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Abstract: An approach based on the hidden Markov model (HMM) is proposed for risk performance
reasoning (RPR) for the bauxite shipping process by Handy carriers. The unobservable (hidden) state
process in the approach aims to model the underlying risk performance, while the observation process
was formed from the time series of risk factors. Within the framework, the log-likelihood probability
was used as the measure of similarity between historical and current data of risk reasoning factors.
Based on scalar quantization regulation and risk performance quantization regulation, the RPR
approach with different step sizes was conducted on the operational case, the performance of which
was evaluated in terms of effectiveness and accuracy. The reasoning performance of the HMM
was tested during the validation period using three simulated scenarios and one accident scenario.
The results showed significant improvement in the reasoning capacity, and satisfactory performance
for numerical risk reasoning and categorical performance reasoning. The proposed model is able
to provide a reference for risk performance monitoring and threat pre-warning during the bauxite
shipping process.

Keywords: risk performance reasoning; hidden Markov model; Handy bauxite carrier; process safety;
performance evaluation

1. Introduction

Bauxite is abundant, totaling 30 billion tons globally in 2018, according to the data from the United
States Geological Survey (USGS). The natural distribution of bauxite is extremely uneven, mainly
concentrated in Africa, Oceania, South America, and Southeast Asia. China’s demand for imported
bauxite increased sharply from about 2.3 million tons in 2007 to 82.62 million tons in 2018 [1]. Panamax
and Handy carriers transport 90% of the bauxite via shipping [2]. Here, Handy carrier is the collective
term that refers to Handysize and Handymax bulk carriers. Handy carriers play an important role in
bauxite shipping, accounting for 48% of the total industry. Meanwhile, 74% of deaths in the industry
were linked to accidents involving Handy bulk carriers [3–6]. The liquefaction of bauxite during
transportation is an important cause of ship accidents, directly responsible for more than 80 casualties
of seafarers [7].

The basic reason for liquefaction is that the moisture content of bauxite exceeds the transportable
moisture limit (TML). Influenced by the effect of the ship’s stability and its cargo properties in a
complex shipping process, bauxite with a high moisture content carried by Handy carriers tends
to liquefy, which threatens the stability and safety of the ship. The bauxite performance, dynamic
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ship stability, and maritime environment have important effects on the risk level of the carrier during
the transportation process. Risk identification and monitoring can improve the capacity for risk
prevention on bauxite carriers. The study of risk reasoning of the transportation process based on
cargo information and uncertain weather and sea conditions may allow more time for an emergency
response, thus reducing the risk of loss or damage. A hidden Markov model (HMM)-based approach
is introduced here to reveal the factor and time correlations of the observation index and hidden risk,
thereby achieving risk reasoning for the bauxite transportation process.

The organization of this paper is as follows: recent studies related to bauxite liquefaction and its
risk reasoning are reviewed in Section 2. The research theory and the model for reasoning are presented
in Section 3. The model is applied to specific cases in Section 4, where the results are analyzed for
effectiveness and accuracy. Section 5 presents the analysis and discussion of this study, encompassing
scenario planning. Conclusions are drawn in Section 6.

2. Literature Review

2.1. System of Maritime Transportation

Maritime transportation is a complex process, which involves many factors such as human, ship,
environment, management, and cargo. In order to carry out risk reasoning for the transportation process,
it is necessary to determine any accident mechanisms related to cargo. Cargo has a complex correlation
with the other subsystems in the operation safety of a ship. For example, Li [8] studied the safety
evolution of seaborne dangerous chemicals under various uncertain conditions. The aforementioned
research paved the way for a new mode of operation safety research for specific cargo ships. Unlike
dangerous chemicals, cargoes that may liquefy are not inherently dangerous. Nevertheless, danger can
occur when cargoes start moving on the carrier. Ma [9] studied the shipping risk of ore concentrate
powder and revealed the accident mechanisms through risk identification of the system, with factors
including human, ship, environment, management, and cargo. Bauxite is different from ore concentrate
powder. The potential risk of bauxite liquefaction during shipping is more prominent. Seaborne
bauxite presents potential danger when interacting with the carrier in a specific environment, and it is
necessary to develop an approach to study the transportation safety of bauxite on the basis of a safety
system engineering method.

2.2. Risk of Cargo Liquefaction

• Effect of moisture content

There are many influencing factors for transportation accidents involving cargoes that may liquefy.
It is necessary to identify and monitor the accident factors according to the mechanism of cargo
liquefaction, the ship’s stability, and the marine environment. Shen [10] found that the actual moisture
content of the cargo must not exceed the transportable moisture limit (TML) in order to prevent
liquefaction. However, bauxite with an initial moisture content lower than the TML may still exceed
the TML and liquefy due to changes in temperature and humidity during the transportation process.
Wang [11] found that observable indexes such as saturation and compactness can be used as key
indexes to measure the degree of liquefaction. A higher moisture content or saturation increases the
risk of liquefaction. The initial saturated or unsaturated state of cargo is disturbed by internal and
external factors; thus, the actual moisture content of cargo exhibits temporal fluctuation. It is critical to
avoid an increase in moisture content during the process of cargo production, storage, loading, and
navigation of the ship [2]. In order to strengthen the control of moisture content in the loading and
post-loading stages, Popek [12,13] proposed that biodegradable thermoplastic polymer material be
added to the concentrate to absorb moisture from granular pores, thereby preventing slippage and
transfer of concentrate during storage and transportation. Altun [14] proposed that the application of
suitable chemical filter aids in the filtration process of concentrate production could effectively reduce
the water content of different mineral products to be 10%–15% lower than the TML. By reducing
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the initial moisture content of the cargo, the liquefaction resistance of the cargo during shipping can
be improved.

