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Abstract: Transient stability is important in power systems. Disturbances like faults need to be
segregated to restore transient stability. A comprehensive review of fault diagnosing methods in the
power transmission system is presented in this paper. Typically, voltage and current samples are
deployed for analysis. Three tasks/topics; fault detection, classification, and location are presented
separately to convey a more logical and comprehensive understanding of the concepts. Feature
extractions, transformations with dimensionality reduction methods are discussed. Fault classification
and location techniques largely use artificial intelligence (AI) and signal processing methods. After
the discussion of overall methods and concepts, advancements and future aspects are discussed.
Generalized strengths and weaknesses of different AI and machine learning-based algorithms are
assessed. A comparison of different fault detection, classification, and location methods is also
presented considering features, inputs, complexity, system used and results. This paper may serve as
a guideline for the researchers to understand different methods and techniques in this field.

Keywords: AC networks; artificial intelligence (AI), deep learning (DL), fault detection (FD), fault-type
classification (FC), fault location (FL), machine learning (ML)

1. Introduction

It is a challenging task for power system operators (PSO) to supply uninterrupted electric power
to end-users. Although fault intrusion is beyond human control, it is essentially important to accurately
detect, classify and locate the fault location. Fault detection, classification and location finding methods
in power transmission systems have been extensively studied [1–6]. Efforts are under way develop an
intelligent protection system that is able to detect, classify and locate faults accurately.

Advancements in signal processing techniques, artificial intelligence (AI) and machine learning
(ML) have aided researchers in adopting a more comprehensive and dedicated approach in studies
associated with conventional fault protection strategies. Moreover, two established limitations of
online fault detection mechanisms are being dealt with. The first limitation is the difficulty in obtaining
the needed data. In order to gain information at different nodes/buses in the grids, intelligent electronic
devices (IED) are installed [7,8]. Adding to this, the development of self-powered, non-intrusive
sensors has the ability to build sensor networks for smart online monitoring [9,10]. The knowledge
obtained from the data related to various transmission grid conditions has enabled researchers
to develop intelligent fault protection/diagnosis systems. The effects of diversified and complex

Appl. Sci. 2020, 10, 1312; doi:10.3390/app10041312 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0003-0947-3616
https://orcid.org/0000-0002-3686-0817
https://orcid.org/0000-0002-3498-4146
http://dx.doi.org/10.3390/app10041312
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/4/1312?type=check_update&version=2


Appl. Sci. 2020, 10, 1312 2 of 27

transmission system topologies can be minimized by using the interspersed sensors for the collection
of voltage and current signals. The second limitation is the lack of computational capability and
communication. Synchronized global positioning system (GPS) sampling and high-speed broadband
communications for IEDs in power grids are proposed in [8]. These technical advancements assure
the quick response to faulty scenarios and the effective functioning of online monitoring mechanisms
based on sensor networks. The availability of high-performance computing solutions gives provision
to the implementation of higher computation complexity methods [7].

Short circuit faults are more likely to appear in power systems (PS) than the series faults, break in
the path of current. Shunt faults result in catastrophes and leave hazardous effects on PS. Short circuit
faults can be divided into symmetrical and asymmetrical faults and further classification is presented
in Figure 1 for the three-phase system [11].
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An in-depth review of the different techniques used for fault detection, classification, and location
estimation has been presented in this paper. This paper also presents a detailed comparison of various
fault detection, classification and location methods based on the algorithm used, input, test system,
features extracted, complexity level and results. Where, complexity is defined by considering the
number of inputs and rules involved in algorithm development throughout this paper as simple,
medium and complex. The rest of the paper is organized as follows: feature extraction based on
transformation, dimensionality reduction, and the modal transformation is discussed in Section 2. Fault
detection methods largely based on feature extraction techniques are presented in Section 3. Fault-type
classification methods are presented in Section 4 while a comparison of fault-type classification
techniques is presented in Section 5. Section 6 describes the future prospects of fault-type classification.
Fault location finding approaches are reviewed in Section 7 and a comparison of fault location finding
methods is outlined in Section 8. Future trends in fault location finding techniques are proposed in
Section 9. Strengths and weaknesses of notable emerging computational intelligence methods are
presented in Section 10. Finally, conclusions are drawn in Section 11.

2. Disclose the Valuable Information

Power transmission grid information includes voltage and current signals. However, it is difficult
to apply some set of rules and criteria to disclose the intelligent information contained in the sampled
signals. Thus here, feature extraction approaches are handy to disclose the valuable information and
to reduce the influence of the variance within the system under study. Researchers may attain better
awareness about the fault-type, classification, and location by using an appropriate feature extraction
approach. Furthermore, dimensionally reduced data boost the performance of the algorithm employed
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within locators or classifiers, thus providing robust and precise results. Different feature extraction
methods are discussed in the subsequent section with applications [7].

2.1. Transformations

It is well established that the frequency characteristics of voltage and current profiles change
dramatically on the occurrence of a fault. However, if the fault is identified and investigated accurately,
it can help to protect the affected transmission line (TL) to a great extent [12]. Numbers of methods
are available to analyze the frequency characteristics of time-domain signals but wavelet transform,
Fourier transform and S-transform have frequently employed techniques in fault identification
systems/protective relays.

