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Abstract: As the increasing penetration of inverter-based generation (IBG) and the consequent
displacement of traditional synchronous generators (SGs), the system stability and reliability
deteriorate for two reasons: first, the overall inertia decreases since the power electronic interfaces
(PEIs) are almost inertia-less; second, renewable generation profiles are largely influenced by stochastic
meteorological conditions. To strengthen power systems, the concept of the virtual synchronous
generator (VSG) has been proposed, which controls the external characteristics of PEIs to emulate those
of SGs. Currently, PEIs could perform short-term inertial and primary frequency responses through
the VSG algorithm. For renewable energy sources (RES), deloading strategies enable the generation
units to possess active power reserves for system frequency responses. Additionally, the deloading
strategies could provide the potential for renewable generation to possess long-term frequency
regulation abilities. This paper focuses on emulation strategies and economic dispatch for IBG units to
perform multiple temporal frequency control. By referring to the well-established knowledge systems
of generation and operation in conventional power systems, the current VSG algorithm is extended
and complemented by the emulation of secondary and tertiary regulations. The reliability criteria
are proposed, considering the loss of load probability (LOLP) and renewable spillage probability
(RSP). The reliability criteria are presented in two scenarios, including the renewable units operated
in maximum power point tracking (MPPT) and VSG modes. A LOLP-based economic dispatch (ED)
approach is solved to acquire the generation and reserve schemes. The emulation strategies and the
proposed approach are verified by simulation.

Keywords: economic dispatch; inverter-based generation; loss-of-load probability; reserve; virtual
synchronous generator

1. Introduction

Renewable energy, such as photovoltaics and wind power, has been widely utilized in power
systems to tackle environmental crises and to sustain economic development during the past few
decades [1,2]. Iceland and Norway obtain essentially all of their electricity from renewable sources,
and other nations and regions are evolving towards 100% renewables [3]. According to the 2018
BP energy outlook, sustained support for renewables would lead to strong growth in the share of
renewables, reaching 25% of total energy consumption by 2040 [4]. Therefore, conventional power
systems are evolving towards high penetration of renewable generation. However, the characteristics of
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renewable generation (RG) are incompatible with traditional power plants. On the one hand, RG (such
as solar photovoltaic and wind power) is commonly integrated through voltage-sourced inverters
(VSIs), which are almost inertia-less due to their fast switches. On the other, renewable generation
profiles, influenced by meteorological disturbances, are stochastic and fluctuant. Correspondingly,
RG integration brings great challenges, including frequency stability and reliability.

The frequency stability of the power system is highly associated with the inertia property, which is
a key indicator for evaluating system strength. The inertia property could slow down the rate of
change of frequency (ROCOF) after a frequency event [5]. With increasing penetration of renewable
generation and the consequent displacement of traditional synchronous generators (SGs), the overall
inertia decreases. The reserve is a crucial issue for sustaining reliability, which ensures the generators’
schedules withstand the uncertainty. The system reserves (both upward and downward reserves)
could prevent underfrequency load shedding and renewable generation spillage. As renewable
generation usually operates at fixed power points for maximum exploitation (maximum power point
tracking, MPPT), the system reserves could only be provided by traditional SGs. If the renewable
generation reaches a considerable share of the total installed capacity, the traditional plants, which are
the only sources of reserves, may not satisfy the reliability criteria [6]. For the Ireland electricity system,
the study has shown that more reserves are needed as the penetration level of the wind power increases
or the system reliability decreases [7].

Due to direct coupling between mechanical and electric parts in synchronous machines, the inertial
response (IR) is naturally provided to suppress ROCOF and mitigate frequency nadir (or peak). Many
grid codes have also required inverter-based generation (IBG) to provide IR as an ancillary service [8].
By modifying the supplementary controllers of power electronic interfaces (PEIs) to emulate the external
characteristics of traditional SGs, studies have proposed the concept and several approaches for virtual
synchronous generator (VSG) algorithms [9–13]. By sensing circuit parameters (instantaneous voltages
and currents) and calculating the instantaneous power, the VSG algorithm enables PEIs to mimic the
swing equation, which provides instantaneous inertial response (IIR) [9]. Furthermore, the emulation
of the speed governor can also be embedded in supplementary control loops to perform primary
frequency response (PFR) [14–17]. It is noted that, for PEIs under VSG control, energy headroom in
renewable units is a prerequisite during frequency response. The energy could come from the kinetic
energy in wind turbines or rotors, the electrostatic energy in capacitors, or the stored energy in accessory
equipment [1]. However, the above studies are all restrained in the stages of the short-term frequency
response [18]. The frequency control of the conventional power systems includes a hierarchical
structure, because the system operation requires the ability to respond to change in demand and
supply in multiple temporal stages [19]. With higher penetration of renewable generation, the IBG
units would eventually and inevitably take the responsibility of regulating the overall energy balance
because of the consequent displacement of traditional SGs. Therefore, the flexibility of the power
system operation requires the VSG algorithm to extend its application scope.