• Effect of weather or sea

Heavy weather and adverse sea conditions are the main cause of many accidents involving Handy
bauxite carriers. Once the impact of the external environment on the ship and cargo deteriorates
into force majeure beyond the ship’s disaster resistance [15], disaster eventually occurs. Therefore,
special attention should also be paid to the complexity and variability of the environment of a sea
route [16,17]. Air humidity increases the risk of liquefaction and movement of highly absorbent solid
bulk cargo [18]. Furthermore, seawater often sweeps over the ship deck in heavy weather conditions,
resulting in water penetrating cargo holds, which may increase the cargo moisture content and affect
the safety of the ship’s operation. Moreover, wind affects the speed and rolling angle of the ship [19].
In the case of random waves, especially on heavy seas, ships roll at large angles, which can easily
lead to capsizing [20,21]. At the same time, ship rolling leads to cargo shifting. The initial shifting of
cargo after liquefaction and the heeling moment of external wind and wave eventually lead to the ship
capsizing [22]. Ship acceleration and kinematic waves affect cargo stability [23]. The hull vibration
caused by rolling and machinery operation is not only harmful to the safety of the ship structure [24],
but it can also change the characteristics of the cargo on board [25], even aggravating the liquefaction
of cargo [26].

2.3. Risk Response for Shipping Process

At present, some achievements were obtained in the monitoring and reasoning of cargo liquefaction.
Ju [27] quantitatively assessed the risk of liquefaction and its impact on ship stability by analyzing
time-domain characteristics for different amplitudes and frequencies and initial saturations of cargo.
Based on the effect of liquefaction on the ship’s intact stability, Andrei [28] proposed a method to
measure the heeling moment and the probability of cargo shifting caused by liquefaction. Munro [29]
investigated the relationship between resistivity changes and pore pressure in an equivalent cargo hold
model to monitor cargo liquefaction risks. Daoud [30] established a dynamic model through a static
numerical simulation to monitor the ship movement posture and cargo state at all times, and studied
the nickel liquefaction mechanism under swell using a nonlinear model [31]. Liu [32] developed a
transport risk system framework for navigation safety in heavy weather in collaboration with the
China Meteorological Administration for ships carrying cargoes that may liquefy in different seas.
However, there are still gaps in risk monitoring and reasoning for bauxite carriers in current research
and practice. For bauxite shipping, strengthening risk management in the whole process of shipping
is critical.

2.4. Accident History of Bauxite Carriers

At present, bauxite is not formally listed in Group A (cargo that may liquefy) by the International
Maritime Organization (IMO). The international maritime community still has doubts about its
liquefaction characteristics. Depending on the particular circumstances of any given shipment,
it would appear that bauxite may come with the risk of liquefaction and shift during shipping, which
can cause a vessel to capsize at a moment’s notice. Fortunately, up until 2 July 2013, none of the
incidents resulted in losses to vessels or crew members, according to data from the North P&I Club.
However, on 2 January 2015, M.V. Bulk Jupiter with 46,400 tons of bauxite capsized and sank in strong
winds and swells off the coast of Vietnam, killing 18 crew members. The disaster of Bulk Jupiter,
a Handy bauxite carrier, aroused a series of responses related to risks of the bauxite shipping process.

IMO requested that the global bauxite industry undertake research into the behavior and
characteristics of bauxite cargoes during ocean transportation. From 14 to 18 September 2015,
the second meeting of the Subcommittee on Cargo and Container Transport (CCC) of the Maritime
Safety Committee approved CCC.1/Circ.2 to remind people of the potential risks of bauxite in maritime
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transport [33]. Considering that Handy carriers do not have a special structural design for cargoes that
may liquefy, IMO recommends that the captain, on the basis of experience and relevant certifications,
may refuse to carry the cargo if the carrying of such cargo may fail to ensure the absolute safety of the
voyage; if the captain decides to carry it, necessary measures must be taken to ensure the safety of
the vessel.

In recent years, the Global Bauxite Working Group (GBWG) designated by the IMO carried out a
series of research studies on bauxite properties. From 11 to 15 September 2017, the fourth meeting of the
CCC Subcommittee adopted CCC.1/Circ.2/Rev.1 in the draft amendment to classify certain bauxite as
cargo that may liquefy, submitting it to the Maritime Safety Committee for consideration [34]. The 2019
amendments of the International Maritime Solid Bulk Cargoes (IMSBC) code was adopted by the 101st
session of the Maritime Safety Committee. The new individual schedule for bauxite fines as a Group A
cargo is expected to be implemented on 1 January 2021.

2.5. Risk Performance Reasoning for Bauxite Shipping Process

According to the research of the GBWG and the authors, an atypical motion of the ship (wobbling)
may also be indicative of cargo instability. Extreme care and appropriate action must be taken, taking
into account the provisions of relevant IMO instruments when handling and carrying bauxite in
bulk. Bauxite may suffer instability due to its moisture content, resulting in dynamic separation and
formation of liquid slurry (water and fine solids) above the solid material, resulting in a surface effect
which may significantly affect the ship’s stability. If left unchecked, this movement of cargo has the
potential to further reduce the stability of the ship, and the risk of capsizing will significantly increase.
Based on the knowledge of bauxite and its carrier, Wu [35] carried out a risk simulation on the first stage
of the bauxite maritime transportation process using the Markov chain cloud model, and obtained
spatial correlation between transportation risk and ship positions. This allowed risk reasoning of the
transportation process of bauxite carriers to be achieved through combining with weather and sea
forecast information.