2.1.1. Wavelet Transform (WT)

A comprehensive note on wavelet transform (WT) is provided in [13]. WT is a widely used
feature extraction approach in different fault diagnosis systems. Practically, to obtain characteristics of
voltage and current signals in multiple frequency bands, discrete wavelet transform (DWT) is used
than continuous WT (CWT). Thus during DWT implementations, it is important to select which mother
wavelet (MW) and decomposition level to be used before actually creating the features. Gawali et. al.
provided a detailed comparison of various mother wavelets for fault detection and classification [14]
and recommended Bior3.9, Db10, Meyer, Sym8, and Coif5 mother wavelets for fault detection. It is
to be noted that different sampling rates were adopted but frequency bounds are important than the
decomposition level itself. Coefficients are selected in detail levels as a feature in [15–17]. Kashyp et
al. adopted a Mayer wavelet with frequency bands of 1–2 kHz [15] while the Db2 wavelet is selected
in [16,17] with frequency bands of 4–8 kHz. Summations of absolute coefficients of detail levels are
used to extract features in [18–21]. The coefficients in 97–195 Hz or 99–199 Hz frequency bands are
assumed in [18–20] and three Daubchies wavelets, namely Db1, Db4, and Db8 are selected.

Coefficients can be used in another way by calculating the energies of the detail levels. The energy
of the 3540–7680 Hz frequency band is chosen in [22] while the frequency band of 1.5625–3.125 kHz is
used in [23]. Wavelet energy entropy (WEE) is introduced in [24] based on the wavelet energies and
used in [25]. Moreover, wavelet singular entropy (WSE) is introduced in [26], which is a combination
of singular value decomposition and Shanon entropy, to produce the features. Discussed literature
proved the success of the DWT methods for fault detection and classification with a variety of mother
wavelets and coefficients adopted in both low and high-frequency detail levels.

2.1.2. Fourier Transform (FT)

The Fourier transform (FT) is an extensively used mathematical tool for the analysis of
frequency-domain signals. Discrete Fourier transform (DFT) is used where both frequency and
time domain coefficients are discrete and, computed via fast Fourier transform (FFT). S. Yu et.al.
adopted full-cycle DFT (FCDFT) and half-cycle DFT to remove harmonics, dc components and to assess
the phasor elements [27]. Half-cycle DFT is also used to calculate fundamental and harmonic phasors
employed for fault-type classification [28,29]. In [30], full-cycle FFT is used to find the fundamental
components of voltage and current.

2.1.3. S-Transform (ST)

An S transform, derived from CWT, offers time-frequency demonstration of frequency-dependent
resolution based on scalable and moving localized Gaussian window [31]. Local spectral characteristics
can be obtained effectively from S-transform, useful in expediting transients [32]. ST calculations are
stored in S-matrix and ST contours are plotted for two-dimensional visualization and then features are
extracted. ST is used to overcome the shortcomings of the DWT such as; sensitive to noise and not
able to exactly reveal the characteristics of harmonics [33,34]. In [35], S-transform contour energy and
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standard deviation used to select faulty lines and sections, respectively. S. Samantaray et.al. used ST to
find amplitude, impedance and fault points [36].

2.2. Dimensionality Reduction

Principal component analysis (PCA) is used to map data from high dimensional space to low
dimensional subspace, to mitigate dimensionality of the data, where the variance of the data could
be comprehended in the best possible way [37]. Thukaram et al. considered the PCA method to
extract features from voltage and current signals [38]. The PCA approach is employed on wavelet
coefficients and principal components, used for fault-type classification and location finding. The
feature extraction method is proposed in [39] based on random dimensionality reduction projection
(RDRP) to reduce the dimensionality of the original vector in the Gaussian random matrix, making
RDRP an independent of training data. Further, small memory is required as feature extraction is
furnished with matrix multiplication [39].

2.3. Modal Transformation

Clarke transformation (CT), a model transformation technique, is used in [40–42] to decouple
and transform three-phase quantities a, b and c to α, β and 0. Then, fault-type by relating the
modal components and phase quantities are characterized [42]. Calculations for fault detection and
location indices were carried out in [40,41]. Researchers used CT with little modifications called
Clarke-Concordia transformation [43,44] and Karrenbauer transformation [45], respectively, to expedite
the implementation of fault characteristics.

3. Fault Detection (FD)

Typically, fault detection is done prior to classification and location estimation. Fault detection
is performed based on the extracted features. Whenever a self-governing technique is used for fault
detection, the classifier and the locator are activated after a fault is definitely detected. Furthermore,
there is no need to devise fault detection algorithms when classifiers and locators are proficient to
distinguish between healthy and abnormal conditions. However, some fault detection methods are
discussed here.

Martinez et al. used negative sequence components for fault detection [46]. To minimize the
chances of false fault detection, the convolution of partial differential with respect to (w.r.t.) time of
negative sequence components with a triangular wave is used to obtain a joint fault indicator (JFI).
This JFI based fault detection is robust in amplitude variation and frequency deviation cases.

The wavelet-based method is proposed for real-time fault recognition in TLs [47]. This technique
is not exaggerated by the choice of mother-wavelet and has no time delay for fault detection for both
long and compact wavelets.

Numerous researches have been conducted for the detection of high impedance faults (HIF) [48–50]
as conventional algorithms may fail to detect HIF. Wai et al. extracted high-frequency data by using
DWT with quadratic spline mother wavelet for HIF detection [48]. Wavelet coefficient from DWT and
converted scale coefficients used to detect HIF in [49]. In [50], the mean of DWT coefficients is obtained
via PCA to reduce the dimensionality of the features at different frequency bands.

