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Abstract: For the problem of multiple sensor fault detection and reconstruction in the forklift
fault-tolerant control system, a sliding mode observer (SMO) with adaptive regulation law is
proposed. Based on the three-degree-of-freedom (3-DOF) model of forklift, a linear state equation
with output disturbance is designed as its equivalent sensor fault model. The sensor fault is converted
into an actuator fault by defining an auxiliary state variable as an output signal filter. Then the
SMO-based method of sensor fault detection and reconstruction is given. Without knowing the upper
bound of an unknown fault, an adaptive sliding mode observer (ASMO) can also be effective through
the adaptive algorithm. Finally, experimental results further verify the effectiveness of the method,
and provide a foundation for forklift fault-tolerant control.
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1. Introduction

With the development of modern forklift technology, handling stability and active safety are
becoming increasingly important. Forklift sensors of yaw rate, sideslip angle, and roll rate are used
to measure dynamic characteristics of a forklift. Deviation of these sensors’ signals may lead to
spurious triggering or misoperation of the control system. Once a fault occurs, it causes serious
consequences [1–3], so the possibility to diagnose and reconstruct potential faults of these sensors is
the key issue of safety and stability of a forklift. To detect an incipient fault as early as possible to
avoid serious damage to the controlled system, a fuzzy relational sliding mode observer (FRSMO)
is proposed [4].

In recent years, different types of observers have been used for sensor fault detection and
reconstruction. A sliding mode observer (SMO) is commonly used as a robust control solution for
mode errors and measurement disturbances. For a class of uncertain time-delay systems, a robust SMO,
which guarantees estimation error stability through the Lyapunov—Krasovskii function and the Linear
Matrix Inequality (LMI) optimization, has been proposed [5,6]. An SMO with two discontinuous
terms was designed to compensate for fault behavior and disturbance variation from the system state
estimation. It ensured robust fault reconstruction and estimation for a class of nonlinear systems
described by the Takagi–Sugeno model with unmeasurable premise variables subject to the faults
affecting actuators, sensor faults, and unknown disturbances [7].

In this study, an SMO with adaptive regulation law is proposed. It establishes a linear state
equation with output disturbance to convert sensor faults into actuator faults. Zhao Kaihui et al. also
transformed sensor faults into actuator faults by introducing a new state variable [8]. By considering
the sensor fault and output disturbance as auxiliary state vectors, a robust sliding mode descriptor

Appl. Sci. 2020, 10, 1278; doi:10.3390/app10041278 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-4846-9751
http://www.mdpi.com/2076-3417/10/4/1278?type=check_update&version=1
http://dx.doi.org/10.3390/app10041278
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 1278 2 of 15

observer is discussed for estimating states and reconstructing actuator and sensor faults simultaneously
in the presence of uncertainties, measurement noise, and output disturbances [9,10].

For practical application in engineering, a neural adaptive observer has been developed to
detect faults in sensors and actuators of unmanned aerial vehicle (UAV) systems. In the design,
weighting parameters of the Neural Network (NN) were updated by using the Extended Kalman
Filter (EKF). The proposed fault detection strategy was applied to a nonlinear dynamic model of
UAV for evaluation [11]. Mohand Arab Djeziri et al. also dealt with the embedded fault detection
and isolation (FDI) / fault-tolerant control approach applied to an over-actuated electric vehicle [12].
A new scheme based on a nonlinear dynamic model is also designed for sensor fault detection and
isolation (FDI) in a UAV system. In the proposed design, the NN is used as an observer for faults of
UAV sensors, and weighting parameters of the NN are updated by using the EKF [13]. Fault-tolerant
control (FTC) for vehicle Steer-by-Wire (SBW) systems in the presence of an actuator fault and bounded
uncertainties has been proposed. A fault observer was developed to assess fault information and faulty
SBW systems. The minimax model predictive control in the delta domain was deployed to achieve
tracking performance in the event of an actuator fault, system uncertainties, and disturbances [14,15].
Yosra Rkhissi-Kammoun et al. focused on single and multiple current FDI sensors for induction motor
drives in an electric vehicle; two models based on diagnostic methods were proposed; the first one was
a differential algebraic estimation of fault dynamics and the second one was based on a combination
of the Robust Integral Sign of the Error observer [16]. Lie et al. investigated the adaptive FTC and
fault reconstruction problem for autonomous underwater vehicles (AUVs) subject to ocean current
disturbance and modeling uncertainty [17]. For fault diagnosis of wind turbine systems, Silvio Simani
and Paolo Castaldi presented viable fault detection and isolation techniques which rely on fault
estimation using data-driven methods and effective tools for managing partial knowledge of system
dynamics, as well as noise and disturbance effects [18].

