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Abstract: A new transmission theory of “global dynamic wrap angle” for friction hoist is proposed.
The theory is based on a mine hoist simulation model which combines the suspended rope with the
wrapped rope. Rope dynamics in a suspended section are verified by the field experiment results.
The theory holds that the mechanical state of wire rope is dynamic through the whole wrap angle,
including deformation, contact and friction. When the rope enters the wrap angle, it provides positive
friction and changes direction at a certain boundary point. The demarcation of the boundary depends
on the rope load on both sides of the friction pulley. The theory is suitable for accurately analyzing
the kinetics of high-speed and heavy-load friction hoisting.
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1. Introduction

Multi-rope friction hoists are widely used in deep and ultra-deep coal mine hoisting for their
remarkable advantages, such as their large capacity, high lifting height, high safety factor, low power
consumption, small machine size and cost-effectiveness. The friction hoist (Figure 1) relies on the
friction force between the rope and the pulley to transport goods or staff. With the development of
modern large-scale friction hoisting, the problems of dynamic characteristics, which are not obvious
in low-speed and light-load conditions, are gradually reflected, for example, in rope vibration and
slippage [1,2]. During dynamic operations, especially in severe conditions such as acceleration and
emergency braking, the long-distance suspended rope will produce large elastic vibrations and tension
impacts under the influence of the terminal heavy container [3–5]. The vibration impact produces
not only longitudinal tension, but also horizontal and torsional vibration due to the transmission of
the shock wave [6,7]. Especially when the depth and speed of the mine are continuously increasing,
the time-varying characteristics of the rope length and the swirl of the wellbore gas flow [8] at the
bottom of the container caused by the rapid speed change will intensify the vibration [3,9]. When the
vibration is transmitted upward to the friction pulley along the rope, it leads to abnormal contact,
dynamic slip and even disengagement [10] between the rope and pulley, which will seriously reduce
the friction stability. Therefore, it is of great importance to combine the suspended ropes on both sides
of the pulley with the wrapped rope on the pulley in order to accurately obtain their dynamic behaviors.
Especially for the rope on the pulley, its effective friction contact with the pulley is an important
guarantee for the working efficiency and anti-skid safety of the hoist. Many scholars have conducted
abundant research on the dynamics of suspension rope hoisting systems. Kaczmarczyk [11,12]
established the classical distributed parameter dynamic model of the kilometre hoisting rope based
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on Hamilton’s principle and described the transverse-longitudinal coupling dynamic response for
the first time. On this basis, Zhu [13] calculated the dynamic responses of a one-dimensional system
with a spatial discretization method. The method was applied to study the longitudinal, transverse,
and coupled vibrations in moving elevator cable-car systems [14]. Meanwhile, a rope vibration
parameter analysis based on Hamilton’s principle has also been widely conducted [15–17].
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Figure 1. Schematic diagram of a large cage hoisting system in an auxiliary shaft of a coal mine.

The above studies are mainly focused on the dynamic characteristics of the rope itself. However, in
the present numerical analysis method based on Hamilton’s principle, the initial mechanical boundary
conditions at the point where the rope meets or separates from the pulley are either set to zero or
applied with a constant-amplitude sinusoidal excitation [3,18], which causes the “mechanical link”
between the suspended rope and the wrapped rope to be truncated. Therefore, these numerical
methods do not establish the relationship between the suspended rope dynamics and the friction
contact in the wrap angle, and are thus unable of determining the rope vibration entering the wrap
angle during operation. Currently, either the classical Euler formula or the deformation formula are
used in the design or calculation of friction transmission. The theoretical calculation theory of friction
transmission of modern large-scale equipment seems inaccurate to some extent. At the beginning,
the formula was used to calculate the belt transmission, while the calculation method of wire rope
friction transmission is a direct reference to the Euler formula. It is considered that the contact process
between the belt and pulley can be divided into two stages. First, the viscous stage is when the belt and
pulley are relatively static, which is also called the static angle. Next, the creep stage is when the belt
and pulley slip relative to one another, which is also called the dynamic angle. Lubarda [19] calculated
the changes in the friction and pressure in the contact area between the belt and pulley in the dynamic
angle, and noted the non-orthogonal relationship between the friction and positive pressure. However,
he did not consider the mechanical input outside the wrap angle. Wang [20,21] explored the effects of
the payload, speed, and acceleration on the dynamic friction transmission and creeping properties.
However, it is limited to the longitudinal tension characteristics without considering the transverse
and longitudinal vibration.