Normally, the fault detection time does not significantly affect the overall protection system
performance which includes fault detection, classification and location mechanisms. Typically, fault
detection is achieved in 2–10 ms as compared to 30 ms for fault-type classification. So, more details on
fault-type classification and location techniques are presented in this paper. However, a comparison of
different fault detection methods is given in Table 1 considering the algorithm used in those methods,
complexity level, employed system, inputs, features, and results. Where, complexity is defined by
considering the number of inputs and rules involved in algorithm development as simple, medium
and complex. Further, the selection of complexity level is achieved based on feature training and
testing time, accuracy, convergence, and variance along with data required.
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4. Fault-Types Classification (FC)

Classification of fault-type plays a vital role in protection for transmission lines, thus scholars have
shown increased interest in developing robust, novel and precise fault-type classification approaches.
Most of the available classification methods are based on classifiers and statistical learning theories [51]
while some based on logical methods [52]. A development in fault classification techniques is highly
dependent on improvements in machine learning and pattern recognition methods. A detailed review
of fault-type classification techniques is presented in the subsequent section.

Table 1. Comparison of different fault detection methods.

No. Algorithm Input Test System Feature Complexity Result Ref.

1 Fuzzy-neuro
method

Fault current
and voltage

samples

220 kV,
177.4 km,

50 Hz

Back-propagation and
fuzzy controllers are
employed.

Medium

FD is
realized in
less than
10 ms

[53]
PSCAD/EMTDC used
for simulations.

High harmonic
components removed
via FFT.

2 DWT and
ANNs

Current and
voltage signals

60 Hz, 230 kV,
188 km

The sampling
frequency is 1.2 kHz.

Complex

FD
accuracy is
100% with
99.83% FC
accuracy

[54]

Normalization
voltage and current
signals are from 1 to
−1.

Db4 is mother
wavelet.

720 fault cases are
considered.

3

WT and
self-organized

artificial
neural

network

current and
voltage

waveforms

50 Hz, 500 kV,
200 miles

200 kHz is the
sampling rate.

Complex

FD
accuracy is
99.7% for
single line
and 92%
for parallel
lines. FC
accuracy is
99.65%

[55]

Db5 mother wavelet
is used to decompose
the signal up to 3
levels.

3960 fault cases are
considered.

An adaptive
resonance
theory-based neural
network is used.

4

Linear
discriminant

analysis (LDA)
and WT

Current signals
100 km,

400 kV, 50 Hz
single-circuitTL

WT is used to process
the current samples
up to 3 levels.

Medium
Both FD
and FC is
100%

[56]Reach of the relay
set-up to 90% of the
TL.
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Table 1. Cont.

No. Algorithm Input Test System Feature Complexity Result Ref.

5

Superimposed
sequence

components
based

integrated
impedance

(SSCII)

Current and
voltage profiles
at both ends of

TL

300 km,
400 kV,

50 Hz with a
static VAR

compensator
(SVC)

The sampling
frequency is 1
kHz.

Complex
FD time is
less than
20 ms

[57]

Reliable for low
and high
resistance faults.

The pilot relaying
scheme is suitable
for high-speed
communication
channels.

6

Bayesian
classifier and

adaptive
wavelet

Current signals
500 kV,
864 km,
50 Hz

500 kHz is the
sampling
frequency.

Complex

Both FD
and FC
accuracies
are 100%,

[58]

Db4 is selected as
a mother wavelet,
used to
decompose
current signals up
to 3 stages.

Directional zone
protection is
obtained.

5328 fault cases
are analyzed.

4.1. Artificial Neural Network (ANN) Based FC

Artificial neural networks (ANNs) are part of learning algorithms and non-linear statistical models
family with the aim to emulate behaviors of linked neurons within biological neural systems. Various
ANN algorithms have been developed for various applications including fault-type classification
in TLs.

4.1.1. Feedforward Neural Network (FNN)

Feedforward neural network (FNN) is the simplest configuration from all the ANN models,
characterized as a single or multi-layer perceptron. Typically, an FNN has an input layer, a hidden
layer and an output layer as shown in Figure 2 [52]. The neurons in adjacent layers are fully linked, and
the weights/parameters yield the output of the network. To make it simple, the learning procedure is
accomplished by fine-tuning the parameters/weights of the ANN, in such a way that the output fulfills
certain situations [59]. In 1986 Rumelhart et al. proposed the back-propagation (BP) method [60].
FNNs’ training process is mainly based on the BP algorithm, the term BPNN is used. Applications of
FNN with BP on power systems are found in [61,62]. Bo et al. decomposed the voltage profile into
six frequency bands and the energy of each band is determined by creating 18 features for the input
layer [63]. This 18-12-3 FNN has the ability to select a faulty line. Hagh et al. used discrete FNN units
to detect various types of fault, thus each neural network (NN) would have to learn fewer patterns [30].
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4.1.2. Radial basis Function Network (RBFN)

A radial basis function network (RBFN) is a type of FNN that uses radial basis activation functions
for hidden nodes as shown in Figure 3 [64]. Typically, activation functions are Gaussian functions and
an RBFN has one hidden layer [65]. RBFN used to construct fault classifiers considering the inability
of FNN shown with sigmoid activation functions [66]. Mahanty et al. trained two RBFNs separately to
classify faults involved with and without earth, respectively [67].
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4.1.3. Probabilistic Neural Network (PNN)