The generation units can be divided into two components, the primary energy input, and the
electricity generation. The electrical part mainly determines the external characteristics, but it is also
restricted by the availability of primary power input. The mechanical power of traditional SGs comes
from fossil fuels, hydropower, and nuclear power, which are abundant and fully controllable. On the
contrary, renewable resources are time-varying and stochastic. In the view of transmission/distribution
system operators (TSO/DSO), the renewable generation is irresponsible and undispatchable [6].
To maintain the overall power balance against unexpected deficits or surpluses, system reserves are
indispensable. In some countries, the reserve is quantified as the capacity of the largest generator,
which assumes any loss of generation greater than the largest infeed is very infrequent [20]. This reserve
quantification method, which focuses on the forced outages of individual plants, is simple, but restrained
by rules of thumb. Large-scale renewable integration has challenged this method due to its uncertain
nature [20]. The reason for this is that the variations of renewables are continuous, and may be in
addition to generator outages caused by discrete events (such as a lightning strike). To deal with this,
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some scholars have proposed reliability-based reserve quantification methods, which determine the
reserve requirement based on reliability index, such as loss-of-load probability (LOLP) [7]. The loss of
load happens if the power production and upward reserves are not able to compensate for the power
deficits caused by the combined uncertainties of the load and renewable generation, as well as the
outage of power plants. The renewable generation spillage happens when negative reserves cannot
compensate for the surplus power from renewable plants [21]. Furthermore, the reliability-based
reserve requirement is integrated with the economic dispatch model to realize joint scheduling of
generation and reserve [22,23]. It is noted that, in these approaches, the reserves are scheduled to the
synchronous generators only, because the IBG is not schedulable.

In recent research, the predetermined power profile and deloading strategies have been proposed
for RG units to participate in power balance regulation. Firstly, the predetermined strategy modifies the
power profile of RG units [24,25]. When frequency fluctuations happen, the output of wind turbines is
set according to a predesigned curve [26–29]. It is noted that once the predetermined strategy kicks in,
the RG output is irrelative to the system frequency. Moreover, this strategy may cause another issue
called the second frequency drop (SFD). This is because when the response capability is exhausted,
RG units must decrease their output power and restore initial states (such as rotor speed or DC bus
voltage) by their own generation capabilities for self-stability, disregarding the actual system frequency
conditions. Another strategy is the deloading strategy, which controls the RG unit to operate at a
sub-optimum point in the normal conditions [30]. The generation availability is partly curtailed
between the maximum power point (MPP) and the suboptimum point, and the output power can
be adjusted between such intervals in different time periods. The deloading strategy enables the
renewable units to function as long-term power reserves to provide not only PFR, but also secondary
frequency regulation (SFR). For example, overspeeding and pitch control can control the power output
in a wide range of wind speeds for wind turbines [30,31]. However, the opportunity cost is inevitable,
because of the loss of a part of the renewable generation availability.

The future power system is represented by RESs and PEIs. The intrinsic differences between
traditional SGs and PEI-based RESs lie in both parts of the external characteristics and the power
profiles. To solve the incompatibilities while operate economically, this paper presents emulation
strategies and economic dispatch for VSG-based RESs participating in multiple temporal stages of
system frequency control. The contributions of this work can be summarized as follows:

(1) The VSG algorithm is extended and complemented to enable PEIs to perform multiple temporal
stages of frequency control. The emulation control strategies of SFR and TFR are added to perform
long-term frequency regulations.

(2) The renewable generation is deloaded to function as long-term active power reserves. The power
profiles of the renewable generation units are modified to be homogeneous to those of SGs,
in which way the renewable generation could be scheduled as reliable system reserves.

(3) The LOLP and RSP probabilities are presented as reliability criteria. A generation-reserve
co-optimized model is built to solve the LOLP-based economic dispatch problem. Through the
generation and reserve schemes, it is possible to quantify how much the renewable generation
should be deloaded as system reserves at each interval.

The rest of the paper is organized as follows: Section 2 presents the VSG control algorithm
that enables the capabilities of multiple temporal stages of frequency control, including IR, PFR,
SFR, and TFR. Section 3 demonstrates the LOLP and renewable spillage probability (RSP) indexes
for the IBG units in MPPT mode. Section 4 illustrates the modification of the power profile of RG
units, which eliminates generation uncertainties according to the properties of Gaussian distribution.
The LOLP and RSP when the RG units are calculated under VSG control. Section 5 presents the
objective function and constraints of the proposed economic dispatch approach. Section 6 shows
the simulation results of the proposed extended VSG algorithm and the case study of the economic
dispatch approach.
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2. VSG-Based Frequency Control

The system frequency indicates the overall power balance regulation between the generation
and the consumption at any instantaneous time. In the traditional SG-dominated power system,
the active power-frequency control is a series of multiple temporal stages, which can be divided into
four parts [32], as shown in Table 1.