Consequently, the traditional theoretical model of friction transmission based on static and
dynamic angle theory is not applicable when the load, depth or speed of the hoist increase continuously.
The objective of the present study is to establish a new transmission theory for friction hoisting system
combining suspended and wrapped wire rope. The research results lay a solid foundation for studying
the dynamic characteristics of rope transmitting behaviors with high-speed and heavy-load working
conditions in a modern friction hoisting system.
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2. Hoisting Model

2.1. Hoist Equipment Parameters

Figure 1 shows a large cage hoisting system in the auxiliary shaft. Table 1 lists the main parameters
of the large cage hoisting system in an auxiliary shaft of coal mine. Table 2 lists the speeds and times of
each stage of the lifting process.

Table 1. Parameters of large cage hoisting system.

Hoist

Item Unit Friction Pulley Guide Pulley

Type JKM-5 × 6
Lifting height m 425

Pulleys Spacing m Vertical:13/horizontal:3.35
Diameter m 5 5
Number 6 6

Friction coefficient 0.25 0.25
wrap angle ◦ 187.42

Rope

Item Unit Hoisting rope Tail rope

Type 54 × 36WS + FC 216 × 34 × 4 × 19 + FC
Diameter/Width × Thickness mm 54 216 × 34

Number 6 3
Density kg/mm3 4.72 × 10−6 23

Total length m 523.08 481.5

Load

Item Unit

Cage mass

kg

0.65 × 105

Balance hammer mass 0.95 × 105

Test load(total)
MAX 1.2 × 105

MID 0.95 × 105 (mainly discussed)
MIN 0.7 × 105

Table 2. Operating parameters (Acceleration and Constant Speed stage).

Stage Acceleration (m/s2) Speed (m/s) Time (s)

Main acceleration

Varying 0~0.6 0.51 1.71
Constant 0.6 9.43 14.87
Varying 0.6~0 9.95 1.71

Total 18.29

Constant speed Constant 0 9.95 24.45

2.2. Modelling Process

According to the relevant parameters of the large cage hoisting system above, the global dynamic
simulation model of the actual hoisting system was established using multi-body dynamics simulation
software “Adams”. The characteristics of the model state that the dynamics of the wire rope on the
lifting side and the lowering side, as well as the coupling effect of the rope with the friction pulley and
the guide pulley, are unified as a whole. The mine system is a multi-rope friction hoisting system of
the shaft tower. The global simulation model is then simplified as follows:

The pulleys are simplified as uniform materials, and the groove shape is ideal and regular;
The weight of the tail rope is simplified as a time-varying force corresponding to the lifting height,

which is applied to both the cage and the balance hammer;
The actual lifting system is supported by six steel ropes. In the model, only a single steel rope is

established, and the load is calculated according to 1/6 of the original load;
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On the basis of the above simplification, the friction pulley, guide pulley, wire rope, cage and
balance hammer are established. The model is shown in Figure 2. The parameters of the model are
consistent with those of the hoist equipment mentioned above. According to the relevant provisions of
the China coal industry standard MT 234-1991 “3T Tramcar, Multi-rope tank cage for vertical shaft”
and MT 235-2011 “Vertical multi-rope cage balance hammer”, the 3D models of the cage and balance
hammer are established.
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Figure 2. Dynamic model of the friction hoist. (a) Cage; (b) Balance hammer; (c) Pulleys.

2.2.1. Contact Definition

As the transmission bridge of the entire hoisting system, the accuracy of the rope modelling is
the key of the entire simulation model, especially for unifying the construction of the rope in the
suspension section and the rope in the wrap angle section. Therefore, it is necessary to dynamically
define the friction contact parameters between the rope and the pulley surface after entering the friction
pulley. The rope is then discretized into spheres. Compared with the conventional cylindrical model,
the spherical model has a higher accuracy, which can accurately reflect the geometric shape of the
rope in contact with the pulleys, and can realize the lateral displacement limitation of the rope groove.
The mass and inertia effects are also included in the contact area. The contact force between the discrete
rope sphere and the surface of the pulleys is expressed by a function Fim. More details about the
function can be found in [1].