Probabilistic neural network (PNN) structure proposed by Specht in 1989, another type of FNN [68].
It has four layers namely; input layer, pattern/hidden layer, summation layer and output layer as
shown in Figure 4 [69]. Mo et al. used PNN for fault classification and found that PNN classification is
10% higher than FNN [70]. DWT is used to extract features for PNN in [71] with nine pattern nodes.
In [72], the authors compared PNN, FNN, and RBFN, execution of PNN requires less training time and
provided better classification results.
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4.1.4. Chebyshev Neural Network (ChNN)

Vyas et al. used a Chebyshev neural network (ChNN) for fault classification in TLs [73]. In ChNN
polynomials, functional expansion is used to map original input into higher-dimensional space; the
hidden layer is interchanged, leaving only one layer in the network as shown in Figure 5 [74]. Thus
only one parameter needs to be tuned in ChNN because of its single-layer structure, making it easy to
implement than other ANN models with efficient fault classification results.
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4.2. FC Based on Fuzzy Interface Systems (FIS)

Fuzzy logics are applied by performing an interference operation based on fuzzy if-then rules in
fuzzy interference systems (FIS). This varies from Boolean logic in the manner that fuzzy logic lets the
truth be represented by [0,1]. Here 0 represents the absolute falseness whereas 1 represents the absolute
truth. A basic FIS is distributed into three stages such as; fuzzification, inference and defuzzification
stage as shown in Figure 6 [75]. In [76], samples of three-phase currents for the post-fault conditions
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are analyzed to evaluate the characteristic features for the fuzzy rules. The features are assessed as
a difference of normalized ratios for maximums of the phase currents. Samantaray developed an
initial fuzzy rule from already trained decision tree (DT) and then rules are simplified by using genetic
algorithm (GA) and similarity measured [77]. The E-algorithm is proposed in [78], to distinguish faults
caused by lightning, animals, and trees via imbalanced data, which is a heuristic manner to discover
the optimal fuzzy rules. Wang et al. proposed a fuzzy-neural approach for TL fault classification [79].
Fuzzy-neural is a combination of fuzzy and neural logics. Negative, zero and positive sequence current
components are the inputs [79]. Adaptive network-based FIS (ANFIS) is used for fault classification
in [80,81]. Hassan confirmed the effectiveness, precision, and robustness of ANFIS by adding white
noise to the test data [82].
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4.3. FC Based on Decision Tree (DT) Technique

The term decision tree (DT) refers to graphs which are able to make decisions and its basics are
detailed in [83,84]. Three sorts of nodes are involved in DT namely; root node, internal nodes, and the
leaf nodes. Mechanism of decision making starts from the root node for classification and class label is
represented by the leaf node as shown in Figure 7 [85]. The suboptimal decision tree is obtained using
training data via greedy algorithm e.g., C4.6, regression tree, ID3 and, classification and regression tree
(CART) with increased accuracy in reasonably reduced time [84]. Random forest (RF) comprising of a
finite number of DTs is used in [86] for fault classification in single and double circuit transmission
lines. The decision-making mechanism can be performed with accuracy in less than a quarter-cycle
via DT [28,29]. DWT coefficients are used as features for CART-DT and a performance comparison
was made with FNN [20]. Both of the mechanisms obtained a high degree of accuracy whereas the
performance of CART-DT is found better.
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4.4. FC Based on Support Vector Machine (SVM)

Cortes and Vapnik invented the support vector machine (SVM) in 1995 [87]. A theoretical
foundation can be found in [88]. SVM structure is shown in Figure 8 [89]. SVM classifiers find
optimal hyperplane which maximizes the margin between two entities. SVM avoids over-fitting and
does not fall in local optima due to its risk-minimizing ability, which made SVM an attractive tool
for fault classification in transmission lines. SVM is employed on series compensated TLs for fault
classification in [90,91], where three SVMs were employed for three phases and separate SVM for ground.
In [17,92–94], features extracted by the DWT are directed as input to SVMs. SVM classifiers in [95,96]
used features extracted from S-transform. Shahid et al. selected a quarter sphere support vector
machine (QSSVM) to identify and classify the faults [97]. QSSVM gives satisfactory fault detection and
classification results through temporal-attribute QSSVM and attributes QSSVM, respectively.
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4.5. FC Based on Logic Flow (LF)

Typically, a tree-like logic flow with multi-criteria is used if no AI or ML-based algorithms are
devised. Kezunovic et al. compared the extracted features for ground and three phases to pre-set
thresholds [98]. Any value exceeding the pre-set threshold results in fault on phases or ground.
Comparisons are conducted between thresholds and feature values at each node within the logic flow.
In [26,99], Shanon entropy and WT used to yield features and logic flows are implemented. Jiang et al.
employed Clark transformation to create fault detection guides for each phase and then compared with
the threshold to complete classification [41]. Karrenbauer’s transformation with wavelet transform is
used in [45] and modulus maxima of WT employed in logic flow to choose the type of fault.

5. Comparison of Fault-Type Classification Methods

A comparison of different fault-type classification algorithms is given in Table 2 considering the
employed method within the algorithm, complexity level, input, test system, features, and results.

Here complexity is defined by considering the number of inputs and rules involved in algorithm
development as simple, medium and complex. Further, the selection of complexity level is achieved
based on feature training and testing time, accuracy, convergence, and variance along with data required.
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Table 2. Comparison of different fault-type classification methods.

No. Algorithm Input Test System Feature Complexity Result Ref.

