, (7)

where ni(c) and
..
ni(c) are the number of points of the i-th cluster when the prototypes are regarded as vi

and
..
vi, respectively. Among the existing validity indices, DC has higher accuracy and robustness when

dealing with both artificial datasets and real datasets in UCI [34].

2.2.3. Gap Statistic (GS) Index

The gap statistic (GS) index [7] firstly computes an intra-cluster measure as

Wc =
∑c

i=1
Di/(2|Ci|), s.t., Di = 2|Ci|

∑
j∈Ci
‖x j − x‖, x =

∑
|Ci |

i=1
xi/|Ci|. (8)

Owing to the subjectivity of the detection of inflection point, GS can be formulated as

Gapc = E∗[log(Wc)] − log(Wc), and Wc =
∑c

i=1
Di/(2|Ci|), (9)

where E* denotes the expectation under a null reference distribution.
In sum, the above validity indices all take a trial-and-error way for a single specified clustering

algorithm rather than general clustering algorithms. Moreover, these validity indices are the function
of the number of clusters and are not designed for other possible clustering parameters. Therefore,
an efficient and comprehensive method is necessary, which can evaluate clustering results for any
clustering algorithm and arbitrary clustering parameters. In this paper, our proposed validity index
presents an accurate solution to solve the above problem in a general way.

3. Materials and Methods

In a nonparametric way, we firstly partition all points into two groups, boundary and interior
points, which are used to access the boundary matching degree and connectivity degree. By integrating
these two quantities, a novel clustering evaluation index can be formed.

3.1. Boundary Matching and Connectivity

The density of any point in the existing clustering analysis is computed by counting the number
of points in the point’s neighborhood with a specified radius. However, the computed density only is
a group of discrete integers such as 1, 2, . . . , and thus many points have the same density which is
indistinguishable. Moreover, the defined density may greatly be affected by the specified radius.

In this study, we first define a nonparametric density to find all boundary and interior points
in any dataset. Assume X = {x1, x2, . . . , xn } is a dataset in a D-dimensional space RD. For any data
point xk ∈ X, its m nearest neighbors are denoted as, xk,1, xk,2, . . . , xk,m, with distances d(xk, xk,1), d(xk,
xk,2), . . . , d(xk, xk,m), where m is the integer part of 2Dπ, k = 1, 2, . . . , n. Here, 2D shows that one
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interval in any dimension in RD can be measured by the two-interval endpoints, and π is a conversing
coefficient when the m points are enclosed by a spherical neighborhood that is used in the existing
density computation. Therefore, the density of any data point xk in X is defined as

density(xk) =
{∑m

j=1
d(xk, xk, j)

}−1
, k = 1, 2, . . . , n (10)

Definition 1. Boundary point and interior point. A point is called as a boundary or interior point if half of its
m nearest neighbors have a higher or lower (equal) density than its density, respectively.

The proposed notion of boundary and interior points have the following two characteristics.
(1) Certainty. Unlike the used density in other existing algorithms, the proposed density is fixed

and unique for any point, which reduces the uncertainty in the clustering process. In fact, the clustering
results in other algorithms may greatly be changed as the number of neighbors used for computing the
density increases or decreases. Note that the effective estimation of the number of neighbors has been
a difficult task, and so far, it remains unsolved [35].

(2) Locality. The classification of border or interior points is defined only by its m nearest neighbors,
so the separating boundary or interior points presents local characteristics. Inversely, DBSCAN uses a
global density to distinguish border or interior points in a density-skewed dataset, which even causes
an entire cluster to be perfectly regarded as border points (see Figure 4). Therefore, the proposed
density is a more reasonable local notion.
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density; (c) interior points.

Figure 4a shows a density-skewed dataset with three clusters of large, medium, and small density,
respectively. The red points in Figure 4a,b represent the boundary points computed by using DBSCAN
and (10), respectively. DBSCAN can find no interior points in the cluster with the lowest density;
in comparison, owing to the locality of (10), the red border points and blue interior points determined
are distributed more reasonably. The interior points are located at the center of any cluster and
surrounded by border points, while the border points construct the shape and structure of any clusters.
Specifically, after the removal of border points in any dataset, the separation of clusters is greatly
enhanced (see Figure 4c). Therefore, the real number of clusters can be determined more easily by any
clustering algorithm.