In contrast to previous publications, the observer designed in this study is not related to the
object model, and the method is universal. With respect to fault reconstruction in the framework of
FTC, an improved second-order SMO is designed to estimate the thruster fault effect. Considering
the characteristics of the observer and the fact that weight of the forklift cargo changes with time,
an adaptive sliding mode observer (ASMO) based on the forklift sensor fault model with output
disturbance is proposed. It solves the problem that some fault reconstruction methods demand the
upper bound value of the fault. According to the adaptive algorithm, adjustable gain parameters
are adjusted adaptively without knowing the upper bound of the unknown fault, and the output
disturbance can also be limited. The method is fairly robust and is more in accordance with the
actual situation.

The paper has the following structure: Section 2 presents the three-degree-of-freedom (3-DOF)
forklift model and the sensor fault model; Section 3 proposes the ASMO; in Sections 4 and 5, sensor
fault reconstruction and its improvement are presented; in Section 6, validation of the experiment is
given; finally, the discussion and the conclusions are given.

2. Forklift Model

2.1. 3-DOF Forklift Model

Considering the complexity of modeling, the forklift dynamics model is simplified to a 3-DOF
vehicle model, i.e., the roll motion around the x-axle, the lateral motion along the y-axle, and the yaw
motion around the z-axle, with the horizon as the x-o-y plane, and the vertical direction as the z-axis.
The 3-DOF forklift model is shown in Figure 1.



Appl. Sci. 2020, 10, 1278 3 of 15Appl. Sci. 2020, 10, x FOR PEER REVIEW 3 of 17 

a

 

(a) 

O

 

(b) 

Figure 1. Three-degree-of-freedom (3-DOF) forklift model: (a) Top view; (b) Rear view. 

The dynamic forklift model is given as follows [19]: 
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Figure 1. Three-degree-of-freedom (3-DOF) forklift model: (a) Top view; (b) Rear view.

The dynamic forklift model is given as follows [19]:
Ix

.
p− Ixz

.
ωr = Msghlψ−Kψψ−Cψp + Mshlvx(

.
β+ωr)

Mvx(
.
β+ωr) −Mshl

.
p = Fyl f + Fyr f + Fylr + Fyrr

Iz
.
ωr − Ixz

.
p = −b(Fyl f + Fyr f ) + a(Fylr + Fyrr)

Fy = kα

(1)

where M is the total mass of the vehicle, Ms is the sprung mass of the vehicle, hl is the distance between
the original center of the forklift and the roll center, vy and vx are the longitudinal velocity and the
lateral velocity at the center of gravity of the vehicle, respectively, ωr is the yaw rate of the forklift, β is
the sideslip angle of the forklift, ψ is the body roll angle, p is the roll velocity,

.
p is the roll acceleration,

Kψ is the total roll rate, Cψ is the roll damping, Ix and Iz are the moment of inertia around the x-axis and
the z-axis, respectively, Ixz is the product of Ix and Iz, k1, and k2 are the front and the rear tire cornering
stiffness values, respectively; a and b represent the distances from the center of gravity to the front
and the rear axles, respectively. Additionally, Fyli and Fyri, denote the left and right lateral tire forces,
respectively, and i represents the front and the rear. α, which is directly proportional to F (Fyl f , Fylr,
Fyr f , Fyrr, Fyri), denotes the sideslip angle of a tire.