The rope is located in the groove of the pulley. The sizes of the rope grooves are shown in Figure 3.
The contact geometry of the groove and the discrete rope sphere is spherical to cylindrical, i.e., the inner
cylindrical surface of the groove contacts the outer spherical surface of the rope. Hertzian contact
theory is then applied to calculate both the contact force and friction force, and then the resultant force
is obtained. The definition of friction is given in [1], and the dimensional parameters include the Depth,
Radius, Angle and contact parameters k, e, and cmax. Their specific values are shown in Table 3.
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2.2.2. Discrete Element Mechanics Beam

Each adjacent pair of discrete spheres are connected by a mechanical beam element. The non-linear
Euler-Bernoulli beam [22], which is more suitable for mine hoisting with a large axial load, is applied
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in the Adams simulation to obtain the exact solution in this paper. The mechanical beam includes six
axial forces and six torsional forces. A detailed description of the model is given in [2]. It should be
noted that the stiffness matrix of the model is modified by three correction factors. The stiffness matrix
Kij is expressed as: 

K11 = EA/L×Rkx
K22 = 12E · Izz/

[
L3

(
1 + Py

)]
K26 = −6E · Izz/

[
L2

(
1 + Py

)]
K33 = 12E · Iyy/

[
L3(1 + Pz)

]
×Rkb

K35 = 6E · Izz/
[
L2(1 + Pz)

]
×Rkb

K44 = G · Ixx/L×Rkt

K55 = (4 + Pz)E · Iyy/[L(1 + Pz)] ×Rkb

K66 =
(
4 + Py

)
E · Izz/

[
L
(
1 + Py

)]
×Rkb



(1)

The purpose of the Rkx, Rkb, and Rkt inputs is to represent an orthotropic material property.
These are multipliers on the stiffness in the axial (Rkx), bending (Rkb) and twisting (Rkt) directions.
Cables commonly bend much more easily than they stretch and twist. Therefore, the following is
set: Rkx = 1.0, Rkb << 1.0 and Rkt < 1.0. The specific values of each parameter are shown in Table 3.
The notes and definitions of the other parameters in the above formula are given in [2]. The final model
of the friction hoisting system and the contact section of the friction pulley are shown in Figure 4.
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2.2.3. Parameters

The parameters of the friction pulley, guide pulley and wire rope in the global hoisting model are
shown in Table 3.

Table 3. Parameters of the global hoisting model.

Item Unit Value

Pulleys
Diameter m 5

Centre distance m Vertical 13, horizontal
3.35

Width mm 600

Rope groove
Depth mm 50
Radius mm 27
Angle ◦ 20

Contact
Friction coefficient 0.25

Hertz k/e/cmax 10,000/2/0.1

Rope

Diameter mm 54
Density Kg/mm3 4.72 × 10−6

Elastic modulus MPa 1.15 × 105

Tensile(Rkx)/Bending(Rkb)/Torsional (Rkt)stiffness coefficient 1.0/0.001/0.01
Damping 0.01

Discrete number 1701
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3. Results

3.1. Verification Test

3.1.1. Test Scheme

The vibration of the steel wire rope on the top of cage is tested by a portable multi-channel
vibration measuring instrument system. The test location and the definition of vibration direction in
this paper are described in Figure 5, and the field test process is shown in Figure 6.
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3.1.2. Test Result

Figure 7 shows the transverse rope vibration waveform (as shown in Figure 5, cage short side
direction, measuring point 1, 9.95 m/s speed lifting). The main characteristic of each measuring point is
unstable vibration similar to spindle amplitude during the acceleration process. The unstable vibration
of spindle type lasts about 3 seconds, and then the rope operates smoothly. The amplitudes at points
1 and 2 are greater than those at points 3 and 4 because points 3 and 4 are closer to the container.
The positions of point 1 and point 2 are relatively far from the binding connector, and the flexible
characteristics of the wire rope are more easily stimulated.

The basic vibration level of the rope is analyzed to determine the vibration magnitude of the hoist
system. Figure 8 illustrates the effective vibration velocity (maximum /

√
2) at each measuring point

of the rope in different directions. The influence of the time-varying parameter of the lifting speed
on the vibration stability of the system is reflected. The increase in speed increases the instability of
the system, resulting in enhanced rope vibration. The vibration in the X direction (long side direction
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of the cage) is the smallest, and that of the Z direction (short side direction of the cage) is the largest.
Position difference of vibration intensity is discussed in the 4th section of the paper.

Appl. Sci. 2020, 10, 1305 7 of 20 

7 
 

 
Figure 6. Field test photos. 

3.1.2. Test Result 

Figure 7 shows the transverse rope vibration waveform (as shown in Figure 5, cage short side 
direction, measuring point 1, 9.95 m/s speed lifting). The main characteristic of each measuring point 
is unstable vibration similar to spindle amplitude during the acceleration process. The unstable 
vibration of spindle type lasts about 3 seconds, and then the rope operates smoothly. The amplitudes 
at points 1 and 2 are greater than those at points 3 and 4 because points 3 and 4 are closer to the 
container. The positions of point 1 and point 2 are relatively far from the binding connector, and the 
flexible characteristics of the wire rope are more easily stimulated. 