In graph theory, a cluster is defined as a group of points that connect to each other [36,37]. In order
to assess the connectivity of points in a dataset X, we calculate the density for all points in X and sort
them in the order of increasing density. Assume xmax is the point with the highest density in X, and
thereby, a connecting rule among points is defined as follows. For any point xk∈X, the next point xk+1

is the point which is the nearest neighbor of xk but has a higher density than xk. Subsequantly, repeat
the above steps until visiting the point xmax.
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Definition 2. Chain. A chain is a subset of X that starts with any data point xi in X and stops at xmax based on
the above connecting rule.

There is a unique chain from any point in X since the nearest neighbor of each point is unique.
The above steps are repeated until each point has been visited in X. Consequently, all n points in X
respond to n chains, denoting them as S1, S2, . . . , Sn. The largest distance between adjacent points in
t-th chain St is denoted as dis(St), t = 1, 2, . . . , n. Figure 5 shows all chains in two datasets with various
characteristics, where the arrow is the direction from low to high-density points. The green dotted
circles denote the points with maximum densities.
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Figure 5 shows that the value of dis(St) is small when a chain perfectly is contained in a cluster,
but abnormally becomes large when a chain bridges a cluster and the other cluster. In views of the
notation of the chain, we further define a notation of connectivity of X as follows.

Definition 3. Connectivity. Let S1, S2, . . . , Sn be n chains in X, then the connectivity of all points in X is
defined as

con(X) = (
∑n

t=1
dis(St))

−1
. (11)

Along with the graph theory, the value of con(X) indicates the degree of compactness of a dataset.
It can reflect whether a chain is contained in a cluster, as explained and illustrated in the next section.
In this paper, we use the notion of boundary matching degree and connectivity degree to access the
clustering results obtained by any clustering algorithm.

3.2. Clustering Evaluation Based on Boundary and Interior Points

Once a clustering algorithm has partitioned a dataset X into c disjoint clusters, i.e., X = C1∪C2∪

. . . ∪Cc, we substitute X by C1, C2, . . . , Cc, respectively, and find their boundary points using (10).
The set of boundary points in Ck is denoted as BCk, while the set of boundary points in X is BX.
A boundary-point-matching index is defined as

bou(c) =
∑c

k=1

|BX ∩ BCk|

|BX ∪ BCk|
. (12)

Equation (12) measures the matching degree of boundary points between the entire dataset X and
the disjoint C clusters. In the mathematical meaning, it is clear that the values of bou (c) must fall in the
interval [0, 1]. The following example can explain the cases that are smaller and equivalent to 1.
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Figure 6a–c show the boundary and interior points determined by (10) when performing C-means
algorithm at c is smaller, equal to or larger than 6, respectively, where interior points refer to the
remaining points after removing boundary points.Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 24 
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Figure 6. (a–c) shows the determined boundary points by using C-means and (10) when c = 3, 6, and
10, respectively. Blue and red points refer to the interior and boundary points, respectively; (d) shows
the curve of bou (c) calculated according to (11); the sign ∆ means the center of C-means.

The red boundary points at c = 3 and 6 are similar to these in X, but these boundary points
at c equals 10 are different from those in X. Figure 6d shows that the values of bou (c) are nearly
unchangeable when c < 6 but decrease fast when c > 6. When the number of clusters c is smaller than
the actual one, and usually, any cluster does not be assigned two cluster centers. Therefore, the set of
boundary points of all partitioned clusters are consistent with the entire set X, and bou (c) = 1. When c
is larger than the actual number of clusters, there is at least one cluster the number of whose boundary
points increase. Thus, bou (c) < 1. It can be seen that the values of bou (c) are helpful to find the real
number of clusters for any clustering algorithm. Alternatively, we can regard any cluster in C1, C2, . . . ,
Cc as an independent dataset like X, and accordingly, xmax in X become these points with maximal
density in C1, C2, . . . , and Cc, respectively. Thereby, we assess the connectivity among points according
to (11) when c = 1, 2, . . . , cmax. The connectivity of X is reduced to the connectivity of each cluster. As c
increases, the connectivity is enhanced since the number of maximal inter-cluster distances in these
chains decreases.