Table 1. Conventional multiple temporal frequency control.

IR PFR SFR TFR

Time scale Instantaneous Seconds-30 s 10–30 min Hours-day ahead

Activation ROCOF Frequency deviation crosses
a preset deadband

Frequency deviation last
over a preset period Economic dispatching

Reference Naturally provided Frequency deviation Frequency deviation Load reference

Control parameter H RSG KI Pscheduled

Participants All SGs All SGs with headroom Selected SG unit All SGs

Executor Rotating equipment Speed governor AGC Turbine

Energy resource Kinetic Primary input Primary input Primary input

Restoration The restoration of rotor speed is coupled with the frequency recovery of the system.

The concept of VSG is to mimic the dynamic properties of SGs to let both behave with approximately
synchronous responses to load changes. Therefore, the emulations of virtual inertia and the virtual speed
governor are indispensable. For PEI-based renewable generation, the external characteristics are largely
determined by the supplementary controller. In inchoate studies, among the VSG implementations
in different orders, the simplest second-order model is with better stability in transients [33] and
can be combined with virtually any VSI control strategies based on a cascade structure [34]. By the
modification of the supplementary controller, the VSG algorithm enables the PEIs to function in the
same way as SGs with the capability to perform frequency response and frequency regulation in
multiple temporal stages.

2.1. Emulation of IR and PFR

The inertial response of the SGs is instantaneous, and without prerequisite measurements.
For traditional SGs, the inertia is provided by the kinetic energy stored in the rotation equipment.
The inertia constant HSG indicates the inertia property, which can be expressed as

HSG =
JSGω

2
r

2VAbase
(1)

where JSG is the moment of inertia, ωr is the angular speed of the rotor, VAbase is the rated power.
Similar to HSG, the virtual inertia constant Hvir of PEIs can be expressed as the ratio of the provided
energy to the rated power.

Hvir =
Jvirω

2
m

2VAbase
(2)

where Jvir is the virtual moment of inertia, ωm is the virtual angular speed.
The inertial response follows Newton’s law of motion, which can be expressed as the

swing equation

Pm − Pe =
d∆ωr/dt

2HSG
+ D∆ωr (3)
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where D is the damping coefficient of frequency sensitive load, Pm and Pe are the virtual mechanical
and electrical power, ωr is virtual angular speed. When the swing equation is represented by the inertia
constant, all the parameters are per-unit values. Then the inertia support can be expressed as

∆PIR = −2Hvir
d∆ f
d f

(4)

The PFR of SGs is provided by the turbine-governor system. In per unit value, the droop property
for an SG with a typical reheat steam turbine is

∆Y = −
1
R
×

1
1 + sTG

×
1 + sFHPTRH

(1 + sTCH)(1 + sTRH)
(5)

where R is speed droop, Y is the valve position, FHP, TCH, and TRH are typical parameters for a reheat
steam turbine. The emulation for the properties of turbines of SGs is necessary when the VSG-based
PEIs are operated in parallel with traditional power plants. In steady state, the supporting power by
PFR is

∆PPFR = −
1
R

∆ f (6)

The implementation of the emulation control strategies for IR and PFR is executed based on the
mathematical model of SGs mentioned before. When the VSG algorithm is activated, the control block
of the angular speed deviation is shown in Figure 1.
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Figure 1. Block diagram of IR and PFR in (a) SG, (b) VSG.

2.2. Emulation of SFR

For traditional SGs, the SFR is executed by the regulation of load reference settings, which is
shown in Figure 2a. In the block diagram for SGs, the signal of the load reference also passes through
the blocks of the turbine-governor system. However, as only specific units in a power system are
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selected to perform AGC regulation, when the emulation of AGC is implemented on VSG-PEIs, the load
reference can be directly fed into the block of the virtual swing equation, as shown in Figure 2b. In
Figure 2b, τ is the time delay of SFR, and Ki is the coefficients of the integral controller.
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Figure 2. Block diagram of SFR.