 
Figure 7. Local nonstationary rope vibration diagram for each measuring point. 

The basic vibration level of the rope is analyzed to determine the vibration magnitude of the 
hoist system. Figure 8 illustrates the effective vibration velocity (maximum /√2) at each measuring 
point of the rope in different directions. The influence of the time-varying parameter of the lifting 
speed on the vibration stability of the system is reflected. The increase in speed increases the 
instability of the system, resulting in enhanced rope vibration. The vibration in the X direction (long 
side direction of the cage) is the smallest, and that of the Z direction (short side direction of the cage) 
is the largest. Position difference of vibration intensity is discussed in the 4th section of the paper. 

 

Rope Connector 

Above the cage 

Figure 7. Local nonstationary rope vibration diagram for each measuring point.Appl. Sci. 2020, 10, 1305 8 of 20 

8 
 

0

2

4

6

8

10

12

2
3

4
5

1
2

3
Lifting speed(m/s)

 

Ef
fe

ct
iv

e 
vi

br
at

io
n 

ve
lo

ci
ty

(m
m

/s
)

Meas
urin

g p
oin

t

4

 

0

2

4

6

8

10

12

2
3

4
5

2
3

1
Lifting speed(m/s)

 

Ef
fe

ct
iv

e 
vi

br
at

io
n 

ve
lo

ci
ty

(m
m

/s
)

Meas
urin

g p
oin

t4

 
(a) (b) 

0

2

4

6

8

10

12

2
3

4
5

1
2

3

Lifting speed(m/s)

 

Ef
fe

ct
iv

e 
vi

br
at

io
n 

ve
lo

ci
ty

(m
m

/s
)

Meas
uring poin

t4

 
(c) 
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Figure 9 shows the simulation and test signals of the transverse (cage short side) vibration of the 
5th rope element (0.5m above the cage). The simulation results of the first 14 s are intercepted. The 
simulation results are in good agreement with the field test. Similar dynamic nonstationary 
phenomena occur in the acceleration stage, i.e., the "spindle" vibration. The characteristics of both 
can be divided into two stages. In the period of unstable vibration, the amplitude of the first third 
increases, while that of the second third decreases. They are close in amplitude, extremum and 
duration. Spectrum analysis shows that the frequencies of each signal are close to 16 Hz. The high 
similarity indicates that the simulation model achieves high accuracy and reliability. 

Figure 8. Effective vibration velocity of the rope in different directions. (a) Long side direction, axis X;
(b) Vertical direction, axis Y; (c) Short side direction, axis Z.

3.2. Suspended Rope Dynamics

3.2.1. Vibration

Figure 9 shows the simulation and test signals of the transverse (cage short side) vibration of
the 5th rope element (0.5m above the cage). The simulation results of the first 14 s are intercepted.
The simulation results are in good agreement with the field test. Similar dynamic nonstationary
phenomena occur in the acceleration stage, i.e., the "spindle" vibration. The characteristics of both
can be divided into two stages. In the period of unstable vibration, the amplitude of the first third
increases, while that of the second third decreases. They are close in amplitude, extremum and duration.
Spectrum analysis shows that the frequencies of each signal are close to 16 Hz. The high similarity
indicates that the simulation model achieves high accuracy and reliability.
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Figure 10. Vibration acceleration in three directions of the rope at 0.5 m. (a) Above the cage; (b) above 
the hammer. 

3.2.2. Tension  

The rope dynamics at the special locations are selected to reveal the differences caused by the 
rope length and position. Figure 11 shows the dynamic rope tension at the anchors and midpoints. 
The relative tensions at each midpoint are similar to those in [3]. As seen from Figure 11a, the overall 
rope tensions of the lifting side increase with the lifting process. The increases occur because the 
tension reflects the load of the component below the point, and the tail rope beneath the tension 
acquisition point continues to lengthen as the lifting proceeds.  

Figure 9. Test and simulation of transverse rope vibration acceleration at 0.5 m above the cage.

Figure 10 shows the vibration acceleration in three directions of the rope at 0.5 m above the
cage and hammer. The vibration intensity in the X direction is low, and only a few sudden peaks
appear. The vibration of the Y direction is ladder-shaped under the influence of lifting acceleration.
Multiple nonstationary vibrations appear in the Z direction, and the strength is the highest among the
three directions. The Y-direction vibration amplitude above the cage increases in the constant speed
stage due to the continuous shortening of the rope length (lifting movement). In addition, on the side
of the hammer, this phenomenon is exactly the opposite.
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Figure 10. Vibration acceleration in three directions of the rope at 0.5 m. (a) Above the cage; (b) above
the hammer.