Figure 7a–c show the connectivity calculated using (11) and C-means when c equals 3, 6, and 10,
respectively. This value becomes smaller when c < 6, while it tends to be flat when c > 6, as shown in
Figure 7d. Consequently, there is an inflection point on the curve in Figure 7d.
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Figure 7. (a–c) The chains when c = 3, 6, and 10, respectively; (d) shows the curve of (11). Note that
the points in the same color indicate that they are partitioned into the same cluster by using C-means
algorithm and the sign ∆ means the center of C-means.

As c increases, both the curves calculated according to (11) and (12) have inversely varying
tendencies. It is expected that the real number of clusters is encountered at c*, where the curve of (11)
turns to be flat from fast-changing, and that of (12) becomes fast varying from slow-changing.

Considering the variances of bou (c) and con(c) can be calculated by curvature radius mathematically,
we define a novel validity index according to bou (c) for boundary points and con(c) for interior points,
respectively. By combining (11) and (12), we define a function as follows
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F(c) = R1(c)•R2(c)

s.t.,


R1(c) =

∣∣∣∆1(c)
∣∣∣2/(1 + (∇1(c))

2)
3/2

∆1(c) = bou(c + 1) + bou(c− 1) − bou(c),∇1(c) = bou(c + 1) − bou(c− 1)

R2(c) =
∣∣∣∆2(c)

∣∣∣2/(1 + (∇2(c))
2)

3/2

∆2(c) = con(c + 1) + con(c− 1) − con(c),∇2(c) = con(c + 1) − con(c− 1)

(13)

where the symbol ∆ denotes a two-order difference operator of bou (c) and con(c), aiming to locate the
maximal inflection points on curves of bou (c) and con(c), respectively. The optimal number of clusters
c* for any dataset is computed as

c∗ = argmaxcF(c). (14)

The proposed validity index has the following characteristics.

(1) Complementarity. The mathematical curvature and difference can reflect the varied tendency
of a curve in (13), and thereby the real number of clusters c* can be found. When c <

c*, R1(c) is nearly equivalent to R1(c*) since the set of boundary points is approximately
unchangeable, but R2(c) < R2(c*), since the number of center points successively increase. In sum,
F(c) < F(c*). Inversely, when c > c*, R1(c) successively decreases, and R2(c) tends to be flat; therefore,
F(c) < F(c*). Consequently, (13) can attain a maximum when c* appears.

(2) Monotonicity. Assume that c* is the real number of clusters, and when c takes its two values c1

and c2 satisfying c1 < c2 < c*, F(c1) < F(c2) < F(c*); otherwise, when c* < c1 < c2, F(c*) > F(c1) > F(c2);
Hence, F(c) consists of two monotone functions at the two sides of c*, respectively. Therefore,
for arbitrary two values c1 and c2 satisfying c1 < c2, c2 may refer to a more optimal clustering
result. Usually, a larger value of F(c*) indicates a better clustering result.

(3) Generalization. Equation (13) can provide a wide entry for any clustering algorithm only if
the clustering results are available and the corresponding numbers of clusters are taken as the
variable of F(c). Especially, a group of clustering results may result from different clustering
algorithms and parameters, since any two clustering results are comparable according to the
above monotonicity. For example, one clustering result with c1 results from C-means, and others
from DBSCAN, and so on. Equation (13) can evaluate the results of any clustering algorithm and
parameter in a trial-and-error way. In comparison, the existing validity indices can mainly work
for a specific algorithm and parameter of the number of clusters since the center in them has to be
defined, especially for the C-means algorithm.