2.3. Emulation of TFR

In the conventional power system, the tertiary control is the optimal allocation of generation
resources to handle present and future fluctuations in generation and load. The time span of the
tertiary control varies from hours to day-ahead. The TFR is executed by regulating the settings of load
reference on each generator. The implementation of TFR is shown in Figure 3.
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3. Reliability Criteria for IBG Units in MPPT Mode

When IBG under MPPT control does not participate in frequency regulation, the uncertainties
of the renewable generation and load are two critical factors related to reserve determination.
Since the distribution of their prediction errors does not affect the proposed method, for simplicity,
it can be assumed that the prediction errors obey a zero-mean Gaussian distribution. At the time
period t, the forecast error of RG is denoted by ∆PR

t , of which the probability density function is
f (∆PR

t ) ∼ N(0, rt
2). Similarly, the forecast error of demand is denoted by ∆PD

t , of which the probability
density function is f (∆PD

t ) ∼ N(0, dt
2). Furthermore, the net load forecast error can be defined as ∆PN

t ,
which is defined as:

∆PN
t = ∆PD

t − ∆PR
t (7)

of which the probability density function is f (∆PN
t ) ∼ N(0, rt

2 + dt
2), since renewable generation

and load are independent of each other. It is noted that for a power system with zero penetration of
renewables, the net load forecast error only contains the error from the demand forecast. Additionally,
the forced outage rate (FOR) of traditional generators is denoted by pFO.

In this paper, the forecast error of the renewable generation and the demand, as well as the outage
of traditional generators, are three factors that cause frequency events that lead to load shedding or
renewable spillage incidents. Therefore, two indexes, LOLP and RSP, are proposed as two reliability
criteria to evaluate the system.

The frequency of the power system is directly coupled with the power balance between generation
and demand. The under-frequency event may happen when the generation cannot meet the demand.
Since the probability of outage of two or more generators is very low [35], in this paper, the scenarios
of no generation outage and single generator outage are considered. The LOLP at a specific period t is
denoted by pLOLP

t , which can be expressed as:

pLOLP
t =

N∏
i=1

(1− pFO
i )·p

{
(∆PN

t −Ru
t

)
> 0}+

N∑
i=1

pFO
i ·

N∏
j = 1
j , i

(1− pFO
j )·p

{
(∆PN

t + PMAX
i −Ru

t

)
> 0} (8)

where N is the number of SGs, Ru
t is the upward reserve at period t, PMAX

i is the upper output limit of
generator i.
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Over-frequency events may happen when the generation exceeds the demand, which the
downward reserve is unable to compensate. The calculation of RSP in period t is denoted by pRSP

t ,
which can be expressed by

pRSP
t = p

{
(∆PN

t + Rd
t ) < 0

}
(9)

where Rd
t is the downward reserve at period t. If the rated LOLP and RSP are denoted by pLOLP

rated and
pRSP

rated, then the reliability constraints can be expressed as:

pLOLP
t ≤ pLOLP

rated (10)

pRSP
t ≤ pRSP

rated (11)

The values of pLOLP
rated and pRSP

rated are set by the dispatch system operators, which are usually between
0 and 0.05. The solutions of the upward and downward reserve Ru

t and Rd
t satisfying the desired

reliability criteria can be found by searching the LOLP and RSP solution spaces, respectively.

4. Reliability Criteria for IBG Units in VSG Mode

As the conventional power system is undergoing an evolving transition to a converter-dominated
regime, IBG in the future grid will inevitably take the role (regulating the overall energy balance for
stability and reliability) of SGs. For the process of electricity generation, every generation unit includes
two components: the primary energy input, and electric power generation, as shown in Figure 4.
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If VSG-IBG units participate in secondary and tertiary frequency regulations, persistent power
reserves for power increment and decrement counteracting frequency deviations are indispensable.
In other words, the capabilities of frequency regulation are determined by the availability of the
reserved power input. For renewable energy sources alone (regardless of energy storage accessories),
the reserved energy comes from curtailable generation ability. Generally, active power reserves using
RG units can be realized through two types of control strategies: (1) the delta control, which deloads
RG units by constant percentages or values [36], and (2) the balance control, which controls the RG
output through an upper limit [37]. The reserves by the delta control are still stochastic on the basis of
meteorological conditions. It is noted that the decisive difference in the primary input between the SGs
and the RG units is whether the primary power is dispatchable or stochastic. Inspired by this, in this
paper, the uncertainty of renewable generation is eliminated based on a deloading strategy with fixed
upper limits. The principle of deloading control with fixed upper limits is shown in Figure 5.
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As the forecast error of RG obeys Gaussian distribution, RG output also obeys Gaussian distribution,
whereby the probability density function is f (PR

t ) ∼ N(PFR
t , rt

2). The upper output limit of renewable
generation unit can be set as

PR
t,max = PF

t − 3rt (12)

which is shown in Figure 6.
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In this way, the property of the generation profile of IBG is modified with fixed upper limits, and
the generation uncertainties of the RG units could be eliminated. Consequently, after the transformation,
the uncertainty mainly lies in the load disturbances, and the net load forecast error is

∆PN
t = ∆PD

t (13)
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The LOLP for a specific period t in power system with grid-supporting IBG can be expressed as

pLOLP
t =

N∏
i=1

(1− pFO
i )·p

{
(∆PN

t −Ru
t

)
> 0}+

N∑
i=1

pFO
i ·

N∏
j = 1
j , i

(1− pFO
j )·p

{
(∆PN

t + PMAX
i −Ru

t

)
> 0} (14)

where N is the number of generation units, including traditional generators and VSG-IBG units.
Renewable generation spillage probability in period t can be expressed as

pRSP
t = p

{
(∆PN

t + Rd
t ) < 0

}
(15)

where Rd
t is the downward reserve at period t, which is provided by both SGs and VSG-IBG.