The hidden Markov model has high applicability in reasoning. Chen [36] proposed a hidden
Markov model (HMM) framework for modified analogue forecasting (MAF) of meteorological droughts
to improve reasoning capacity and performance for a time series of the standardized precipitation index.
Joshi [37] used the Baum–Welch algorithm to optimize the parameters of a hidden Markov model for
temperature forecasts to reduce root-mean-square errors and improve reliability. Wu [15] introduced
a hidden Markov model to analyze the causes of accidents involving ships carrying liquefiable
cargoes and found that environmental deterioration was a direct cause and cargo liquefaction was
a fundamental cause. This study laid the foundation for risk reasoning of the bauxite shipping
process. Fabbri [38] carried out navigation risk assessment using meteorological and oceanographic
(METOC) methods, which provided a useful reference for the risk reasoning of Handy bauxite carriers,
embodying the performance of cargo.

Based on the initial state of bauxite, the carrier, and the meteorological dynamics of the routing,
the risk reasoning of bauxite carriers can be realized using real-time maneuvering data as input. This
paper attempts to establish an HMM-based approach for risk performance reasoning, which aims to
determine cargo performance and ship posture.

3. Methods

3.1. Theroy of Hidden Markov Model

3.1.1. Hidden Markov Model

An HMM is a probabilistic model describing double stochastic processes [39] with parameters,
which include Markov processes of hidden states and observation processes associated with hidden
states. The process of hidden state transition is not observed directly. The change in hidden state can
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be inferred by observing the sequence of indexes. Objective indexes can be divided into observed
variables which are convenient for direct measurement and hidden variables which cannot be directly
observed. That is to say, the risk state of the hidden variable needs to be judged using observed indexes.
The application of HMM can reduce the dependence on experts’ subjective experience. There is a
hierarchical independent mapping relationship between these observed indexes and hidden variables.
The correlation process between the hidden risk state and the observed state in the model is shown in
Figure 1.
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3.1.2. HMM Parameter Learning

The parameter learning algorithm is called the Baum–Welch algorithm [40], which iteratively
optimizes the parameters of the HMM. Let (Ω, F, P) be the probability space and {Yt}1 ≤ t ≤ T
and {Xt}1 ≤ t ≤ T be sequences of random variables of observable and hidden states, where
Xt : Ω→ S1, S2, . . . , Sm and Yt : F→ N or any set of possible states.

The specific implementation steps are as follows:
Step 1: In the given sample training space, the first observation sequence y = (y1, y2, . . . , yT)

is trained and the initial model parameters are re-estimated to obtain the model parameters
λ1 = (π1, A1, B1), where π1 stands for the distribution of hidden states, A1 is the transition probability
matrix, and B1 represents the distribution of observable states.

Step 2: The observation sequence y = (y1, y2, . . . , yT) is trained using the new re-estimated
parameters λ1 = (π1, A1, B1) to obtain the next new model parameters λ2 = (π2, A2, B2).

Step 3: Step 2 is repeated until the model converges. Using the three re-estimation equations
mentioned below, the initial parameters of the HMM model are updated from λ0 = (π0, A0, B0) to
λ = (π, A, B), satisfying P(y

∣∣∣λ) ≥ P(y
∣∣∣λ0).

The parameter re-estimation equations are as follows.

π′ = γ1(i) =
α1(i)·β1(i)∑m

i = 1 α1(i)·β1(i)
. (1)

at(i, j)′ =
ξt(i, j)
γt(i)

. (2)

bi(yt)
′ =

αt(i)·βt(i)∑m
i = 1 αt(i)·βt(i)

. (3)
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In Equation (1), π′ is the estimation of initial probability π, and it stands for the probability of the
hidden risk state Si at time t = 1; αt(i) represents the forward probability function of the observation
O = (y1, y2, . . . yt) at time t in state i, and βt(i) stands for the backward probability of the partial
observation sequence from time step t + 1 to the end. In Equation (2), at(i, j)′ is the estimation of state
transition probability at(i, j), and it stands for the quotient of frequency of the risk state transition
from state Si to S j divided by the frequency of the hidden state transition from state si to others;
ξt(i, j) = P

(
Xt = Si

∣∣∣Xt+1 = S j
)

is the probability of being in state Si at time t and state S j at time t +

1, while γt(i) = P(Xt = Si) is the probability of being in state Si at time t. In Equation (3), bi(yt)′

is the estimation of observation probability bi(yt), and it stands for the quotient of frequency of the
observed state Oi from hidden state Si divided by the frequency of observation from the hidden state
Si.

3.2. The Application of Hidden Markov Model

3.2.1. Description of Bauxite Shipping

• Process Risk

The process risk is a dynamic characterization of the risk state at any time during the system’s
operation. It is the output of the coupling effect of uncertain (random) events under the influence of
risk factors [41]. The process risk of bauxite shipping describes the development and evolution of the
bauxite shipping system between the safety and accident subsystems of Handy bauxite carriers, where
bauxite continuously interacts with the traffic environment over time.