Hereafter, the cluster validity index of (13) based on boundary and interior points is called CVIBI.
The evaluating process for any clustering results based on CVIBI is listed in Algorithm 2.

Algorithm 2. Evaluating Process Based on CVIBI

Input: a dataset X ∈ RD containing n points and clustering results from any clustering algorithm at c = 1, 2, . . . ,
cmax.
Output: the suggested number of clusters.
Steps:
1. Calculate the density for each point in X according to (10);
2. Partition X into boundary and interior points;
3. Input clustering results at c = 1, 2, . . . , cmax;
4. Partition each cluster into boundary and interior points;
5. Compute values of bou (c) or con(c) at c equals 1, 2, . . . ., cmax;
6. Solve the optimal value of (13);
7. Suggest an optimal number of clusters.
8. Stop.
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4. Results and Discussion

We test the accuracy of CVIBI on two groups of typical datasets and compare it with three existing
validity indices, i.e., DB, DC, and GS. In views of different characteristics of the investigated datasets,
the clustering results are obtained using C-means, DPC, and DBSCAN algorithms, respectively, where
the number of neighbors m in the experiments is fixed at the integer part of 2Dπ.

4.1. Tests on Synthetic Datasets

Figure 8 shows five groups of synthetic datasets generated by the Matlab® toolbox, and each
group consists of three datasets with different numbers of clusters. The determined boundary and
interior points are in red and blue, respectively. The 15 datasets are denoted as sets 1–15, respectively.
groups 1–4 contain the datasets with various densities, sizes, shapes, and distributions, respectively;
and group 5 contains overlapped clusters.

The characteristics of these datasets are listed in Table 2. The first column of Table 2 denotes the
names of these datasets. The second and fourth columns represent the numbers of clusters and objects
of datasets, respectively. The third column denotes the dimensions of these datasets. The last column
shows the number of objects of each cluster in datasets.

Table 2. Characteristics of 15 datasets in Figure 8.

Name Clusters Dimension Number of Objects Number of Each Cluster

Set 1 3 2 600 83/164/353
Set 2 4 2 350 30/60/120/240
Set 3 5 2 830 30/60/120/240/480
Set 4 3 2 420 60/120/240
Set 5 4 2 900 60/120/240/480
Set 6 5 2 1860 60/120/240/480/960
Set 7 3 2 1018 341/336/341
Set 8 4 2 404 134/90/90/90
Set 9 5 2 494 134/90/90/90/90
Set 10 3 2 360 120/120/120
Set 11 4 2 800 200/200/200/200
Set 12 5 2 1000 200/200/200/200/200
Set 13 3 2 600 200/200/200
Set 14 4 2 400 100/100/100/100
Set 15 5 2 1000 200/200/200/200/200

The number of neighbors m plays an essential role in CVIBI. Different values of m may lead to
very different density and distance values, and thus to different evaluation results.

As an example, we solve the range of m in which each number can lead to the correct number
of clusters when using DPC. Let m = 1, 2, . . . , n, respectively. Along with these values of m, DPC is
used to cluster all points in sets 1–15, respectively. Figure 9 shows the solved ranges in the 15 datasets
that are represented by blue bars, where the red line in any bar denotes the value that is the integer
part of 2Dπ. All the experimental datasets used in Figure 8 are in the two-dimensional data space.
Thus, D = 2 and the integer part of 2Dπ is just 12. Figure 9 shows that all the values of 2Dπ fall into the
solved ranges corresponding to the correct number of clusters, which demonstrates the effectiveness
and robustness of 2Dπ. Consequently, we can fix the number of neighbors m at 2Dπ in experiments.
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4.1.1. Relationship between CVIBI and the Number of Clusters

The correctness of clustering evaluation depends on whether the correct number of clusters can
be found by the validity index. In order to test the correctness of CVIBI, all points in these 15 datasets
are partitioned into c clusters by DPC, C-means, and DBSCAN at c = 1, 2, . . . , cmax, respectively, where
the number of clusters in DBSCAN is obtained by taking various values of ε. Figure 10 shows the
curves of CVIBI based on the three algorithms, respectively. The points marked by small circles in
these curves are the suggested optimal values of (13).