As β is always small enough, it can be approximated as

β ≈ tan β =
vy

vx
(2)

Based on this, sideslip angles of the front and rear tires can be approximated as

α f = β+
a
vx
ωr − δ f −R fψ (3)

αr = β−
b
vx
ωr −Rrψ (4)

where δ f denotes the front steering angle, and R f and Rrare the roll steer coefficients of the front and
rear wheels, respectively.

According to (1)–(4), the state space of a forklift can be derived as follows by considering [ωr, β,ψ, p]
as state vectors and u(t) = δ f as the input vector [5]:{ .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t)

(5)
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where

A = M−1
1 M2 B = M−1

1 M3 C =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


M1 =


0 Mvx 0 −Mshl
Iz 0 0 −Ixz

−Ixz −Mshlvx 0 Ix

0 0 1 0

 M3 =


k1

k1a
0
0


M2 =


−k1a+k2b

vx
−Mvx −k1 − k2 (k1R f + k2Rr) 0

−
k1a2+k2b2

vx
−ak1 + bk2 (k1aR f − k2bRr) 0

Mshlvx 0 −(Kψ −Msghl) −Cψ
0 0 0 1


2.2. Sensor Fault Model of a Forklift

Considering the external output disturbance and the cargo uncertainty, the equivalent sensor fault
model of a forklift can be defined as (6) when sensor faults occur.{ .

x(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Hd(t) + F f

(6)

where x(t) denotes the unmeasurable state vector, u(t) denotes the measurable input vector, y(t)
denotes the measurable output vector, d(t) denotes external output uncertainties and the nonlinear
term, f denotes the sensor fault, H denotes the external interference matrix (provided), F denotes the
known distribution matrix of sensor faults; and A, B, and C are constant matrices (also provided).

Assuming that multiple sensor faults occur, the model can be described as follows:

.
x(t) = Ax(t) + Bu(t)
y1(t) = C1x(t) + H1d(t) + F1 f1

...
ym(t) = Cmx(t) + Hmd(t) + Fm fm

(7)

where m denotes the number of sensors that occur faults.
The sensor faults model (7) can be simplified as (8). Divide (7) into multiple single sensor fault

models for sensor fault detection. When multiple sensor faults occur simultaneously, the corresponding
part can be detected in detail to perform fault detection and reconstruction [20]:{ .

x(t) = Ax(t) + Bu(t)
yi(t) = Cix(t) + Hid(t) + Fi fi

(8)

where fi denotes the ith sensor fault.
If state variable z is defined as the first-order low-pass filtering output of y(t) [21], the sensor fault

can be transformed into an actuator fault:

.
zi = −Asizi + Asiyi (9)
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where Asi is the stable matrix of appropriate dimensions. Substituting (9) for (8), we can get
[ .

x
.
zi

]
=

[
A 0

AsiCi −Asi

][
x
zi

]
+

[
B

AsiGi

]
u +

[
0

AsiHi

]
θ(t) +

[
0

AsiFi

]
fi

zi =
[

0 I1
][ x

zi

] (10)

A new state variable and the corresponding matrix can be expressed as follows:

xi =
[

x zi
]T

, yi = zi, Ai =

[
A 0

AsiCi −Asi

]
, Bi =

[
B

AsiGi

]
, Ci =

[
0 I

]
, Hi =

[
0

AsiHi

]
, Fi =

[
0

AsiFi

]

Then, when the ith sensor fault occurs, the model can be expressed as follows:
.
xi(t) = Aixi(t) + Biu(t) + Hid(t) + Fi fi
yi(t) = Cixi(t)

(11)

Introduction of state variable z to Equation (11) converts the sensor fault into a pseudo-actuator
fault. It forms an augmented state space system [2], and a single sensor fault model is constructed.

3. Design of the Adaptive Sliding Mode Observer

To design the corresponding ASMO, the following assumptions are proposed:

Hypothesis 1. (A, C) is observable.