• Risk performance

The risk performance indicates the general status of the risk at a particular time, as well as the
properties and characterization of the mechanism of the risk variation. The performance introduced in
risk research highlights the temporal processes and spatial spread. Based on the severity of consequence
and response, the risk performance of a process is quantified and classified as normal, medium, high, or
uncontrolled. The responses of the four-state sequence are undesired intervention, partial intervention,
consistent intervention, and invalid intervention, respectively.

3.2.2. Risk Performance Transition of Bauxite Shipping

The factors of risk reasoning include static variables, dynamic variables, and voyage variables.
Once a bauxite carrier is identified as a convenient bulk carrier, its ship parameters mostly represent static
variables, such as ship age and ship technical status, while dynamic variables are environmental, such
as relative length of ship (Length overall (LOA)/wavelength), wave, current, wind, and temperature.
Voyage variables refer to bauxite attributes and ship maneuvering. These variables are the components
of the risk evaluation system, and a change in their index values is related to the degree of system risk.
However, this degree of risk cannot represent the degree of risk of the whole system. Through the
risk evaluation index (observation variable), the expression of the risk state is established to indirectly
show the level of total risk.

The elements in the structural model of risk reasoning for the bauxite shipping process involve
objective indexes of the cargo, ship, and environment. The transition process between the risk state
of the Handy bauxite carrier and the reasoning indexes constitutes an HMM. The requirements of
parameter input and output in the hidden Markov model and its operation mechanism are shown in
Figure 2.
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3.2.3. HMM-Based Approach to Risk Performance Reasoning

The risk reasoning approach in an HMM framework can be achieved in several steps: data
learning, modeling of HMM for risk reasoning, reasoning of risk performance, and performance
evaluation of reasoning. The flowchart of the proposed model is shown in Figure 3.
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Firstly, the risk factors of the bauxite shipping process were identified based on the accident
data of “M.V Bulk Jupiter”, i.e., the Report of the Marine Safety Investigation into the Loss of
a Bulk Carrier. The principal factors were obtained using principal factor analysis (PFA) from a
dimensionality reduction of the risk factor set. The risk classification criteria were established after
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scalar quantification of the principal factors. Based on the first 50 groups of operational data of a
Handy bauxite carrier, the HMM was trained using the Baum–Welch algorithm. After the steps of
feature extraction, dimensionality reduction using PFA, and scalar quantization, the last nine groups of
operational data were input as test data into the HMM to obtain the log-likelihood probability, which
was then used for similarity recognition and risk performance reasoning. Then, the reasoned risk
performance of each factor was compared with the test data from the last nine groups to evaluate
the performance of risk reasoning in terms of classification effectiveness, measurement accuracy, and
reasoning sensitivity.

3.3. Modeling of HMM for Risk Performance Reasoning

3.3.1. Principal Factor Analysis

Based on the risk identification of the risk of bauxite shipping process, a total of 15 risk
factors (RFs) were obtained for the three types of factors: bauxite, Handy carrier, and environment.
After experimental analysis of the coupling effect of the bauxite and Handy carrier under complicated
marine conditions, seven principal factors (PF) were selected from the RFs, including static factors,
voyage factors, and dynamic factors, for risk reasoning of the bauxite shipping process. System of
principal factors is present in Figure 4.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 23 

scalar quantification of the principal factors. Based on the first 50 groups of operational data of a 

Handy bauxite carrier, the HMM was trained using the Baum–Welch algorithm. After the steps of 

feature extraction, dimensionality reduction using PFA, and scalar quantization, the last nine 

groups of operational data were input as test data into the HMM to obtain the log-likelihood 

probability, which was then used for similarity recognition and risk performance reasoning. Then, 

the reasoned risk performance of each factor was compared with the test data from the last nine 

groups to evaluate the performance of risk reasoning in terms of classification effectiveness, 

measurement accuracy, and reasoning sensitivity. 

3.3. Modeling of HMM for Risk Performance Reasoning  

3.3.1. Principal Factor Analysis 

Based on the risk identification of the risk of bauxite shipping process, a total of 15 risk factors 

(RFs) were obtained for the three types of factors: bauxite, Handy carrier, and environment. After 

experimental analysis of the coupling effect of the bauxite and Handy carrier under complicated 

marine conditions, seven principal factors (PF) were selected from the RFs, including static factors, 

voyage factors, and dynamic factors, for risk reasoning of the bauxite shipping process. System of 

principal factors is present in Figure 4.  

Vibration (X6)

Moisture content (X5)

Angle of repose (X4)

Origin (P1)

Moisture 
content (P2)

Carrier

Environment

Wind 
angle (P7)

Bauxite

Vibration (P3)

Technology 
condition (P4)

Wind (P5)

Wave (P6)

Origin (X1)

Wind angle (X15)

Technology condition (X10)

Wind (X11)

Wave (X13)

Current (X12)

 Ship age (X9)

 Temperature (X14)

 Draft (X8)

 LOA (X7)

Fine particles (X2)

Density (X3)
F

acto
r A

n
aly

sis (F
A

)

P
rin

cip
al F

acto
r A

n
aly

sis (P
F

A
)

 

Figure 4. System of principal factors for risk performance reasoning. 