Datasets in group 1 and group 2 contain clusters with different densities and sizes, respectively.
CVIBI can point out these optimal clustering results on the above six datasets no matter what clustering
algorithms are used. In terms of various shapes in Group 3, CVIBI works well based on DPC and
DBSCAN, but C-means cannot. Because C-means originally is designed to partition spherical clusters
rather than arbitrary shapes, and then incorrect partitions of boundary points and incorrect values of
con (c) are caused. When the clusters in datasets contain different distributions (e.g., group 4), CVIBI
based on DPC shows better performance than C-means and DBSCAN according to accuracy. Because
C-means and DBSCAN cannot give correct clustering results, DPC can obtain relatively correct results.
When the dataset has clusters that partially overlap with each other (e.g., group 5), DPC can obtain
relatively correct clustering results than C-means and DBSCAN, as shown by the corresponding curves.
The merit of CVIBI is to select the best one from any candidates of clustering results, no matter what
clustering algorithm is used. However, if all available clustering results cannot contain the real number
of clusters, CVIBI can find it as well.
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Figure 10. Evaluation results of CVIBI obtained using DPC, C-means, and DBSCAN.

4.1.2. Relationship between CVIBI and ε in DBSCAN

When using DBSCAN, any certain number of clusters responds to a continuous interval of Eps
(i.e., ε). The clustering results of DBSCAN highly depend on the value of Eps. In order to solve the
optimal values of Eps, we determine the possible range of Eps first. Then, a group of Eps values is
evenly sampled to approximate the Eps variable itself. Then, we cluster the dataset using DBSCAN
with the group of Eps values. Finally, the optimal values of Eps can be determined by CVIBI. Figure 11
shows the evaluation results of CVIBI with respect to Eps, where piecewise numbers chain in these
CVIBI curves is the obtained number of clusters. The abscissa and vertical axes denote the value of
Eps and CVIBI, respectively. The number along with each red point denotes the number of clusters
computed by DBSCAN. If CVIBI can compute the real number of clusters, then a green box will be
drawn and point out the optimal value of Eps. The maximum value of each curve in Figure 11 indicates
the suggested optimal number of clusters. The corresponding values of Eps are the suggested optimal
parameters. It also can be seen that the optimal Eps is not one certain number but a range of values.
CVIBI with DBSCAN can point out the correct clustering results except Set 10 and group 5. Set 10 has
three clusters and one cluster is separated from the other two clusters. The other two clusters are close
to each other, which are easy to be treated as one cluster. CVIBI with DBSCAN algorithm regards these
two clusters as one cluster, and the maximum value occurs when c = 2. The clusters in group 5 are
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significantly overlapped, so CVIBI cannot recognize the real numbers of clusters. Consequently, CVIBI
can point out the optimal clustering results by finding the optimal parameter of Eps.
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4.1.3. CVIBI Evaluation under Various Clustering Algorithms

Once a dataset is clustered by several clustering algorithms that lead to different clustering results,
how one can select the optimal clustering result remain a challenging task for the existing validity
indices. Nevertheless, CVIBI can realize this purpose. For example, CVIBI obtains three curves based
on C-means, DBSCAN, and DPC algorithms. Each curve points out a suggested number of clusters,
which may be different from the others. The optimal number of clusters can be selected by comparing
the values of the boundary matching degree of bou (c).