Hypothesis 2. Sensor faults are bounded matrices. It means there exists γi > 0, ‖ fi‖ ≤ γi and the value of γi
is unknown.

Hypothesis 3. The external disturbance is a bounded matrix. It means there exists ς > 0, ‖θ(t)‖ ≤ γi.

Hypothesis 4. (Ai, Ci) is observable, and there exists appropriate matrix Li, Di, Ki, positive definite

matrix Pi and Qi, such that (Ai − LiCi) remains stable, PiFi = C
T
i DT

i , PiHi = C
T
i KT

i and
(
Ai − LiCi

)T
Pi +

Pi
(
Ai − LiCi

)
= −Qi.

Hypothesis 5. rank(CiFi) = rank(Fi) = 1. System (11) is a minimum phase system. It means the invariant
zeros of the system are located on the left side of the complex plane. For all complex numbers satisfying R(s) ≥ 0,
(12) holds true.

rank


sI −Ai 0 0
−AsiCi sI + Asi −Asi

0 I1 0


= rank

[
sI −Ai

]
+ 2

(12)

Therefore, the invariant zeros of the system are the characteristic values of Ai.
According to sensor fault model (11), the SMO can be described as [22]:

.

x̂i(t) = Aix̂i(t) + Bu(t) + Li(yi − ŷi) + Fivi

ŷi(t) = Cix̂i(t)
(13)
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where x̂i(t) is the state observation vector of xi(t), Li is the gain matrix of the observer to be designed,
eyi = yi − ŷi is the output estimation error, vi is the discontinuous sliding mode control input vector
which is used to cut off the effect of fault fi, and it is expressed as follows:

vi =

 ρi(t)
Dieyi
‖Dieyi‖

eyi , 0

0 eyi = 0
(14)

where ρi(t) denotes the adjustable gain parameter with the advantage of adaptive adjustment; it is
designed using the corresponding adaptive algorithm without knowing the upper limit of the unknown
sensor fault. The adaptive algorithm is expressed as follows:

dρi(t)
dt

= ηi‖Dieyi‖sgn(‖Dieyi‖ − λi), i = 1, · · ·m (15)

ρi(0) > 0, ηi < 2, 0 < λi < 1, i = 1, · · ·m (16)

According to (14), when sgn(‖Dieyi‖ − λi) = 1, adjustable gain parameter ρi(t) increases, and the
increase rate is proportional to ‖Dieyi‖. Furthermore, when sgn(‖Dieyi‖ − λi) = −1, ρi(t) decreases.
It means that once a sliding mode motion occurs, which means ‖Dieyi‖ is close to zero, ‖Dieyi‖ ≤ λi
when λi takes a minor constant. Then, the adjustable gain parameter changes a little, which ensures
that the sliding mode adjustable parameter is not too large, so that the chattering phenomenon caused
by the excessive gain parameter can be weakened to some extent.

Lemma 1. The adaptive adjustment law of the adjustable gain parameter in (14) should observe the following
condition: the upper limit of ρi(t) is ρ∗i and ρ∗i > γi [23].

The state estimation error is defined as follows:

ei = xi − x̂i (17)

By subtracting Equation (12) from Equation (11) when the ith sensor fails, the deviation equation
of the ith observer is: .

ei = (Ai − LiCi)ei + Hid(t) + Fi( fi − vi) (18)

Theorem 1. Based on the above definitions, when the ith sensor fails and the following conditions are met:

(1) ‖ei‖ > 2‖Pi‖‖Hi‖ω/λmin(Qi)

(2) LMI:

 (Ai − LiCi)
T

Pi + Pi(Ai − LiCi) 0
0 −Pi

 ≤ 0,

the dynamic systems of the state estimation error are asymptotically stable.