3.3.2. Scalar Quantization 

 Factors and classification criteria 

With the rapid development of big data, much more information in maritime safety needs to be 

processed quickly. Studies on the quantitative risk analysis of ships are becoming more important 

[42]. Quantifying the factor values that can characterize the risk performance is helpful to explain 

their impact on the bauxite shipping process. In order to facilitate the application of the original data 

in the hidden Markov reasoning model, continuous values are discretized [43] and the risk grade is 

Figure 4. System of principal factors for risk performance reasoning.

3.3.2. Scalar Quantization

• Factors and classification criteria

With the rapid development of big data, much more information in maritime safety needs to be
processed quickly. Studies on the quantitative risk analysis of ships are becoming more important [42].
Quantifying the factor values that can characterize the risk performance is helpful to explain their
impact on the bauxite shipping process. In order to facilitate the application of the original data in the
hidden Markov reasoning model, continuous values are discretized [43] and the risk grade is divided
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by the interval value for the quantitative factors. The other qualitative factors can be transferred into
grades, as shown in Table 1.

Table 1. Factors and criteria of risk reasoning for Handy bauxite carrier. TML—transportable moisture
limit, FMP—Flow moisture point.

Observed Factor Factor Value Normal Risk Low Risk High Risk Uncontrolled

Origin (P1) Risk property Better Good Bad Worse
Moisture (P2) Absolute value <0.8 × TML 0.8 × TML–TML TML–FMP >FMP
Vibration (P3) Intensity scales Weak General Strong Violent

Technology (P4) Reliability Better Good Bad Worse
Wind (P5) Beaufort Scale 1–3 3–6 7–9 >9
Wave (P6) Wave scale 1–2 3–4 5–6 >7

Wind angle (P7) Intersection angle 0–30 or 150–180 30–60 or 120–150 60–80 or 100–120 80–100

Here, the range of risk grade values is based on the consideration of facilitating seafarers to classify
and control the aforementioned risk indexes. Considering the complexity of ship maneuvering, it is
difficult to accurately determine the risk level in the risk range of continuity for crews. For example,
clear risk guidance is necessary for emergencies in Beaufort 8 wind. Although the risk level of the
index changes when the actual index value is at the critical value of the adjacent risk level, the variables
are still insufficient to achieve the degree of mutation in the total risk reasoning. When the risk level is
very high, a sudden change in some key indexes may lead to a significant increase in the total risk of
the ship, which highlights the need to control disaster-causing factors in bauxite shipping.

• Quantization regulation of factors of risk performance

Based on the risk scale criteria of principal factors, each grade risk is defined as a standard value
of 1–4, representing normal, low risk, high risk, and uncontrolled risk, respectively. After the total
risk value is obtained by quantization and combination of the risk performance of principal factors,
the total risk scale can be obtained by scalar quantization. The risk value belonging to any risk scale
interval can be defined as the standard value of risk. When the total risk value Rtε(i, i + 1], then we
accept its risk scale St = i + 1 at moment t, where 0 < i < N, 1 ≤ t ≤ T (see Figure 5).

Appl. Sci. 2020, 10, x FOR PEER REVIEW 9 of 23 

divided by the interval value for the quantitative factors. The other qualitative factors can be 

transferred into grades, as shown in Table 1. 

Table 1. Factors and criteria of risk reasoning for Handy bauxite carrier. TML—transportable 

moisture limit, FMP—Flow moisture point. 

Observed Factor Factor Value Normal Risk Low Risk High Risk Uncontrolled 

Origin (P1) Risk property Better Good Bad Worse 

Moisture (P2) Absolute value <0.8 × TML 0.8 × TML–TML TML–FMP >FMP 

Vibration (P3) Intensity scales Weak General Strong Violent 

Technology (P4) Reliability Better Good Bad Worse 

Wind (P5) Beaufort Scale 1–3 3–6 7–9 >9 

Wave (P6) Wave scale 1–2 3–4 5–6 >7 

Wind angle (P7) Intersection angle 
0–30 or 

150–180 

30–60 or 

120–150 

60–80 or 

100–120 
80–100 

Here, the range of risk grade values is based on the consideration of facilitating seafarers to 

classify and control the aforementioned risk indexes. Considering the complexity of ship 

maneuvering, it is difficult to accurately determine the risk level in the risk range of continuity for 

crews. For example, clear risk guidance is necessary for emergencies in Beaufort 8 wind. Although 

the risk level of the index changes when the actual index value is at the critical value of the adjacent 

risk level, the variables are still insufficient to achieve the degree of mutation in the total risk 

reasoning. When the risk level is very high, a sudden change in some key indexes may lead to a 

significant increase in the total risk of the ship, which highlights the need to control disaster-causing 

factors in bauxite shipping. 

 Quantization regulation of factors of risk performance  

Based on the risk scale criteria of principal factors, each grade risk is defined as a standard 

value of 1–4, representing normal, low risk, high risk, and uncontrolled risk, respectively. After the 

total risk value is obtained by quantization and combination of the risk performance of principal 

factors, the total risk scale can be obtained by scalar quantization. The risk value belonging to any 

risk scale interval can be defined as the standard value of risk. When the total risk value 𝑅𝑡𝜖(𝑖, 𝑖 +

1], then we accept its risk scale 𝑆𝑡 = 𝑖 + 1 at moment t, where 0 < 𝑖 < 𝑁, 1 ≤ 𝑡 ≤ 𝑇 (see Figure 5). 

0 1 432Rt=1.4

S=2Risk scale 

Risk value 

S=1 S=3 S=4

 

Figure 5. Quantization regulation of factors of risk performance. 