Figure 12 shows the evaluating process of the multiple-peak dataset that is shown in Figure 2a.
It shows that CVIBI based on DBSCAN suggests 2 as the optimal number of clusters, but CVIBI based
on C-means and DPC both do 1. To assess their differences, we further analyze their values of bou
(c). bou (c) = 1 in CVIBI based on C-means and DPC when c = 1, while bou (c) = 1 in CVIBI based on
DBSCAN when c = 1 and 2. In views of the clustering process, we can conclude that any real cluster
in all clusters is not separated when executing clustering algorithm if bou (c) = 1. Let Γ be the set of
numbers of clusters whose bou (c) = 1. The maximum value in Γ indicates the optimal number of
clusters in the multiple-peak dataset. So in the situation, both CVIBI and bou (c) can indicate that the
real number of clusters is 2, and the clustering algorithm suitable for this dataset is DBSCAN.
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Figure 13 shows the evaluating process of the density-diverse dataset in Figure 2b. We can
conclude from Figure 13 that the suggested numbers of clusters are different. CVIBI with DBSCAN
and DPC both suggest 2 as the optimal number of clusters while CVIBI based on C-means regards 3 as
the optimal number of clusters. To assess which clustering result is best among the three clustering
algorithms, the three curves of bou (c) are used to consist of Γ. Finally, the optimal number of clusters
can be determined from Γ. It can be extracted that Γ set contains 1, 2, and 3 in total. So the suggested
number of clusters is 3, which is the maximum value in Γ. The optimal algorithm for the density-diverse
dataset is C-means algorithm.Appl. Sci. 2020, 10, x FOR PEER REVIEW 18 of 24 
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Figure 14 shows the evaluating process of the dataset in Figure 2c. The results of the CVIBI index
with three clustering algorithms are different. CVIBI based on C-means, DBSCAN, and DPC suggest 1,
2, and 3 as the real number of clusters, respectively. In order to obtain the optimal number of clusters,
three curves of bou (c) are used. From the relationship between Γ and the real number of clusters, bou
(c) of C-means, DBSCAN and DPC suggest 1, 2, and 3 as the optimal number of clusters, respectively.
So the real number of clusters is 3, which is suggested by CVIBI with DPC. The suitable clustering
algorithm of the investigate dataset is the DPC algorithm.
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4.1.4. Comparison between CVIBI and Existing Validity Indices

Table 3 shows all evaluation results obtained by CVIBI, DB, DC, and GS when using the above
three clustering algorithms. The four validity indices are analyzed as follows.

(1) Size and distribution. Groups 2 and 4 denote clusters with different sizes and distributions, and
there are no overlapped clusters. The evaluation results show that except set 10, all validity
indices are capable of determining the correct number of clusters no matter which clustering
algorithm is used.

(2) Density and shape. Groups 1 and 3 contain clusters with different densities and shapes. When the
densities among clusters are so skewed as in sets 1 and 3, the three validity indices cannot find
the correct number of clusters. Compared with DC and DB, the cluster numbers calculated by
CVIBI are closer to the real numbers of clusters.

(3) Overlap. Group 5 contains datasets with overlapped clusters. DPC is good at clustering such
datasets, and the evaluation results of CVIBI are nearest to the real number of clusters. However,
DC and GS with DPC give a relatively smaller number. Note the two indices are originally
designed to evaluate the results for nonoverlapping clusters. Thus any two overlapped clusters
may be incorrectly regarded as one cluster. For instance, the clusters in set 14 are most overlapped,
and its evaluation results are the weakest. How to find the correct number of clusters in a dataset
containing overlapped clusters is a difficult task for most existing validity indices, such as DB
and GS; fortunately, CVIBI with DPC is effective for dealing with such a problem. In summary,
DC shows performances better than CVIBI in the case of datasets containing spherical clusters.
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Table 3. Evaluation of clustering results by CVIBI, Davies–Bouldin (DB), dual-center (DC) and gap statistic (GS) for 15 datasets.