Since the RG unit has been modified with a fixed upper output limit at each time period, the SGs
and RG are homogeneous in power profile. Therefore, the RG unit could be seen as a virtual SG-based
plant, and the economic dispatch including VSG-IBG could be solved.

5. Generation–Reserve Co-Optimization Model

For joint economic dispatch of generation and reserve, a co-optimization dispatch model is built
that contains the objective function and a set of constraints.

5.1. Objective Function

The objective is to minimize the total operation cost, which involves the generation and reserve
cost. The function of the generation cost of SGs is typically expressed as a quadratic function, which can
be expressed as

fCi(P
G
i,t) = c2,i(PG

i,t)
2
+ c1,iPG

i,t + c0,i (16)

where PG
i,t is the load of generator i at period t; and c2, c1, and c0 are cost coefficients. The total generation

cost C1,t is the accumulation of the generation cost of all the generators at period t, which can be
expressed as

C1,t =
N∑

i=1

fCi(P
G
i,t) (17)

For RG units, since they do not consume fossil fuels, the cost coefficients are assumed to be zero.
The reserve cost function for SGs can be expressed as a linear equation

f (ru
i,t, rd

i,t) = cu
i ru

i,t + cd
i rd

i,t (18)

where ru
i,t and rd

i,t are the upward and downward reserves provided by generator i at period t, and

cu
i and cd

i are cost coefficients, correspondingly. The total reserve cost C2,t is the accumulation of the
reserve cost of all the generators at period t, which can be expressed as

C2,t =
N∑

i=1

fC(ru
i,t, rd

i,t) (19)

For the VSG-RG units, since the reserves are based on the deloading strategy, which incurs
opportunity cost in normal operation, the coefficients are assumed to be close to those of traditional SGs.
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By the combination of generation and reserve cost, the objective function can be expressed as:

min
T∑

t=1

(C1,t + C2,t) (20)

where T is the number of dispatch periods.

5.2. Constraints

(1) Power balance constraints.

At any time period t, the generation should cater for the demand, and the power balance constraints
can be expressed as ∑

i∈G

PG
i,t +

∑
j∈R

PR
j,t =

∑
k∈D

PD
k,t (21)

where G, R, and D are the set of SGs, RG, and load, respectively.

(2) Output margin constraints.

At any time period t, the load of generators cannot cross their upper and lower output limits,
which can be expressed as

PG
min,i ≤ PG

i,t ≤ PG
max,i (22)

where PG
min,i and PG

max,i are the minimum and maximum capacities of generator i. Furthermore,
considering its provided reserve, the load of each generator cannot cross its upper and lower limits,
either, which can be expressed as

PG
min,i ≤ PG

i,t + ru
i,t ≤ PG

max,i (23)

PG
min,i ≤ PG

i,t − rd
i,t ≤ PG

max,i (24)

The output of the grid-supporting IBG units also satisfies these constraints.

(3) Ramp constraints.

For the transition of power output in adjacent periods, the ramp constraints can be expressed as

− Pd
ramp,i∆T ≤ PG

i,t+1 − PG
i,t ≤ Pu

ramp,i∆T (25)

where Pu
ramp,i and Pd

ramp,i are the upward and downward ramp rate of generator i, respectively. ∆T
is the dispatch interval. For the reserve, it needs to be dispatched within a preset time. Therefore,
the ramp constraints for reserves can be expressed as

ru
i,t ≤ Pu

ramp,iTr (26)

rd
i,t ≤ Pd

ramp,iTr (27)

where Tr is the reserve dispatch interval. For the IBG units, since the control of PEIs is fast and accurate,
the ramp rate is set to be infinite.

(4) Reserve constraints.

At any time period t, the total reserves in the system must meet the reserve requirement according
to the rated LOLP and RSP criteria. Therefore, the accumulation of the upward and downward
reserves satisfies

Ru
t ≤

N∑
i=1

ru
i,t (28)
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Rd
t ≤

N∑
i=1

rd
i,t (29)

where Ru
t and Rd

t are reserve requirements under preset LOLP and RSP reliability criteria. Furthermore,
considering the outage of a single unit, the reserve constraints satisfying the N-1 scenario can be
expressed as

∀i ∈ N, it satisfies



Ru
t ≤

N∑
j = 1
j , i

ru
j,t

Rd
t ≤

N∑
j = 1
j , i

rd
j,t

(30)

6. Simulation and Case Study

6.1. Simulation of Multiple Temporal Stages of Frequency Control

The proposed VSG algorithm involves the emulation of IR, PFR, SFR, and TFR. The power rating
is scaled down to 1.5 kVA to verify the proposed algorithm. The simulation in this section involves the
parameters in Table 2.