Proof. The Lyapunov function is defined as follows:

V(ei) = ei
TPei +

1
2
(ρi − ρ

∗

i )
2 (19)



Appl. Sci. 2020, 10, 1278 7 of 15

and its derivative is calculated as:

.
V(ei) = ei

T
[
(Ai − LiCi)

T
Pi + Pi(Ai − LiCi)

]
ei

+2ei
TPiFi( fi − vi) +

.
ρi(ρi − ρ

∗

i ) + 2ei
TPiHid(t)

= −‖ei‖
[
λmin(Qi)‖ei‖ − 2‖Pi‖‖Hi‖ω

]
+2ei

TPiFi( fi − vi) + ηi(ρi − ρ
∗

i )‖Dieyi‖sgn(‖Dieyi‖ − λi)

≤ − ‖ei‖
[
λmin(Qi)‖ei‖ − 2‖Pi‖‖Hi‖ω

]
+

(
2γi − 2ρi + ηi(ρi − ρ

∗

i )
)
‖Dieyi‖

= −‖ei‖
[
λmin(Qi)‖ei‖ − 2‖Pi‖‖Hi‖ω

]
+

(
2γi − 2ρi + 2ρ∗i − 2ρ∗i + ηi(ρi − ρ

∗

i )
)
‖Dieyi‖

= −‖ei‖
[
λmin(Qi)‖ei‖ − 2‖Pi‖‖Hi‖ω

]
+

[
2(γi − ρ

∗

i ) −
∣∣∣ρi − ρ

∗

i

∣∣∣(ηi − 2)
]
‖Dieyi‖

(20)

Combined with the condition in Theorem 1,
.

V(ei) < 0 and ‖ei‖ converges in the following domain:

U(ei) =
{
‖ei‖ ≤ 2‖Pi‖‖Hi‖ω/λmin(Qi)

}
(21)

4. Design of the Sensor Fault Reconstruction

The ASMO-based state estimation of the dynamic system is the purpose of reconstruction. In fact,
the state variable will reach the sliding mode surface in limited time and stay there. There exists the
following transformation matrix:

T ∈ Rn+1 =

 (Ci)
T
⊥

Pi

Ci

 (22)

where (Ci)⊥ ∈ R(n+1)×n is a nonsingular matrix and the null space of Ci. Therefore, (Ci)⊥ is the

orthogonal complement space of C
T
i . Then,

Tei =

(
e1i
eyi

)
= ẽi (23)

The state estimation error under the new coordinates is
.

ẽi = T(Ãi)T−1̃ei + TFi( fsi − vi) + THiθ(t) (24)

According to transformation matrix T and Ci((Ci)⊥) = 0, the following is true:

T(Ãi)T =

 Ã11i Ã12i

Ã21i Ã22i

 (25)

TFi =

 0

CiP−1
i C

T
i DT

i

 (26)

TFivi =

[
0

v2i

]
(27)

v2i = ρiCiP−1
i C

T
i DT

i
Dieyi
‖Dieyi‖

= CiFiv(t)
(28)
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THi =

 0

CiP−1
i C

T
i KT

i

 (29)

Under the new coordinates, (24) can be divided as follows:

.
ẽ1i = Ã11ie1i + Ã12ieyi (30)

.
ẽyi = Ã21ie1i + Ã22ieyi + CiP−1

i C
T
i KT

i d(t)

+CiP−1
i C

T
i DT

i fi(t) −CiP−1
i C

T
i DT

i vi(t)
(31)

If the states of the error system arrive at the sliding mode surface in the finite time, which means
.
ẽyi = eyi = 0, (30) and (31) can be transformed to the following:

.
ẽ1i = Ã11ie1i (32)

0 = Ã21ie1i + CiP−1
i C

T
i DT

i fi(t)

−CiP−1
i C

T
i DT

i vi(t) + CiP−1
i C

T
i KT

i d(t)
(33)

According to PiFi = C
T
i DT

i , e1i → 0 , we obtain the following:

CiFi fi(t) ≈ CiFivi(t) −CiHid(t) (34)

As rank(CiFi) = 1, and there exists the following pseudo inverse,

(CiFi)
+
=

[
(CiFi)