Dataset and
Algorithm

DB DC GS CVIBI

C-Means DBSCAN DPC C-Means DBSCAN DPC C-Means DBSCAN DPC C-Means DBSCAN DPC

Set 1 3
√

2 3
√

3
√

2 3
√

3
√

2 3
√

3
√

3
√

3
√

Set 2 4
√

3 4
√

4
√

3 4
√

4
√

2 4
√

4
√

4
√

4
√

Set 3 4 6 4 4 4 5
√

3 3 5
√

5
√

5
√

5
√

Set 4 3
√

3
√

3
√

3
√

3
√

3
√

3
√

3
√

3
√

3
√

3
√

3
√

Set 5 4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

Set 6 4 5
√

4 5
√

4 5
√

4 5
√

5
√

5
√

5
√

5
√

Set 7 2 2 2 2 2 2 2 2 2 2 3
√

3
√

Set 8 2 4
√

2 4
√

2 4
√

2 2 4
√

2 4
√

4
√

Set 9 2 5
√

2 5
√

2 5
√

2 2 5
√

2 5
√

5
√

Set 10 2 2 2 2 2 2 2 2 2 2 2 3
√

Set 11 4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

4
√

Set 12 5
√

5
√

5
√

5
√

5
√

5
√

5
√

5
√

5
√

5
√

5
√

5
√

Set 13 2 1 2 1 2 1 2 2 1 2 1 2
Set 14 2 2 2 2 2 2 2 2 2 2 3 2
Set 15 2 1 2 1 2 1 2 2 1 2 1 4

Note: for the sign ‘Set x/y’, x and y refer to the investigated dataset and the correct number of clusters, respectively.
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4.2. Tests on CT Images

Digital Imaging and Communications in Medicine (DICOM) is a standard protocol for the
management and transmission of medical images, which is widely used in healthcare facilities. Here,
we choose CT images as test datasets, which are stored in accordance with the DICOM standard.
Each image contains 512 × 512 pixels, and each pixel is identified by its CT value. Figures 15 and 16
show the clustering and evaluation results of CVIBI for a group of typical CT images. The first column
represents the original CT images. Columns 2–4 represent the partition results, which are clustered by
DPC and C-means, respectively. Here, pseudo colors denote different clusters. The fifth column is the
curves of CVIBI.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 20 of 24 

(1) Size and distribution. Groups 2 and 4 denote clusters with different sizes and distributions, and 
there are no overlapped clusters. The evaluation results show that except set 10, all validity 
indices are capable of determining the correct number of clusters no matter which clustering 
algorithm is used. 

(2) Density and shape. Groups 1 and 3 contain clusters with different densities and shapes. When 
the densities among clusters are so skewed as in sets 1 and 3, the three validity indices cannot 
find the correct number of clusters. Compared with DC and DB, the cluster numbers calculated 
by CVIBI are closer to the real numbers of clusters. 

(3) Overlap. Group 5 contains datasets with overlapped clusters. DPC is good at clustering such 
datasets, and the evaluation results of CVIBI are nearest to the real number of clusters. However, 
DC and GS with DPC give a relatively smaller number. Note the two indices are originally 
designed to evaluate the results for nonoverlapping clusters. Thus any two overlapped clusters 
may be incorrectly regarded as one cluster. For instance, the clusters in set 14 are most 
overlapped, and its evaluation results are the weakest. How to find the correct number of 
clusters in a dataset containing overlapped clusters is a difficult task for most existing validity 
indices, such as DB and GS; fortunately, CVIBI with DPC is effective for dealing with such a 
problem. In summary, DC shows performances better than CVIBI in the case of datasets 
containing spherical clusters. 

4.2. Tests on CT Images 

Digital Imaging and Communications in Medicine (DICOM) is a standard protocol for the 
management and transmission of medical images, which is widely used in healthcare facilities. Here, 
we choose CT images as test datasets, which are stored in accordance with the DICOM standard. 
Each image contains 512 × 512 pixels, and each pixel is identified by its CT value. Figures 15 and 16 
show the clustering and evaluation results of CVIBI for a group of typical CT images. The first column 
represents the original CT images. Columns 2–4 represent the partition results, which are clustered 
by DPC and C-means, respectively. Here, pseudo colors denote different clusters. The fifth column 
is the curves of CVIBI. 

Image 1 

    
 

 

Image 2 

     

Image 3 

     

Image 4 

     

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters
Appl. Sci. 2020, 10, x FOR PEER REVIEW 21 of 24 

Image 5 

     

Figure 15. Tests of CVIBI on CT images with C-means. 