Table 2. Parameters in simulation.

Parameter Value Unit Parameter Value Unit

Vdc 800 V H 5 pu
Vac 0.22 kV D 1 pu
L 10 mH Percentage R 5 pu
C 350 µF Voltage droop 3% pu
f 50 Hz τ 20 s

fpwm 5000 Hz Load step 0.05 pu
VAbase 15,000 W KI 10 -

6.1.1. Simulation of IR and PFR

The IR and PFR for a step increase of load (0.05 pu) at 1 s is shown in Figure 7.
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Figure 7. Simulation of IR and PFR. Figure 7. Simulation of IR and PFR.
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From Figure 7, compared to the response of grid-supporting VSI, the peak time (at which the
nadir is reached) is delayed by the inertia effect. The power increment in the PFR loop gradually and
partially restores the frequency. Consequently, the emulation of the characteristics of the composite
frequency response of SGs is achieved.

6.1.2. Simulation of SFR

The SFR for the same load step change is shown in Figure 8. The SFR kicks in after the frequency
deviation lasting for 20 s.
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reference setting, there is a tiny gap between the generation and the demand. Then the power 
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Figure 8. Simulation of SFR for a step change of load.

From Figure 8, the SFR is activated after the PFR has stabilized the system frequency. When SFR
kicks in, the load reference settings of selected SGs are regulated. The system frequency is gradually
restored. The power increment of PFR is overridden by the power increment from the SFR loop.

6.1.3. Simulation of TFR

The uncertainty in the power system includes the load forecast error, the renewable generation
forecast error, and the outage of SGs. As a result, in each schedule interval, for a specific load reference
setting, there is a tiny gap between the generation and the demand. Then the power imbalance is
compensated through the process of IR, PFR, and SFR. When the load increase is 3% higher than the
change of load reference, the dynamic responses of frequency control are shown in Figure 9.
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6.1.4. Summary

The control of system frequency provided by PEIs under VSG control is shown in Figure 10.
The VSG algorithm enables IBG units to perform multiple temporal frequency control after a
frequent event.
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Correspondingly, the multiple temporal stages of frequency control provided by VSG emulation
strategies are summarized in Table 3.

Table 3. Multiple temporal stages of frequency control of VSG-Based PEIs.

IIR PFR SFR TFR

Time scale Less than 1 s seconds Seconds to Mins Hours-day ahead

Activation ROCOF Frequency deviation
crosses preset deadband

Frequency deviation last
over a preset period

Optimization
algorithms

Reference ROCOF Frequency deviation Frequency deviation Load reference

Control parameter M R KI Preference

Participants VSG-PEIs VSG-PEIs Dispatchable IBG Dispatchable IBG

Executor Virtual inertia Virtual speed governor Virtual AGC System operator

Energy source Kinetic, electrostatic, or chemical, storage, deloading renewable sources

Restoration The restoration of virtual rotor speed is coupling with the frequency recovery of the system

6.2. Case Study for Generation and Reserve Schemes

The proposed approach is tested in two scenarios of RG under MPPT and VSG mode. The economic
dispatch model is programmed in MATLAB and solved by Gurobi. Based on the original six-bus
three-generator system [38], a renewable unit is added, which is shown in Figure 11. In VSG mode,
the RG is denoted as generation unit 4. The system is tested for economic dispatching with six horizons.
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The predicted renewable generation and load, as well as the upper limit of RG in VSG mode, are
shown in Table 4.

Table 4. Predicted renewable generation and load.

Horizon 1 2 3 4 5 6

Renewable generation (MW) 59.62 60.78 70.26 72.32 75.89 82.75
Load (MW) 370 330 290 260 280 350

Upper limit in VSG mode (MW) 50.68 51.66 59.72 61.47 64.51 70.34

The standard deviation of renewable generation and load are 5% and 1% of the forecast, respectively.
The lower limit of renewable generation is 40% of the forecast. The FOR of each generator is 0.01.
The cost coefficients for each unit are shown in Table 5.
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Table 5. Generation cost coefficients.

Generation Unit
Cost Coefficients ($/MW)

c2,i c1,i c0,i cu
i cd

i

1 0.00533 11.699 231.1 5.835 5.835
2 0.00899 10.333 200 5.166 5.166
3 0.00741 10.833 240 5.417 5.417

4 (VSG) 0 0 0 4 4

When the preset LOLP and RSP are set to be 3% and 0.1%, respectively, the reserve requirements
(MW) are shown in Table 6.