3.2.2. Tension

The rope dynamics at the special locations are selected to reveal the differences caused by the
rope length and position. Figure 11 shows the dynamic rope tension at the anchors and midpoints.
The relative tensions at each midpoint are similar to those in [3]. As seen from Figure 11a, the overall
rope tensions of the lifting side increase with the lifting process. The increases occur because the tension
reflects the load of the component below the point, and the tail rope beneath the tension acquisition
point continues to lengthen as the lifting proceeds.

In the acceleration stage of Figure 11b,c, there is a significant abrupt amplitude that corresponds
to the “spindle” rope vibration in the Z direction and the amplitude intensification in the Y direction
in Figure 10, i.e., dynamic nonstationary vibration of the rope occurs on both sides of the friction
pulley at the same time. This shows that the “mechanical transfer” effect in the wrap angle cannot be
neglected. Compared with the traditional independent modelling method of single-side wire rope
dynamics [10,13,14], the global dynamic model considering dynamic friction transmission within the
wrap angle has higher accuracy and reliability. In the single-side rope model, the starting point of
modeling is the boundary condition, and the displacement and velocity are both 0. However, under
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actual working conditions, this point is not only affected by the friction contact of the pulley, but also
by the lifting effect of the rope in the wrap angle. All of these are considered in the model of this paper.
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3.3. Wrapped Rope Dynamics

3.3.1. Rope Dynamics in the Wrapping Process

It is necessary to extract some discrete elements of the model that can bypass the pulley to obtain
the wrapping dynamics of the rope. The discrete starting point of the rope model is located at the
anchor of the hammer, with the serial number of the 1st element, and then the number increases until
the anchor of the cage, i.e., the final 1701th element. We extract some rope elements at the whole meter
to facilitate the intuitive understanding of its position. Figure 12 shows the vibrations of the 702th and
369th rope elements with initial positions 300 m and 400 m above the cage, respectively. The main
vibrations in the X direction are still the sudden peaks at individual positions. The distinct demarcation
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characteristics in the Z and Y directions indicate that the rope is bypassing the friction pulley. The rope
vibration in the Z direction near the friction pulley is the most severe. Even unstable “spindle” vibration
appeared at 300 m above the cage. The rope at both positions has significant nonstationary vibration
between 5 and 15 s. However, the rope of 400 m is close enough to the friction pulley, which causes the
nonstationary vibration to be cross-linked with the amplitude intensification caused by approaching
the pulley. The phenomenon reveals the reason that vibration intensification and abnormal noise
appear in many friction hoisting system containers [13,14] at the end of the lifting stage.
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Figure 12. Rope vibration in three directions in the process of wrapping the friction pulley. (a) 
X-axis—short side direction of the cage; (b) Y axis—vertical direction of the cage; (c) Z-axis—long 
side direction of the cage. 

The vibration in the Y direction is similar to that in the Z direction. Macroscopic trapezoidal 
acceleration is not obvious, but instead is the reverse peak with increasing amplitude. When the rope 
runs out of the friction pulley, i.e., the string rope, the Z and Y direction rope vibrations present 
typical "beat-frequencies" [4,5]. This is due to the motion of the string being stable and its tension 
fluctuating steadily in the constant speed stage (Figure 11). The vibration frequencies of the two 
sides are similar, but there are small differences due to the length and the load of the rope. As a 
result, the string as the transition section of the two forms a mixing of the two approximate 
frequencies, which induces the formation of a "beat frequency".  

3.3.2. Local Friction and Contact 

Figure 13 shows the force lines between the rope and the pulleys. Each force line represents the 
interaction force between a rope element and the groove on the pulley. This force can be 
decomposed into normal contact and friction. 
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Figure 12. Rope vibration in three directions in the process of wrapping the friction pulley.
(a) X-axis—short side direction of the cage; (b) Y axis—vertical direction of the cage; (c) Z-axis—long
side direction of the cage.

The vibration in the Y direction is similar to that in the Z direction. Macroscopic trapezoidal
acceleration is not obvious, but instead is the reverse peak with increasing amplitude. When the rope
runs out of the friction pulley, i.e., the string rope, the Z and Y direction rope vibrations present typical
“beat-frequencies” [4,5]. This is due to the motion of the string being stable and its tension fluctuating
steadily in the constant speed stage (Figure 11). The vibration frequencies of the two sides are similar,
but there are small differences due to the length and the load of the rope. As a result, the string as the
transition section of the two forms a mixing of the two approximate frequencies, which induces the
formation of a “beat frequency”.