1 FNN
Voltage and

current samples
Double circuit TL of 100 km
length. Operated at 380 kV

The sampling frequency is 1.1 kHz.

Simple 7 ms is the fault-type
classification time

[100]30 input nodes, two hidden layers, and
11 output layer nodes.

Training patterns are 45000.

2 Back-propagation
network classifier

Voltage and
current samples

Double circuit 128 km long TL
with 35 GVA and five GVA
generations, respectively

800 Hz is the sampling frequency and
results obtained via three sample data
windows.

Simple Misclassification rate is
less than 1%

[101]
The number of Kohonen neurons is
greatly dependent on the number of
training sets. BP network classifier is
employed as a front end to the output
layer with supervised learning.

3 Fuzzy logic and WT-
based method

Current signals 50 Hz, 300 km long TL.
operate at 400 kV

4.5 kHz is selected as sampling rate and
Db8 mother wavelet is used.

Complex FC time is less than 10
ms with 99% accuracy [102]Wavelet is dissolved into four levels.

Online FC is done.

Fast, robust and accurate FC is obtained.

4 Fuzzy logic Current signals 50 Hz, 300 km long TL and
operate at 400 kV

Digital distance protection is
implemented.

Medium FC accuracy is more
than 97%

[103]
FC time is 10 ms and studied cases were
2400.

5 ST and PNN Current signals

50 Hz, 300 km long TL.
Operate at 230 kV with

Thyristor-controlled series
capacitor (TCSC)

Scalable Gaussian window is used for ST
with a sampling rate of 1 kHz.

Complex

FC accuracy is 98.62%
and faulty section

identification accuracy
is 99.86%

[104]Standard deviation and energy are the
features.

200 dataset used for testing, 300 for
training out of 500 datasets.

6 SVM
Post-fault current
and oltage signals

50 Hz, 300 km long TL.
operate at 400 kV

1 kHz is the sampling frequency.

Simple

Classification of faulty
phase and ground

detection is done with
an error of less than 2%

[105]
SVM-1 and SVM-2 are trained and tested
with 300 datasets for ground detection
and phase selection, respectively.

Gaussian and polynomial based SVMs
are used.
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Table 2. Cont.

No. Algorithm Input Test System Feature Complexity Result Ref.

7
Field-programmable gate

array (FPGA) with WT.
Current signals 50 Hz, 300 km long TL and

operate at 400kV

2 kHz is the sampling frequency.

Complex FC time is 6 ms with
100% accuracy [106]

Db6 mother wavelet is employed.

3520 test cases created.

Karrenbauer’s transformation is used to
avoid the need for multipliers.

8 ANFIS
50 Hz, TL is 20 km and

operate at 500 kV

128 rule system with seven inputs and
two membership functions.

Medium FC accuracy is more
than 99.92%

[107]The sampling frequency is 30.24 kHz.

2660 fault cases considered for training.

9
Bayesian classifier with

adaptive wavelet
algorithm

Current signals 50 Hz, 390 km long TL and
operate at 500 kV

500 kHz is the sampling rate.

Complex Results with 100%
accuracy [108]Db4 is the mother wavelet.

Fault cases considered for training: 546.

10
Polynomial-based ChNN

and discrete wavelet
packet transform (DWPT)

Current signals
300 km long TL which

operates at 400 kV. TCSC is
installed at the midpoint

PSCAD/EMTDC is used to study fault
patterns. Medium 99.93% accurate [109]

4 kHz is the sampling frequency.

11 CART algorithm Positive sequence
voltages 345 kV, 300 km, 50 Hz

CART is a non-parametric DT learning
technique that is in the form of if-else
statements. Medium Results are 99.98%

accurate
[110]

2880 fault cases considered.

12 Dyadic WT and SVM Current samples 330 km, 230 kV, 50 Hz

160 kHz is the sampling frequency and
signals are decomposed into 5 levels.

Medium FC is 100% accurate [111]
Fault cases: 1500.

SVM trained via 800 faults and
remaining 700 used for testing.

Random noise is removed via wavelet
transform



Appl. Sci. 2020, 10, 1312 13 of 27

6. Future Trends in Fault-Type Classification

The discussed transmission line fault classification studies mainly selected mature machine
learning approaches such as FSI, ANN, SVM or DT, etc. However, huge advancements and new
trends have been seen in the field of data mining and machine learning. Hinton et al. proposed an
approach using restricted Boltzmann machine learning (RBML) to extract feature characteristics [112],
the groundwork for deep learning (DL). Deep learning structure resembles multi-layer FNN, varying
by the aspect that the unsupervised feature learning from a large amount of unlabeled input data saves
the model from overfitting and falling into local optima. The fault classification capability of DL has
increased recently [113] and its application on the power system is encouraging. Convolutional neural
networks (CNNs) are recommended to handle multi-channel sequence recognition problems in [114],
a promising idea for fault classification job.

7. Fault Location Finding Methods

A comprehensive review of existing techniques for finding fault location (FL) is provided
in [115–117]. Fundamentals and new progress in fault location methods based on existing literature
are discussed in this paper. FL techniques can be categorized based on the source of data; double-end,
single-end, and wide-area. Wide-area methods are discussed in this paper due to the demand and
need for future smart grids. Similarly, series compensated and hybrid TLs are considered due to
their distinguished properties than normal lines. Modern AI-based methods are discussed alongside
because of their good performance for FL finding and broad application prospects.