T
(CiFi)

]−1
(CiFi)

T
(35)

W = −(CiFi)
+

CiHi (36)

fsi(t) can be reconstructed as

fi(t)→
[
(CiFi)

+
(CiFi)

]
vi(t) + Wd(t) (37)

In order to reduce chattering of the sliding mode, the sliding mode control input vector can be
adjusted as follows:

vi =

 ρi(t)
Dieyi

‖Dieyi‖+δi
; i f eyi , 0

0 ; i f eyi = 0
(38)

where δi is a small positive constant.
The fault value can be approximated as

fi(t)→ ρi

[
(CiFi)

+
(CiFi)

] Dieyi

‖Dieyi‖+ δi
− (CiFi)

+
CiHid(t) (39)

5. Improvement for Fault Reconstruction

To separate the sensor fault from the external output, (26) and (29) can be changed to (40) and
(41) separately.

F̃i = TFi =

 0

CiP−1
i C

T
i DT

i

 =
 F̃i1

F̃i2

 (40)
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H̃i = TH̃i =

 0

CiP−1
i C

T
i KT

i

 =
 H̃i1

H̃i2

 (41)

Hypothesis 6. There exists a nonsingular matrix R, which satisfies

R
[

H̃i2 F̃i2

]
=

(
E1 E2

0 E3

)
(42)

where E3 is a nonsingular matrix.

Lemma 2. Hypothesis (6) enables that the sensor fault reconstruction value can be separated from the external
output, and makes accurate reconstruction of sensor faults possible. It is equivalent to the row operation which

makes
[

H̃i2 F̃i2

]
into the upper triangular matrix.

According to (30) and (31), multiple (31) with nonsingular matrix R, we obtain the following:

R
.
ẽyi = RÃ21ie1i +RÃ22ieyi+(

E1 E2

0 E3

)(
d(t)
fi(t)

)
−RCiP−1

i C
T
i DT

i vi(t)
(43)

If the states arrive at the sliding mode surface in the finite time, which means
.
ẽyi = eyi = 0, (43) can

be changed to

RCiP−1
i C

T
i DT

i vi(t)→
(

E1 E2

0 E3

)(
d(t)
fi(t)

)
(44)

Therefore, according to (44) and (38), robust estimation can be achieved, and the value of the
sensor fault can be reconstructed as follows:

f̂i(t)→ ρiE
−1
3 R2CiFi

Dieyi

‖Dieyi‖+ δi
(45)

6. Experimental Verification

We used a TFC35 electric forklift manufactured by Hefei Banyitong Science and Technology
Development Co., Ltd. (Hefei, China) as the study object. The wheel speed sensor, the steering
wheel sensor, the yaw rate sensor, and the roll rate sensor were installed during the experiment.
The maximum wheel speed was used as the estimation of the vehicle speed. The experiment was
carried out in a warehouse with 20% indoor relative humidity. The experimental environment is
shown in Figure 2, and the main parameters of the forklift are shown in Table 1. The moving speed

is set to 15 km/h. The external disturbance is H =
[

0.1 0 0 0.04
]T

, the output disturbance is
θ(t) = sin(2t), and the distribution matrix of sensor faults is F = C. The parameters of the ASMO are
set as ρ1(0) = ρ2(0) = 10, η1 = η2 = −100, λ1 = λ2 = 0.5.



Appl. Sci. 2020, 10, 1278 10 of 15

Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 17 

6. Experimental Verification 

We used a TFC35 electric forklift manufactured by Hefei Banyitong Science and Technology 

Development Co., Ltd. (Hefei, China) as the study object. The wheel speed sensor, the steering wheel 

sensor, the yaw rate sensor, and the roll rate sensor were installed during the experiment. The 

maximum wheel speed was used as the estimation of the vehicle speed. The experiment was carried 

out in a warehouse with 20% indoor relative humidity. The experimental environment is shown in 

Figure 2, and the main parameters of the forklift are shown in Table 1. The moving speed is set to 15 

km/h. The external disturbance is 0.1 0 0 0.04
T

H     , the output disturbance is    sin 2θ t t

, and the distribution matrix of sensor faults is F = C. The parameters of the ASMO are set as 

1 2
(0) (0) 10ρ ρ  , 1 2

= 100η η  , 1 2
0.5λ λ  . 