3.3.2. Local Friction and Contact

Figure 13 shows the force lines between the rope and the pulleys. Each force line represents the
interaction force between a rope element and the groove on the pulley. This force can be decomposed
into normal contact and friction.

Figure 14 shows the process of the force change in the transmission operation. Nine consecutive
calculation points are selected in the constant speed stage. The blue arrow indicates the entire process
of a rope element from the beginning to the wrap angle until it fully contacts the friction pulley.
Numbers a–f indicate an increasing force. For numbers e–f, the force line direction has a significant
downward migration compared with a–c. By number g, the force line shifts upward in the reverse
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direction and even crosses the force line of the previous element. It can be seen from g, i that as the
rope gradually enters the wrap angle, the force line starts to be stable and evenly distributed.
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side direction of the cage. 

The vibration in the Y direction is similar to that in the Z direction. Macroscopic trapezoidal 
acceleration is not obvious, but instead is the reverse peak with increasing amplitude. When the rope 
runs out of the friction pulley, i.e., the string rope, the Z and Y direction rope vibrations present 
typical "beat-frequencies" [4,5]. This is due to the motion of the string being stable and its tension 
fluctuating steadily in the constant speed stage (Figure 11). The vibration frequencies of the two 
sides are similar, but there are small differences due to the length and the load of the rope. As a 
result, the string as the transition section of the two forms a mixing of the two approximate 
frequencies, which induces the formation of a "beat frequency".  
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pulley quickly and the contact force presents a more prominent peak. The contact force fluctuates 
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that in [23]. This is due to the existence of the guide pulley, which causes a higher tension level of the 
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Figure 14. Dynamic force line on the friction pulley during the transmission process.

Figure 15 shows the normal contact force between the 702th, 535th and 369th rope elements and
pulleys. The load applied at the lifting side is 0.95 × 105 kg, and the load on a single rope is one sixth of
it. The initial positions of each element above the cage are 300, 350 and 400 m, respectively. The contact
angle between the rope and the guide pulley is small, so the rope passes through the guide pulley
quickly and the contact force presents a more prominent peak. The contact force fluctuates and then
rises gradually, and the fluctuation amplitude decreases continuously, which is caused by the rope
tension of the lifting side. The variation in the contact force is significantly different from that in [23].
This is due to the existence of the guide pulley, which causes a higher tension level of the separation
point (Figure 11).

Compared with the rope at 300 m and 350 m, the contact force at 400 m shows a long significant
downward trend. The dividing point of the change trend is the one of acceleration to a constant
speed. Therefore, the decreasing trend is due to the lower string rope tension in the acceleration stage
(Figure 11), which makes the tension at the meeting point larger than that at the separation point.
When the rope is about to leave the friction pulley, the contact force rises abruptly and reaches its
maximum value. It can also be determined from Figure 14 that the force line increases significantly
when the rope turns 180 degrees, which is due to the dominant effect of the string rope tension.
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rope 350 m above cage; (c) rope 400 m above cage. 
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The friction force increases immediately after the rope is wrapped onto the friction pulley. The 
friction forces all have reverse peaks in the course of rising, which is similar to the results in [20]. The 
reason for this is that the rope tension decreases after entering the wrap angle, which results in rope 
deformation at the tangent point. The deformation direction is the same as the pulley rotation and 
the deformation speed is not less than the pulley edge linear speed, thus causing a reverse friction 
force. The maximum friction of the selected rope elements can reach 11,671 N before falling back 
rapidly to a reverse value. This shows that the rope is again deformed in the same direction as the 
friction pulley after the rope enters the second half of the wrap angle.  

Figure 15. Contact force produced by the rope wrapping the pulleys. (a) Rope 300 m above cage;
(b) rope 350 m above cage; (c) rope 400 m above cage.

Figure 16 shows the friction forces between the rope elements and the pulley’s surface. It can be
found that there are reverse values of the friction force in both the friction pulley and guide pulley.
The friction force increases immediately after the rope is wrapped onto the friction pulley. The friction
forces all have reverse peaks in the course of rising, which is similar to the results in [20]. The reason for
this is that the rope tension decreases after entering the wrap angle, which results in rope deformation
at the tangent point. The deformation direction is the same as the pulley rotation and the deformation
speed is not less than the pulley edge linear speed, thus causing a reverse friction force. The maximum
friction of the selected rope elements can reach 11,671 N before falling back rapidly to a reverse value.
This shows that the rope is again deformed in the same direction as the friction pulley after the rope
enters the second half of the wrap angle.
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indicates that the accuracy of the model is comprehensive and universal. The overall vibration value 
of the wire rope on the lowering side (above the hammer) is stronger than that on the lifting side 
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Short-span rope strings have relatively high rigidity and are more likely to produce strong vibration 
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Figure 16. Friction force produced by rope wrapping the pulleys. (a) Rope 300 m above cage; (b) Rope
350 m above cage; (c) Rope 400 m above cage.