Image 1 

     

Image 2 

     

Image 3 

     

Image 4 

Image 5 

     

Figure 16. Tests of CVIBI on CT images with DPC. 

Figures 15 and 16 show that we can obtain the optimal number of clusters when applying CVIBI 
with C-means and DPC to CT images, and the partitioned images show the shapes of various origins 
and tissues. Consequently, CVIBI with any clustering algorithms can take effect on automatic 
imaging segmentation in CT images, which can point out the categories of tissue in one particular CT 
layer. 

Table 4 shows all evaluation results by using C-means and DPC with four indices, respectively, 
where x and y in sign image x/y refer to the investigated CT images and the correct number of clusters, 
respectively. The suggested numbers of clusters between the four validity indices are different; GS 
can identify the correct number of clusters no matter which clustering algorithm is applied; DC with 
C-means can identify the correct number of clusters, but DC with DPC fails for images 2 and 3; in 
terms of accuracy, CVIBI seems to be more efficient. 

Table 4. Evaluation of clustering results by CVIBI, DB, DC and GS for 15 datasets. 

Dataset and Algorithm 
DB DC GS CVIBI  

DPC C-Means DPC C-Means DPC C-Means DPC C-Means 
Set 1 4 5√ 3√ 5√ 3√ 5√ 3√ 5√ 
Set 2 2 3 7√ 3 7√ 5√ 7√ 5√ 
Set 3 2 4 5√ 4 5√ 5√ 5√ 5√ 
Set 4 2 5√ 3√ 5√ 3√ 5√ 3√ 5√ 
Set 5 4√ 5√ 4√ 5√ 4√ 5√ 4√ 5√ 

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters

CV
IB

I

number of clusters

Figure 15. Tests of CVIBI on CT images with C-means.

Figures 15 and 16 show that we can obtain the optimal number of clusters when applying CVIBI
with C-means and DPC to CT images, and the partitioned images show the shapes of various origins
and tissues. Consequently, CVIBI with any clustering algorithms can take effect on automatic imaging
segmentation in CT images, which can point out the categories of tissue in one particular CT layer.

Table 4 shows all evaluation results by using C-means and DPC with four indices, respectively,
where x and y in sign image x/y refer to the investigated CT images and the correct number of clusters,
respectively. The suggested numbers of clusters between the four validity indices are different; GS can
identify the correct number of clusters no matter which clustering algorithm is applied; DC with
C-means can identify the correct number of clusters, but DC with DPC fails for images 2 and 3; in terms
of accuracy, CVIBI seems to be more efficient.
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Figure 16. Tests of CVIBI on CT images with DPC.

Table 4. Evaluation of clustering results by CVIBI, DB, DC and GS for 15 datasets.

Dataset and
Algorithm

DB DC GS CVIBI

DPC C-Means DPC C-Means DPC C-Means DPC C-Means

Set 1 4 5
√

3
√

5
√

3
√

5
√

3
√

5
√

Set 2 2 3 7
√

3 7
√

5
√

7
√

5
√

Set 3 2 4 5
√

4 5
√

5
√

5
√

5
√

Set 4 2 5
√

3
√

5
√

3
√

5
√

3
√

5
√

Set 5 4
√

5
√

4
√

5
√

4
√

5
√

4
√

5
√

5. Conclusions

The clustering evaluation is an essential but difficult task in clustering analysis. Currently,
the existing validity evaluation has to depend on a specific clustering algorithm, a specific cluster
parameter (or several), and specific assumptions, and has very limited applicable range. In this paper,
we proposed a novel validity index, which can evaluate the clustering results obtained either by a
single clustering algorithm or by several clustering algorithms. Especially, it can be applied to select
any clustering parameters besides the typical number of clusters. To our knowledge, the kind of
necessary applications cannot be realized by existing validity indices. This novel index outperforms the
existing validity indices on some benchmark datasets in terms of accuracy and generality. Experimental
results validate this index. The boundary matching degree and connectivity degree are important
notions in graph theory. Our future work is to combine these notions with graph theory to reduce
time complexity.
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