7.1. Wide-Area FL Approach

Conventional fault location techniques are not able to trace faults when either of the monitoring
devices installed at end terminals of TL fail to record changes in voltage and current profiles.
Wide-area FL methods can be a possible solution [118] for this kind of scenario. In wide-area FL
methods, a replica of each application/algorithm runs at different transmission substations, as shown
in Figure 9 [119], to avoid overloading the available computation and communication resources of that
particular station. Thus, fault can be located even with less number of devices installed at different
end-terminals of transmission links. Optimization-based synchronized algorithms are proposed for
fault location [120,121]. Traveling-wave (TW) methods are also applied for fault location finding with
single-end data and two-end data, respectively [122]. The linear least square (LLS) method is employed
to locate the fault position. Synchronized voltage based non-iterative substitution algorithm proposed
for fault location estimation in [123]. This method is based on the positive and negative sequence
impedance matrix obtained via network topology. The matching degree factor is equal to zero in a
positive sequence network, represents the fault point location [124]. Thus, the matching degree is used
to point out the faulty bus in the entire system. In [125], a hierarchical routine based on impedance is
used to locate faulted zone, line and point.
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7.2. Fault Location Finding Algorithm for Series Compensated TLs

Typically, series compensation is achieved through series capacitors and metal oxide varistors. The
non-linear nature of series compensation devices adds difficulty to locate the faulty segment and hence
the fault location. Thus traditional approaches [126,127] need to be modified to address such cases.
The generalized procedure for FL finding for series compensated TLs is shown in Figure 10. In [128], an
impedance-based approach is proposed using double end voltage and current samples. Swetapadma et
al. used an artificial intelligence-based algorithm to locate single and multi-fault locations [129]. Third
level wavelet coefficients (62.5–125 kHz) are extracted by DWT from two post-fault and one pre-fault
cycles. The features based on standard deviation in coefficients of voltage and current signals serve as
input for ANN. Nobakhti used synchronized measurements from ends of distributed transmission
line and transient resistance nature of thyristor controlled series capacitor as an indicator of the faulty
section [130].
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7.3. FL Methods for Hybrid TLs

Hybrid TLs consisting of both underground cables and overhead (OH) TLs show discontinuity
at joints, where the reflection of voltage and current signals are produced. Velocities of traveling
waves are different in cables and OH lines. Conventional approaches need improvements so that they
could be implemented for hybrid transmission systems [131]. Traveling wave velocities can also be
employed for fault location estimation because of different TW velocities within hybrid transmission
systems. Niazy et al. proposed a TW-based fault lactation technique using transients caused by the
circuit breaker operation instead of fault-induced transients [132]. Arrival time of traveling-wave
components is measured by WT and fault zone is estimated via polarity of reflections. Wave speed is
also calculated and the double-end traveling wave method is employed to locate the fault. The dc offset
is removed through a finite impulse response (FIR) filter. DWT plays a significant role in gathering
details of wavelets and voltage signal coefficients. Such details are then fed as input to the neuro-fuzzy
system. This helps in the determination of fault location (either on an overhead transmission line or
underground cables) [133]. The time-reversal method is also applicable for fault location finding [134].



Appl. Sci. 2020, 10, 1312 15 of 27

The maximum energy point is extracted by comparing all the energies of different points and treated
as fault points.

7.4. ANN-based Algorithm for FL

The fault location finding task can also be achieved in transmission networks by applying different
kinds of ANNs as it shows self-organization, self-learning, high fault tolerance, fast processing, and
non-linear function approximation. ANN data is trained by detailed coefficients obtained by DWT
which are then employed for the Levenberg Marquardt algorithm to locate fault [135]. In [136],
fundamental components of voltage and current signals are extracted by DFT. Different modular ANNs
are employed and triplet vectors served as input for them. Best performance is obtained by features
containing information of both voltage and current signals with respect to the fault location accuracy
and training speed. Complex domain ANNs are simply the extensions of real domain ANNs whose
input, output and hidden layers are all complex numbers. Mother wavelet, Db2, is employed as input
to the complex domain ANN for finding the location of fault [137]. PNN reduced the error to 0 km
for fault location for different circuit topologies including both loop and single-circuit topology [138].
Gayathri et al. proposed a two-stage FL finding method using radial basis function (RBF) kernel-based
SVM and scaled conjugate gradient (SCALCG) based ANN for fault location finding [139]. In the first
stage, the fault area is estimated by measuring the magnitudes of fundamental harmonics of voltage
and current signals which then fed as input to RBF-based SVM. In the second stage, high-frequency
characteristics served as input for SCALCG based ANN to obtain precise fault location.

7.5. FIS Based Algorithm for FL

Self-learning and fault-tolerant abilities of FIS algorithms let them refine pre-set fuzzy rules,
which then employed for fault location finding [140,141]. Mother wavelet, Db4, with ANFIS is used to
locate faults. Efficiency is validated by Monte Carlo simulation and error found to be 5% [140]. Norm
entropy of harmonic coefficients (62.5–500 Hz), main frequency coefficients (0–62.5 Hz) and transient
coefficients (500–4000 Hz) achieved by the 6-level DWT using Db4 mother wavelet. And treated as an
input for ten ANFIS regression algorithms trained by BP gradient descent technique along with the
LLS method [141].