4. Discussion

4.1. Position Difference of Vibration Intensity

Figure 17 shows the rope vibrations above the cage and balance hammer. The law of vibration is
still strongest in the short side direction (Z) and weakest in the long side direction (X), which indicates
that the accuracy of the model is comprehensive and universal. The overall vibration value of the wire
rope on the lowering side (above the hammer) is stronger than that on the lifting side (above the cage).
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This is due to the short hanging length of the wire rope on the lower side. Short-span rope strings have
relatively high rigidity and are more likely to produce strong vibration acceleration amplitude.
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Figure 17. Rope vibration in three directions at different positions above the cage and the hammer. 
(a1) Z-axis—above the cage, (a2) Z-axis—above the hammer; (b1) Y axis—above of the cage, (b2) Y 
axis—above the hammer; (c1) X-axis—above the cage, (c2) X-axis—above the hammer. 

With the increase of the distance from the cage, the vibration in all directions is significantly 
strengthened. In particular, the nonstationary vibration in the Z direction increases both in 
amplitude and quantity, and the amplitude in Y direction opposite to the acceleration direction 
increases. Similarly, the amplitude of the X-direction vibration increases with distance. This 
phenomenon can be explained by the fact that the higher the rope is, the higher the weight it bears. 
Therefore, as shown in Figure 18, the loading state of the rope goes from loosening to tightening, 
that is, from elasticity to rigidity. Greater stiffness will inevitably lead to greater vibration. This 
theory can also explain that the vibration amplitude in the Y direction increases at the lifting side 
and decreases at the lowering side. In addition, the nonstationary rope vibrations with increasing 
amplitude or quantity as distance increases in Figure 17a1,b2 (purple circles in the figure) also 
belong to the "loose–tight" mechanism. 

Figure 17. Rope vibration in three directions at different positions above the cage and the hammer.
(a1) Z-axis—above the cage, (a2) Z-axis—above the hammer; (b1) Y axis—above of the cage, (b2) Y
axis—above the hammer; (c1) X-axis—above the cage, (c2) X-axis—above the hammer.

With the increase of the distance from the cage, the vibration in all directions is significantly
strengthened. In particular, the nonstationary vibration in the Z direction increases both in amplitude
and quantity, and the amplitude in Y direction opposite to the acceleration direction increases. Similarly,
the amplitude of the X-direction vibration increases with distance. This phenomenon can be explained
by the fact that the higher the rope is, the higher the weight it bears. Therefore, as shown in Figure 18,
the loading state of the rope goes from loosening to tightening, that is, from elasticity to rigidity.
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Greater stiffness will inevitably lead to greater vibration. This theory can also explain that the vibration
amplitude in the Y direction increases at the lifting side and decreases at the lowering side. In addition,
the nonstationary rope vibrations with increasing amplitude or quantity as distance increases in
Figure 17(a1,b2) (purple circles in the figure) also belong to the “loose–tight” mechanism.
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Figure 19. Contact and friction force between the 369th rope element (400 m) and the friction pulley. 
(a) Contact; (b) friction. 

Integrating the friction force of the three rope elements in Figure 16 with time, as shown in 
Figure 20, the friction impulse of each rope element appears to have a downward inflection point 
when wrapping the friction pulley. That means that the friction drive of the pulley to the rope has 
changed from positive to the reverse. Until this point, friction has been beneficial to friction 
transmission; after this point, it has adverse effects. Combined with Figure 16, the friction force in 
the wrap angle can be divided into two regions by the judgement of the demarcation point (JDP). 
This is essentially different from the traditional static and dynamic angle theory—the static angle 
does not provide friction, and the dynamic angle provides a positive friction effect [19,21,24,25]. The 
theory holds that the tension does not change when the rope of the lifting side just enters the wrap 
angle (static angle), i.e., the rope does not provide any friction due to deformation and slippage. 

Figure 18. A sketch of load variation along rope length.