3.4. Risk Performance Reasoning  

3.4.1. Similarity Recognition 

HMM parameters were trained using actual data of Handy bauxite carriers under normal 

conditions, representing a better cargo state, satisfactory ship conditions, and a good environment. 

Similarity recognition was performed using the Viterbi algorithm to obtain the maximum of 

log-likelihood probability, which is expressed as follows: 

𝐿𝐿𝑃𝑡 = log𝑃(𝑌𝑡 = 𝑂|𝜆), (4) 

where 𝐿𝐿𝑃𝑡 is the log-likelihood probability of the observations {𝑌𝑡} at the current time 𝑡 under 

the HMM of 𝜆. 

Figure 5. Quantization regulation of factors of risk performance.

3.4. Risk Performance Reasoning

3.4.1. Similarity Recognition

HMM parameters were trained using actual data of Handy bauxite carriers under normal
conditions, representing a better cargo state, satisfactory ship conditions, and a good environment.
Similarity recognition was performed using the Viterbi algorithm to obtain the maximum of
log-likelihood probability, which is expressed as follows:

LLPt = log P(Yt = O|λ), (4)

where LLPt is the log-likelihood probability of the observations {Yt} at the current time t under the
HMM of λ.

The next step is to detect the closest LLPt0 from the LLPt−max of the historical data and obtain the
risk performance at time t0. This function is expressed as follows:

Di f f (LLPt) =
∣∣∣log P(Yt = OFt|λ) − log P(Yt = OH |λ)

∣∣∣, (5)
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where Di f f (LLPt) is the difference between log P(Yt = OFt|λ) and log P(Yt = OH |λ),
log P(Yt = OFt|λ) indicates the max log-likelihood probability of the forecasted O at the current
time t under the HMM of λ, and log P(Yt = OH |λ) expresses the log-likelihood probability of the
historical O at the under the HMM of λ.

The series of Di f f (LLPt) was sorted in ascending order by the MATLAB function “[LLsort,
LLpos] = sort []”, from which the original element position was returned. Given n as the number of
steps, the n closest LLPt0 was obtained based on the n smallest Di f f (LLPt).

The above approach is called similarity recognition.

3.4.2. Risk Performance Reasoning of Factors

For each principal factor, the difference between the current risk value and the next reasoned
value is the same as the difference between the two adjacent risk values discovered using similarity
recognition. The reasoned value at time t + 1 can be obtained from the former risk value. The approach
can be expressed as follows: F1 −HK = 1

N
∑N

n = 1

(
H(n)

k+1 −H(n)
k

)
, k ∈ [1, K − 1]

Ft − Ft−1 = 1
N

∑N
n = 1

(
H(n)

k+1 −H(n)
k

)
, t ∈ [2, T]

(6)

where T is the length of series reasoned, K is the length of historical series, N is the number of the
closest LLP of HMM for the carrier at the current time, F1 is the first value, HK is the last historical risk
value which is also the benchmark of risk reasoning, Ft is the risk value reasoned at time t, Ft−1 is the
risk value reasoned at time t− 1, H(n)

k is the n closest historical risk value compared with the LLPt of

the benchmark and Ft−1, H(n)
k+1 is the next historical risk value of H(n)

k .
Nevertheless, it must be noted that, if F1 −HK > 0, then the reasoned (forecasted) risk value Ft

grows linearly at every moment based on Equation (6); therefore, the output of every step is normalized
using the quantization regulation.

3.4.3. Risk Performance Reasoning of Ship

The reasoned risk value of principal factors and the total risk value were set as intervals of the
risk state value ranging from 0–4. The risk performance of principal factors was reasoned through a
quantization of the risk grade using scalar quantization regulation. The quantization regulation of the
risk performance can be used to gain the total risk performance reasoning at any future time.

Reg. 1: when the risk grade of the moisture content (K2) is 1, that is, SK2 = 1, the total risk value
of the bauxite carrier is Rt = Average(SK1 : SK7), and then the total risk grade St can be obtained using
quantization regulation.

Reg. 2: when the risk grade of K2 is 2, that is, SK2 = 2, and the risk grade of vibration (K3) or
wind (K5) is between 2 and 3, that is, 2 ≤ ( SK3 or SK5) ≤ 3, the total risk value of the bauxite carrier is
St = max(S3, Average(SK1 : SK7)).

Reg. 3: when the risk grade of K2 is 2, that is, SK2 = 2, and the risk grade of K3 or
K5 is between 2 and 3, that is, SK3 or SK5 = 4, the total risk value of the bauxite carrier is
St = max(S4, Average(SK1 : SK7)).

Reg. 4: when the risk grade of K2 is 3, that is, SK2 = 3, the total risk value of the bauxite carrier is
St = max(S3, Average(SK1 : SK7)).

Reg. 5: when the risk grade of K2 is 4, that is, SK2 = 4, the total risk value of the bauxite carrier is
St = max(S4, Average(SK1 : SK7)).
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3.5. Performance Evaluation of Reasoning

3.5.1. Effectiveness Evaluation

The effectiveness evaluation of the risk performance reasoning can be expressed using the degree
of bias (DOB) and degree of detection (DOD), defined as follows:

DOB = Fi j − F ji =

∑4
i = 1

(
fi j − f ji

)
T

, (7)

DOD = Fii − F ji =

∑4
i = 1

(
fi j − f ji

)
T

, (8)

where i and j denote the ordinal values of the risk category, satisfying i and j ∈ (1, 2, 3, 4); T is the
length of series to be reasoned, and Fi j is the relative frequency of the forecast risk category i while the
observed risk category is j (a non-i interger value), which can be calculated as the count of fi j occasions
in all four risk categories divided by the length of the reasoned series. F ji can be similarly obtained.
Fii is the relative frequency of the forecast risk category equal to the observed risk category i which
can be calculated as the count of fii occasions in all four risk categories divided by the length of the
reasoned series.