7.6. Support Vector Regression-Based Approach for FL

Regression problems can be solved via SVM by introducing ε, insensitive loss function. This
technique is known as support vector regression (SVR). SVR retains the properties of SVM such as
over-fitting data possibilities are minimized by selecting discriminative functions based on principles of
structural minimization. The global solution can also be obtained by training as a convex optimization
problem [142,143]. In [144], noise removal and offset reduction is done by stationary WT (SWT). The
special determinant transform function is used to extract features from 2 to 5 SWT coefficients. And
then radial basis kernel SVR corresponding to fault-type is employed after classification attained by
SVM. Eleven different kinds of features are obtained for fault estimation through the spatio-temporal
prediction HST matrix in [95]. It is implemented by replacing the Gaussian window of ST with the
hyperbolic window as an asymmetrical window to extract features from current and voltage signals.
Distinctive fault features are extracted using wavelet packet decomposition (WPD) with Db1 mother
wavelet from the first half-cycle of post-fault voltage samples [145].

8. Comparison of Fault Location Methods

A comparison of various fault location techniques is given in Table 3 considering the algorithm
employed, input, test system, complexity level, features, and results. Where, complexity is defined by
considering the number of inputs and rules involved in algorithm development as simple, medium
and complex. Further, the selection of complexity level is achieved based on feature training and
testing time, accuracy, convergence, and variance along with data required.
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Table 3. Comparison of different fault location finding methods.

No. Algorithm Input Test System Feature Complexity Result Ref.

1 ANN
Pre-fault current and

voltage samples
La Lomba–Herrera 380 kV,
189.3 km long TL, Spanish

power system (50 Hz)

FALNEUR software is used to train
network data. Medium

The maximum error noted
is 0.7% while 0.12% is the

minimum error in locating
fault distance.

[146]

Training time varies from 5 s to 2.5 min to
accomplish the mentioned error level.

BP based on Levenberg–Marquardt
optimization technique is selected.

The ‘ansig’ is selected as a transfer function
for the hidden layer, and the linear
function for the output layer.

2 Least error square Current and voltage
magnitudes

Length of TL is 100 km,
400 kV, 50 Hz

The sampling frequency is 6400 Hz. Simple 0.0099% is the relative error [147]
20 ms is the duration of the data window.

3
Impedance-based
Algorithm (IBA)

Voltage profile 500 kV, 200 miles TL, 50 Hz
Shunt capacitance is neglected of the TL
which is desirable for online applications. Simple 1% error is recorded for IBA [148]

Data synchronization is not required

4
Neuro-fuzzy

systems and WT
Current and voltage

profiles

Hybrid transmission
system: 6.06 km cable and

14 km TL with 154 kV
operating voltage

DC offset is removed via FIR.

Medium – [149]
Db4 mother wavelet is used and
decomposed into three levels.

Back-propagation is used for learning and
228 various faults created for analysis.

Post-fault time is a half-cycle.

5 WT Current samples 50 Hz, 60 km, 400 kV

Db5 mother wavelet is used and
decomposed into three Levels.

Simple – [150]The sampling frequency is 3840 Hz with 64
samples/cycle.

The fault is located within 1 cycle via A3
components.

6
ANN and wavelet
packet transform

(WPT)

Current and voltage
samples 360 km, 380 kV and 50 Hz

Db4 mother wavelet is employed and
dissolved up to three levels by WPT.

Complex

Minimum and maximum
errors in finding fault
location are 0.06% and

1.67%, respectively

[151]
The 10 kHz is the sampling frequency.

The computation burden is reduced as it is
a reduction technique.

Pre and post-fault is a half-cycle.
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Table 3. Cont.

No. Algorithm Input Test System Feature Complexity Result Ref.

7

RBF-based SVM
and scaled

conjugate gradient
(SCALCG)-based

NN approach

Positive sequence
voltage and line

currents

150 km double circuit TL,
400 kV is operating voltage

The 5 kHz is selected as the sampling rate.

Complex
Maximum fault error

observed is 1.852 km while
7.874e-003 km is minimum

[152]
The 2e-004s is time to locate the fault.

RBF kernel is used to extract principal
eigenvectors of the feature space and to
remove noise from the signal.

8
Nelder–Mead

simplex
Post-fault Voltage

phasors 320 km, 500 kV, 50 Hz
960 Hz is the sampling rate.

Complex
2.7% error is expected with
±5% error in post-fault

voltages
[153]Current transformer (CT) errors are

avoided by not using post-fault current.

9 ANN and WPT Current samples 360 km, 380 kV, 50 Hz

Wavelet entropy and energy features are
extracted from the decomposed signal. Complex FL finding error is Less than

2.05 %
[154]

Db4 is the mother wavelet.

10 kHz is the sampling rate.

10 ANFIS
Zero and fundamental

components of
three-phase currents

Hybrid transmission
system: 10 km cable and

90 km TL. Operating
voltage is 220 kV

ANFIS is trained for 2132 patterns. Where
1520 patterns are for TL and rest for cable.

Medium
The maximum error in
finding FL is expected

below than 0.07%
[155]

During training, the maximum percentage
error of 0.031% and 0.0109% is observed
for TL and cable, respectively.

During the testing process, the maximum
% error of 0.0277% and 0.039% are
observed for TL and cable, respectively.

11 ANNs with FPGA
Pre-fault current and
voltage samples from

one end

L 380 kV, 189.3 km long TL,
Spanish power system

(50 Hz)

SARENEUR tool is used to run ANN.

Complex Error in finding fault
location is 0.03%

[156]Hardware is also implemented.