 

Figure 2. Experimental platform. 

Table 1. Main parameters of the forklift. 

Symbol Description Values or Units 

M Mass of vehicle 8720 kg 

s
M  Sprung mass 7500 kg 

z
I  Yaw rate of inertia around the z-axis 3650 2kg m  

x
I  Yaw rate of inertia around the x-axis 1800 2kg m  

xz
I  

Products of inertia around the x-axis and the z-

axis 
500 2kg m  

ψ
K  Total roll rate 65,690 Nm/rad 

ψ
C  Roll damping 2100 Nm/(rad/s) 

l
h  

Distance from the center of gravity to the roll 

center 
0.3 m 

a 
Distance from the center of gravity to the rear 

axle 
1.2 m 

b 
Distance from the center of gravity to the front 

axle 
0.6 m 

Figure 2. Experimental platform.

Table 1. Main parameters of the forklift.

Symbol Description Values or Units

M Mass of vehicle 8720 kg
Ms Sprung mass 7500 kg
Iz Yaw rate of inertia around the z-axis 3650 kg·m2

Ix Yaw rate of inertia around the x-axis 1800 kg·m2

Ixz Products of inertia around the x-axis and the z-axis 500 kg·m2

Kψ Total roll rate 65,690 Nm/rad
Cψ Roll damping 2100 Nm/(rad/s)
hl Distance from the center of gravity to the roll center 0.3 m
a Distance from the center of gravity to the rear axle 1.2 m
b Distance from the center of gravity to the front axle 0.6 m
k1 Corning stiffness of the front axle 85,000 N/rad
k2 Corning stiffness of the rear axle 55,000 N/rad
R f Roll-steering parameter of the front axle 0.07
Rr Roll-steering parameter of the rear axle 0.05

Assume that forklift sensor faults occur in different feedback channels: yaw rate sensor faults and
roll rate sensor faults. The expressions are as follows:

fs1 =

{
3, 12s ≤ t < 17s
0, others

(46)

fs2 =


0.2(t− 10), 10s ≤ t < 13s
0.6, 13s ≤ t < 15s
0, others

(47)

The double-lane-change (DLC) operating condition is often used to test lateral stability of vehicles.
The experiment was conducted with a human operator, and the wheel angle sensor was installed to
measure the steering wheel angle. The steering angle of the front wheel is shown in Figure 3.
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Not considering the output disturbance, the signals of the yaw rate sensor and the roll rate sensor
without faults are shown in Figure 4.
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Not considering the output disturbance, the signals of the yaw rate sensor and the roll rate sensor 
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(a) (b)

Figure 4. (a) The yaw rate sensor signal without a fault; (b) The roll rate sensor signal without a fault.

Not considering the output disturbance, Figure 5a shows the fault reconstruction value and the
fault true value of the yaw rate sensor, and Figure 5b shows values of the roll rate sensor. The observer
gives the fault reconstruction value of sensors during faults and the true value of the forklift when no
faults take place. To compare the effectiveness of the ASMO, an SMO proposed in [23] is also shown
in this manuscript. As the parameter of the SMO is determined by the upper bound of unknown
faults, the error value of the SMO reconstruction value is larger than the ASMO. It means that without
knowing the upper bound of faults, the parameter of the SMO cannot be determined precisely, and the
result is also not as good as the ASMO. It is clear that an ASMO can detect faults of yaw rate and roll
rate sensors without knowing the upper bound of faults.



Appl. Sci. 2020, 10, 1278 12 of 15

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17 

(a) (b) 

Figure 4. (a) The yaw rate sensor signal without a fault; (b) The roll rate sensor signal without a 

fault. 