4.2. New Theory of Friction Transmission

Figure 19 shows the contact force and friction force between the 369th rope element (the initial
position is 400 m above the cage) and the friction pulley under different lifting side loads. Among them,
1.2 × 105 kg of lifting side load corresponds to heavy lifting, 0.95 × 105 kg is equal-weight lifting,
and 0.7 × 105 kg is light load lifting. It can be found that the initial value of the contact force just
entering the pulley depends on the load ratio on both sides. Because there is a constant load at the
lowering side, the contact force at different lifting sides changes to the same value after bypassing the
wrap angle. However, under any load, the wire rope will produce positive effect friction as soon as it
enters the wrap angle, and will provide reverse friction when it is about to be wound out. The greater
the lifting side load is, the smaller the reverse friction.
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Figure 19. Contact and friction force between the 369th rope element (400 m) and the friction pulley.
(a) Contact; (b) friction.

Integrating the friction force of the three rope elements in Figure 16 with time, as shown in
Figure 20, the friction impulse of each rope element appears to have a downward inflection point when
wrapping the friction pulley. That means that the friction drive of the pulley to the rope has changed
from positive to the reverse. Until this point, friction has been beneficial to friction transmission; after
this point, it has adverse effects. Combined with Figure 16, the friction force in the wrap angle can be
divided into two regions by the judgement of the demarcation point (JDP). This is essentially different
from the traditional static and dynamic angle theory—the static angle does not provide friction, and the
dynamic angle provides a positive friction effect [19,21,24,25]. The theory holds that the tension does
not change when the rope of the lifting side just enters the wrap angle (static angle), i.e., the rope does
not provide any friction due to deformation and slippage. When the rope reaches the dynamic angle,
the friction is caused by the creep between the rope and pulley [26,27].



Appl. Sci. 2020, 10, 1305 15 of 17
Appl. Sci. 2020, 10, 1305 18 of 20 

18 
 

When the rope reaches the dynamic angle, the friction is caused by the creep between the rope and 
pulley [26,27]. 

14 16 18 20 22 24 26 28

0

360

720

1080

0

200

400

600

0

270

540

810
14 16 18 20 22 24 26 28

Time(s)

 369_300m

JDP

Fr
ic

tio
n 

Im
pu

ls
e(

N
·s

)

 535_350m

JDP

702_400m

Judgment of 
demarcation point(JDP)

 
Figure 20. Friction impulse of wire rope. 

Based on the above dynamic behavior, a new transmission theory of “global dynamic wrap 
angle” for wire rope is proposed (Figure 21). There is no static angle, and the entire wrap angle is 
dynamic. The rope entering the wrap angle is immediately subjected to the positive friction 
provided by the pulley, which is beneficial for the transmission. After that, when the rope reaches a 
certain position, it starts to provide reverse friction until it is wound out of the wrap angle. The 
division of positive and reverse friction area depends on the load of wire ropes on both sides. When 
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Figure 20. Friction impulse of wire rope.

Based on the above dynamic behavior, a new transmission theory of “global dynamic wrap angle”
for wire rope is proposed (Figure 21). There is no static angle, and the entire wrap angle is dynamic.
The rope entering the wrap angle is immediately subjected to the positive friction provided by the
pulley, which is beneficial for the transmission. After that, when the rope reaches a certain position, it
starts to provide reverse friction until it is wound out of the wrap angle. The division of positive and
reverse friction area depends on the load of wire ropes on both sides. When m1<m2, the reverse effect
area increases, and when m1>m2, the positive friction effect area occupies absolute predominance.
The traditional static and dynamic angle theories may be more suitable for design calculation in shallow
mine hoists. The new transmission theory of “global dynamic wrap angle” is more suitable for the
dynamic analysis of deep mine friction hoisting with a high speed and a heavy load.
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5. Conclusions

A dynamic model of the hoisting system that unifies the dynamic interaction between the
suspended and wrapped ropes as a whole is established. The suspension dynamics of wire rope
mainly presents nonstationary vibration in the Z direction and tension amplitude that increases with
lifting speed. The wrapping dynamics includes the vibration cross-linking near the friction pulley
and the dynamic change of the contact force line between the rope and the pulley in the wrap angle.
Local dynamic force lines between rope and pulleys show that non-linear positive pressure and friction
force exist at any position in the wrap angle.

A new transmission theory of “global dynamic wrap angle” for a rope friction hoist is proposed,
i.e., the rope produces a positive friction effect by entering the wrap angle, and the friction will change
direction at a certain boundary point until the rope winds out of the wrap angle. The mechanical state
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of the wire rope is dynamic throughout the whole wrap angle, including deformation, contact and
friction. The division of the positive and reverse effect regions depends on lifting and lowering the side
rope end loads. The friction transmission theory proposed in this paper has more accurate dynamic
analysis characteristics for high-speed and heavy-load friction hoisting.
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