Table 6. Requirement for operating reserve capacity.

Horizon
Requirements of System Overall Reserves (MW)

RG Unit in MPPT Mode RG Unit in VSG Mode
Ru

t Rd
t Ru

t Rd
t

1 12.91 14.254 11.88 11.1
2 12.43 13.459 10.74 9.9
3 13.48 13.666 9.31 8.7
4 13.59 13.361 8.35 7.8
5 14.41 14.147 8.99 8.4
6 15.68 16.258 11.24 10.5

From Table 6, in MPPT mode, RG aggravates the total reserve requirement. However, in VSG
mode, the overall reserve requirement is reduced, which is equal to the original system (without the
integration of RG).

The generation schemes for SGs and the IBG unit are shown in Figures 12 and 13.
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From Figures 12 and 13, in MPPT mode, RG output equals the forecast value. In VSG mode,
RG output is at its upper limit. This is because the generation cost of RG is set to be zero. The discrepancy
between the forecast and upper limit of RG is determined by its standard deviation. The power vacancy
is provided by other SGs. The generation schemes of SGs fluctuate inconsistently with the change
of load.

The reserve schemes for the IBG unit in MPPT and VSG mode are shown in Figures 14 and 15 From
Figure 14, VSG-based RG units participating in system regulation would decrease the requirement
of the upward reserve. The upward reserve allocated for RG is zero because the operating point for
VSG-RG is set at its upper limit. From the fluctuation properties in each scenario, when the RG unit
is under MPPT control, the upward reserve is determined according to the forecast uncertainties of
the renewable generation and load. When the RG unit is under VSG control, the upward reserve is
determined according to the uncertainty of the load forecast only. The requirement of the total upward
reserve in the VSG scenario is identical to that of the original system. By considering N-1 constraints,
the upward reserve is equally allocated between SGs.
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When the output of IBG unit 4 is fixed at its output limits, it cannot provide supporting power
counteracting frequency dips. If the overall inertia property is insufficient, extra inertial reserves
should be considered. The ROCOF can be expressed as

ROCOF =
d∆ f
dt

=
∆P
2H

(31)

where ∆P is the step change of load, H is the inertia constant of the IBG unit. In power systems,
the typical values of the system inertia constant Hsys and a large step increase of load ∆Pload are 5 and
3%–5%, respectively [5,13], then the maximum derivative of frequency (ROCOFmax) can be obtained.

In a synchronous area, the system inertia could be expressed as [36,39]:

Hsys =
n∑

i=1

(Hi
Si

Ssys
) (32)

where i is the sequence number of the generation unit. By Equation (32), the required inertia constant
HIBG for the IBG unit (if its inertia property is needed) can be obtained. Therefore, when the overall
inertia property is insufficient, the inertia reserve ∆PIR can be expressed as

∆PIR = 2HIBG·ROCOFmax (33)

and the scheduled power Pschedule for the IBG unit can be expressed as

PR
4,t
′ = PR

4,t − ∆PIR (34)

From Figure 15, VSG-based RG participating in system regulation would decrease the need
for a downward reserve. Furthermore, the downward reserve allocated for each generation unit is
reduced. Based on the fluctuation properties in each scenario, when the RG unit is under MPPT mode,
the downward reserve is determined according to the forecast uncertainties of the renewable generation
and load. When the RG unit is under VSG mode, the downward reserve is determined according to
the uncertainties of the load forecast only. The requirement of the total downward reserve in the VSG
scenario is identical to that of the original system. By considering N-1 constraints, the downward
reserve is equally allocated between traditional SGs and VSG-RG.
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The total operation cost of the two tested scenarios is shown in Table 7, which indicates that there
is no significant discrepancy.

Table 7. Total operation cost.

Operation Mode RG Unit under MPPT RG Unit under VSG

Operation cost ($) 22,651 22,350

At every time step, under the VSG control, renewable penetration pren can be calculated as [40]:

pren =
PRG

Lserved
(35)

where PRG is total renewable generation at a certain time step, Lserved is the load served in this time
step. Then, from Table 8, the maximum renewable penetration is 23.6%.

Table 8. The renewable penetration in the case study time step.

1 2 3 4 5 6

Renewable output (MW) 50.68 51.66 59.72 61.47 64.51 70.34

Load served (MW) 370 330 290 260 280 350

Renewable penetration 13.7% 15.7% 20.6% 23.6% 23.0% 20.1%

Moreover, scenarios where the renewable generation forecast is halved and doubled while the
load remains constant are also considered to see the impacts of different penetration levels on the
economic dispatch. Under different penetration levels, a comparison of the results is shown in Table 9.

Table 9. Predicted renewable generation and load.