The degree of bias compares the number of times a risk category was forecast to the number of
times the risk category was observed. It indicates that the forecast categories were over-forecast or
under-forecast with a value greater or less than 0, respectively, while a value of 0 describes unbiased
forecasts. The degree of detection is the fraction of occasions when the risk forecast category occurred
for occasions when it was also forecast. This value represents the success rate for detecting different
risk categories and ranges from −1 as completely wrong to 1 as completely accurate.

3.5.2. Accuracy Evaluation

The accuracy evaluation of the risk performance reasoning is expressed using the root-mean-square
error (RMSE) and modified Nash–Sutcliffe model efficiency coefficient (MNSE) [36], defined as follows:

RMSE =

√√√
1
T

T∑
t = 1

(O(t) − F(t))2, (9)

MNSE = 1−

∑T
t = 1(O(t) − F(t))2∑T

t = 1

(
O(t) −O

)2 , (10)

where O(t) and O are the observations and the mean values of the observations, respectively; F(t)
stands for the reasoned values, while T is the length of series to be reasoned.

RMSE is mainly used to represent the standard deviation of the differences between observations
and forecasts. The range of the RMSE lies between 0 and infinity. A value of 0 for the RMSE indicates
that the forecasts are as accurate as the mean of the observations, while bigger values show that the
reasoning model is worse than the observed expectation.

MNSE is used to measure the evaluation accuracy and is defined as one minus the sum of the
absolute squared differences between the observed and reasoned values divided by the sum of the
absolute squared differences between the observations and observed expectation. The range of the
MNSE lies between negative infinity and 1.0 (perfect match). A value of 0 for MNSE denotes that the
value reasoned is the same as the observed expectation, while negative values for MNSE show that the
reasoning model is worse fitted to the observation or explains relationships poorly compared to the
model defined using the mean value of observations.
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3.5.3. Sensitivity Evaluation

The data from the simulation scenarios and the accident scenario were used for a sensitivity
evaluation to judge the deviation of those scenarios from the normal state of bauxite shipping. The
deviation of the HMM-based risk reasoning approach is defined as the degree of sensitivity (DOS),
which is modified from the concept of the discrete degree of classification [44], in order to avoid invalid
measurements due to some LLPs being minus infinity. DOS is expressed as follows:

DOSi =
1
2
×

(
log Pmax(Oi|λ) − log Pmax(O0|λ)

log Pmax(Oi|λ)
+

log P2nd max(Oi|λ) − log P2nd max(O0|λ)

log P2nd max(Oi|λ)

)
× 100 (11)

where log Pmax(O0|λ) and log P2nd max(O0|λ) are the maximum and the secondary maximum of LLP
under the HMM of the normal scenario, respectively, while log Pmax(Oi|λ) and log P2nd max(Oi|λ) are
the maximum and the secondary maximum of LLP under the HMM for the i scenario, respectively.
Furthermore, the maximum and the secondary maximum of LLP are the first and second values of the
LLP series listed in descending order.

DOS ranges from 0 to 100. As DOS approaches zero, the total performance becomes more normal.
A greater DOS value denotes greater deviation of the risk performance from the normal.

4. Results

4.1. Data of Handy Bauxite Carrier

4.1.1. Ship Parameters

In order to verify the approach to risk performance reasoning, two Handy bauxite carriers were
selected: one still in service, and another which previously sank. Their general parameters are listed in
Table 2.

Table 2. Parameter of Handy bauxite carrier.

Ship Name LOA Breadth Depth Service Speed Total Cargo Weight

M.V. Yuming 189.9 m 32.36 m 15.7 m 14.2 kn 42,700 t
M.V. Bulk Jupiter 189.99 m 32.26 m 17.9 m 14.5 kn 46,400 t

4.1.2. Operational Case

The No. 1509 voyage of M.V. Yuming carried bauxite from Guandan Port, Malaysia, on 28 July
2015. The weather at the loading port was fine a few days before arrival and during the loading
period. It took 10 days to reach the destination port of Laizhou, China. There was no water leakage in
the sewage well during the voyage of the ship, and the actual performance of the cargo was stable.
The annual mean wave height is 1.62 m and the average wave period is 6.62 s in the waters of the
Taiwan Strait [45]. Here, 94% of the wave lengths are less than 100 m, and 15% of them are between 70
and 100 m. During the voyage, the weather was good, the visibility was medium, the pressure was
stable, the temperature was 20–32 ◦C, and the meteorological wind and wave levels were 3◦–4◦. Wind
direction was mostly in the bow and stern direction. Except for the first day when the wind pressure
difference was as high as 7◦, the voyage flow pressure difference did not exceed 3◦.