FPGA is designed for 60 MHz and
consumes less power

12
FFT with

traveling-wave
theory

Current samples
measured from one

end

50 Hz, 240 km and 400 kV
The selected sampling frequency is 25.6
kHz and 512 samples are collected. Simple Fault location error is 0.12% [157]

To reduce FFT leakage Hanning window is
employed

13 Impedance based
method

Current and voltage
samples

300 km, 380 kV, TL with
series capacitor

DIgSILENT is used to simulate the test
system.

Simple Achieved FL error is less
than 1%

[158]10 kHz is the sampling frequency with
simulation time 0.2 s.
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9. Future Trends in Fault Location Estimation

As the transmission network is growing with complexity and inadequate measurements are
expected to be common. Wide-area methods would be employed largely for fault location finding
in the near future. However, machine learning algorithms have more compliance and less affected
by line parameters as compared to TW or impedance-based approaches. Increased involvement of
communication and computation is foreseen in power systems. Thus machine learning including deep
learning methods should be explored for future fault location findings.

10. Weaknesses and Strengths of Different Emerging Computational Intelligence Methods

Generalized strengths and weaknesses of different artificial intelligence and machine
learning-based algorithms are given in Table 4. It may help researchers to select a method for
fault detection, classification, and location-based on its strengths, features and complexity levels.

Table 4. Strengths and weaknesses of various emerging computational intelligence methods.

Technique Strength Weakness

ANN Technique

ANN is pretty good in determining the exact
fault-type and its implementation is easy.

The training process is quite complex
for high-dimension problems.

Its use is easy, with the adjustment of only a
few parameters.

A local optimum solution is provided
by the gradient-based
back-propagation technique for
non-linear separable pattern
classification problem.

It has a lot of applications in real-life
problems.

ANN offers slow convergence in the
BP algorithm.

ANN learns and no need for reprogramming.
Convergence is dependent on the
selection of the initial value of weight
constraints connected to the network.

PNN Technique

The learning process is not required.

It requires high processing time for
large networks.

Determination of initial weights of the
network is not needed.

No correlation of the recalling process and
learning process.

Convergence in Bayesian classifier is certain. Not easy to determine how many
layers and neurons are required.

PNN show fast learning time. Large memory space is required to
save the model

Fuzzy Methods Simple ‘if-then’ relation is used to solve
uncertainty problems.

No robustness is observed.

Experts are mandatory in order to
determine membership function and
fuzzy rules, for large training data.

ANFIS Technique

Parameters are tuned properly by the hybrid
learning rule.

ANFIS is highly complex in
computation.

It offers a faster convergence.

The search space dimension is reduced.

ANFIS is smooth and adaptable
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Table 4. Cont.

Technique Strength Weakness

SVM Technique

SVM is a highly accurate approach.

Demands for more size and speed for
the testing and training

SVM works quite well even for non-linearly
separable data in base feature space.

The probability of misclassification is very
low.

To reduce error bound, it maximizes the
margin.

Upper bound error does not affect the space
dimension

Complexity is high in classification
and thus large memory is required

Decision Tree

Easy interpretation and understanding
When high uncertainty or a number of
outcomes are involved, calculations
become very complex.

Compatible with other available decision
methods. DT may suffer from over-fitting

Rules can be set easily
Information gain in DTs is biased in
favor of those features which have
more levels.

Wide-area Fault Location It performs both control and monitoring
operations.

PMU placement is a tough task in
power systems

Modal Transform

It is not dependent on electrical values and
frequency

Modal parameters are requiredThe single transformation matrix is for the
three-phase system (identical for current and
voltages)

Transposition and non-transposition of
electrical values are done by simple
multiplication of matrices. No convolution
methods are required.

Not reliable for complex structures

Deep Learning

Best-in-class performance on problems that
significantly outperforms other solutions in
multiple domains. This is not by a little bit,
but by a significant amount.

A large amount of data is required

DL reduces the need for feature engineering,
one of the most time-consuming parts of
machine learning practice.

DL is computationally expensive to
train and takes weeks to train via
hundreds of machines equipped with
expensive graphical processing units
(GPUs)

It is an architecture that can be adapted to
new problems relatively with ease e.g., time
series, languages, etc., are using techniques
like convolutional neural networks, recurrent
neural networks, long short-term memory, etc

Determining the topology/training
method for DL is a black art with no
theory

11. Conclusions

A comprehensive review of fault detection, classification, and location in transmission lines
has been presented in this paper. A range of techniques and methods are presented in addition to
representative works.

Before introducing methods used in fault detection, classification and location, an overview
of feature extraction methods are presented, the groundwork for fault identification algorithms.
Various transforms along with dimensionality reduction techniques have also been discussed. Newly
developed ideas and their comparison with some noteworthy aspects regarding fault detection are
also discussed.
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Machine learning-based methods are widely employed by the researchers for fault-type
classifications. However, in addition to SVM, FIS, ANN, and DT, deep learning-based promising
algorithms such as; CNN and RBM, are recommended for fault classification.

Fault location finding algorithms are discussed with AI-based methods. Machine learning
including deep learning methods is recommended for future FL finding methods due to increased
involvement of communication and computation in transmission systems.

Generalized strengths and weaknesses of different artificial intelligence and machine
learning-based algorithms are discussed. A comparative survey on all three tasks; fault detection,
classification, and the location is also presented in a tabulated form considering features, inputs,
complexity, system used and results. This paper may provide basic development to the researchers
and further study directions in this field.
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