Maximum Penetration Level (%) 13.9 23.6 55.6

Operation cost with MPPT-based IBG ($) 24,782 22,651 Infeasible

Operation cost with VSG-based IBG ($) 24,544 22,350 18,101

From Table 9, it can be seen that the exploitation of renewable power can reduce the generation
cost with growing penetration level. However, high penetration of MPPT-based renewable generation
may not be feasible under certain reliability criteria. When IBG is under VSG control, it satisfies the
operation constraints, and economical dispatch can be achieved.

7. Conclusions

This paper presents emulation strategies and economic dispatch for inverter-based RG units under
VSG control participating in multiple temporal frequency control homogeneously and jointly with
traditional synchronous generators. Based on the previous, the conclusions are made:

(1) Generation units can be divided into two parts: the primary energy input and the electric
power generation. For PEI-based renewable generation, the external properties can be designed
through the programmable supplementary controller to emulate those of traditional synchronous
generators. The IBG operates mainly in two modes: the MPPT mode and the VSG mode. Based on
the proposed VSG algorithm, the IBG can perform multiple temporal frequency control. Therefore,
the IBG could participate in system frequency regulation.

(2) The uncertainty of renewable generation is assumed to obey Gaussian distribution. Based on the
properties of Gaussian distribution, the generation uncertainty of VSG-RG is eliminated by setting
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an upper output limit at each time period. After the transformation, the generation profiles of
the renewable units are homogeneous with those of SGs, and the renewable generation could be
scheduled as system reserves.

(3) A generation–reserve co-optimization model was built and solved to acquire the economic
dispatch schemes. Based on the results, the integration of VSG-RG will not aggravate the
requirements of the system reserves. Furthermore, VSG-based IBG can be allocated part of the
reserve, decreasing the burden of other SGs.

Towards power systems with high-penetration renewable generation or even 100% renewables,
the proposed approach provides a preliminary solution.
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Nomenclature

1 Emulation control part

HSG Inertia constant of SG

JSG Moment of inertia of SG

ωr Angular speed of the rotor

VAbase Rated power

Hvir Virtual inertia constant of VSG

Jvir Virtual moment of inertia of VSG

ωm Virtual angular speed

Y Valve position

R Speed droop

FHP Factor of total turbine power generated by high pressure section

TCH Time constant of main inlet volumes and steam chest

TRH Time constant of reheater

τ SFR activation time

KI Integral coefficient of SFR

fpwm Frequency of the carrier wave
2 Economic Dispatch Part

t Sequence number of dispatch periods

∆PR
t Forecast error of renewable generation at period t

rt Standard deviation of ∆PR
t at period t

∆PD
t Forecast error of demand at period t

dt Standard deviation of ∆PD
t at period t

∆PN
t Forecast error of net load at period t

pFO Probability of forced outage rate of SG

pLOLP
t Loss of load probability at period t

N Number of generation units

i Serial number of the i-th SG

Ru
t Total upward reserve at period t

PMAX
i Upper output limit of generator i

pRSP
t Renewable spillage probability at period t

Rd
t Total downward reserve at period t
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pLOLP
rated

Rated probability of LOLP
pRSP

rated
Rated probability of RSP

PR
t Renewable generation at period t

PFR
t Forecast power of renewable generation at period t

PR
t,max Upper limit of renewable generation at period t

PG
i,t Output power of unit i at period t

fCi (P
G
i,t) Quadratic cost function of unit i at period t: c2,i(PG

i,t)
2
+ c1,iPG

i,t + c0,i

C1,t Generation cost part of the total cost at period t
ru

i,t Upward reserve of unit i at period t
rd

i,t Downward reserve of unit i at period t
cu

i Cost coefficient of unit i for upper reserve

cd
i Cost coefficient of unit i for downward reserve

C2,t Reserve cost part of the total cost at period t
T The number of dispatch periods

G The set of synchronous generator plants

R The set of renewable generation plants

D The set of demand

u Upward

d Downward
Pu

ramp,i Upward ramp rate

Pd
ramp,i Downward ramp rate

∆T Dispatch interval

Tr Reserve dispatch interval

ppen Penetration of renewable generation

PRG Renewable output in a time step

Lserved Load served in a time step
3 Acronyms
DSO Distribution system operator
ED Economic dispatch
IBG Inverter-based generation
IIR Instantaneous inertial response
IR Inertial response
LOLP Loss of load probability
MPP Maximum power point
MPPT Maximum power point tracking
PEI Power electronic interfaces
PFR Primary frequency response
RES Renewable energy sources
RG Renewable generation
ROCOF Rate of change of frequency
RSP Renewable spillage probability
SFD Second frequency droop
SFR Secondary frequency regulation
SG Synchronous generator
SO System operator
TFR Tertiary frequency regulation
TSO Transmission system operator
VSG Virtual synchronous generator
VSI Voltage-sourced inverters
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