Not considering the output disturbance, Figure 5a shows the fault reconstruction value and the 

fault true value of the yaw rate sensor, and Figure 5b shows values of the roll rate sensor. The observer 

gives the fault reconstruction value of sensors during faults and the true value of the forklift when 

no faults take place. To compare the effectiveness of the ASMO, an SMO proposed in [23] is also 

shown in this manuscript. As the parameter of the SMO is determined by the upper bound of 

unknown faults, the error value of the SMO reconstruction value is larger than the ASMO. It means 

that without knowing the upper bound of faults, the parameter of the SMO cannot be determined 

precisely, and the result is also not as good as the ASMO. It is clear that an ASMO can detect faults 

of yaw rate and roll rate sensors without knowing the upper bound of faults. 

 

(a) 

 

(b) 

Figure 5. (a) Fault and its reconstruction value of the yaw rate sensor; (b) Fault and its reconstruction 

value of the roll rate sensor. 

ASMO: Adaptive sliding mode observer; SMO: sliding mode observer. 

 

As shown in Figure 6, compared with no output disturbance, the signals of the yaw rate sensor 

and the roll rate sensor with output disturbance produce high fluctuation and cannot accurately 

reflect forklift conditions. 

  

Figure 5. (a) Fault and its reconstruction value of the yaw rate sensor; (b) Fault and its reconstruction
value of the roll rate sensor. ASMO: Adaptive sliding mode observer; SMO: sliding mode observer.

As shown in Figure 6, compared with no output disturbance, the signals of the yaw rate sensor
and the roll rate sensor with output disturbance produce high fluctuation and cannot accurately reflect
forklift conditions.
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Figure 6. (a) The yaw rate sensor signal without a fault; (b) The roll rate sensor signal without a fault.

In Figure 7, compared with the SMO, the ASMO can reconstruct yaw rate sensor faults and roll rate
sensor faults more effectively. On the other hand, the ASMO can also suppress external output disturbance.
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As shown in Figure 8, based on the adaptive algorithm, adjustable gain parameters can change
with the fault amplitude and the external output disturbance. When a fault occurs, values of the
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adjustable parameters rise because of the increase in state estimation. And as fs1 is higher than fs1, ρ1 is
higher than ρ2. When the fault is removed, the sgn(‖Dieyi‖ −λi) = −1, ρi(t) decreases correspondingly.
It means that the ASMO can improve its fault-tolerant capability to deal with possible unknown faults.
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7. Conclusions

To solve the problem of multi-sensor faults of forklifts, an ASMO-based sensor fault diagnosis
method is proposed. First, for the 3-DOF model of electric forklifts, a linear state equation with output
disturbance is constructed as its equivalent sensor fault model. By defining auxiliary state variables
as output signal filters, sensor faults are transformed into actuator faults. Then, according to the
fault model and the sliding mode control theory, an ASMO-based method of fault reconfiguration for
multiple sensors is presented. Through the adaptive algorithm, multiple adjustable gain parameters of
the ASMO can be adaptively adjusted with the change of fault amplitude and external disturbance
without any prior assumptions. The comparison between the true value of a forklift fault and the
reconstruction value shows that sensor faults can be reconstructed well. This verifies the effectiveness
of the method.

Sensor fault reconstruction has become one of the most popular research topics in recent years.
It provides the foundation and premise for the fault-tolerant control of electric vehicles. Based on
the fault diagnosis, an FDI–FTC scheme was developed for an over-actuated electric vehicle with
decentralized control in the presence of nonlinear disturbances to improve trajectory tracking of
an autonomous vehicle in faulty situations [5]. Jia Qingxian et al. addressed the problem of integrated
fault reconstruction and fault-tolerant control in linear systems subject to actuator faults via learning
observers (LOs) [24]. A reconfigurable fault-tolerant controller was designed on the basis of the
constructed LO to compensate for the influence of actuator faults by stabilizing the closed-loop
system. All these papers provide the example of fault-tolerant control based on fault reconstruction for
future studies.
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