4.1.3. Accident Case

M.V. Bulk Jupiter sailed from Guantan Port, Malaysia, to Qingdao, China. During the loading
period, the eastern coast of Malaysia suffered record-breaking rainy weather. The loading operation
was delayed repeatedly due to heavy rain. Rainfall on 21 and 23 December during the subsequent
loading periods was as high as 240 mm and 258 mm, respectively. After consulting the accident
investigation report [46], it was found that the total weight of bauxite in Bulk Jupiter’s voyage was
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46,400 tons, with an average water content of 21.3%. After sailing on 30 December, the sea weather
deteriorated gradually. On 31 December, the northeasterly wind was 6–7, the sea condition was 4–6,
and the average wave height was 2.2 m. On 1 January 2015, the northeasterly wind was 8, while the
wave height was 2.5–4 m. The swell direction was from the northeast (NE), the vessel’s route placed
the sea on the port bow as the vessel sailed east-northeast on a heading of 060◦. In the final moments
prior to sinking, the vessel’s speed was 4.3 knots.

4.1.4. Data Collection

The factors value of time series with length of 59 were from the 4-hour interval records of No. 1509
voyage in Logbook onboard M.V. Yuming. According to the criteria of risk reasoning for Handy
bauxite carriers, the risk performance rating of factors are obtained in style of PFA and FA, which is
shown in Figures 6 and 7. The first 15 groups of data of principle factor analysis of M.V. Yuming is set
as Scenario No.1. Scenarios No.2 to No.4 are simulated conditions based on the worse cargo condition,
unsatisfied ship condition and terrible environment respectively, and Scenario No.5 is an accident
condition based on the last voyage of M.V. Bulk Jupiter.
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4.2. Parameter Training

The approach to selecting 15 factors for risk performance was factor analysis (FA). The approach
to selecting seven principal factors for risk performance reasoning based on the bauxite model test
and FA with 15 factors was principal factor analysis (PFA). Both FA and PFA were used to establish
the HMM in order to reason the risk performance of bauxite shipping. In the process of parameter
learning, logarithmic likelihood values were used to represent the matched degree between parameters
and models. As the number of iterations increased, the matched degree tended to converge. The model
parameters obtained from the training were valid because they satisfied the local optimal characteristics
of the parameters.

Figure 8 indicates that the HMM tended to converge until the 37th and 34th iterations for PFA
and FA, respectively. Nine groups of data were used to test the HMM and get a converged likelihood.
Taking the PFA as an example, the trained and optimized HMM parameter was π = [1.0 0 0 0].

A =


0.0000 0.0000 0.0000 1.0000
0.2936 0.2711 0.1408 0.2945
0.0000 0.0019 0.0000 0.9981
0.1460 0.2830 0.5710 0.0000

, and B =


0.0000 1.0000 0 0.0000
0.0006 0.9994 0 0.0000
0.6020 0.3474 0 0.0505
1.0000 0.0000 0 0.0000

.
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4.3. Selection of Approach to Reasoning

Taking the risk reasoning of M.V. Yuming as an example, the best approach to reasoning was
selected as shown in Figure 9.

The RMSE values indicate that the best forecast was performed with 3K (three steps and seven
principal factors). The MNSE values indicate that the best forecast was performed with 2F (two steps
and 15 factors).

4.4. Result of Reasoning

By using the reasoning approach for the risk performance of the factors, every factor was reasoned
within a risk grade boundary of 1–4. Risk grades were obtained for 15 factors (FA approach) and
seven principal factors (PFA approach). According to the abovementioned quantization regulation of
risk performance, the time series of the total risk performance of the bauxite shipping process was
obtained. Likewise, the same approach could be used to obtain the observed sequence of the total risk
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performance. Taking M.V. Bulk Jupiter as an example, the risk performance reasoning model based
on a three-step PFA approach was adopted. The first 12 sets of data were used to train the model
parameters, and the last three sets of data were used for reasoning and testing; the results are shown in
Figure 10.
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total process of M.V. Bulk Jupiter.

The comparison with the observed risk performance shows that the reasoned risk performance
with seven principal factors was mostly accurate. The risk performance of the factors was transformed
into an overall risk performance using the quantification regulation. The last three periods of the
whole shipping process had the highest risk rating. In fact, the accident report showed that the actual
moisture content of bauxite severely exceeded the transportable moisture limit (TML), and the carrier
encountered strong winds and moderate swells along the coast of Vietnam. Consequently, capsizing
occurred. Therefore, the calculated risk was consistent with the actual situation. Therefore, the model
constructed is effective in forecasting risk performance for the bauxite shipping process.

4.5. Effectiveness and Accuracy

Figure 11 shows the comparison of the effectiveness evaluation of reasoning using the FA and PFA
approaches, where the evaluation was conducted on M.V. Yuming for the risk performance of a bauxite
shipping process. It can be seen that the calculated risk rating was completely consistent with the
observed risk rating, and the effectiveness of the performance reasoning was ideal. The effectiveness
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of the risk reasoning based on FA or PFA was also quantitatively evaluated using DOB and DOD.
The degree of deviation for the risk reasoning model was DOB = 0, indicating no deviation in the
reasoning for the four risk ratings. The degree of detection was DOD = 1, showing that the reasoned
risk rating was completely accurate.
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Accuracy evaluation was conducted on the calculated nine-step risk performance matrix and the
actual observed risk performance matrix, as shown in Figure 12. The RMSE of reasoning based on the
FA approach was 0.336 on average with a maximum of 0.516 and a minimum of 0.0, while the RMSE of
the PFA approach was 0.36 on average with a maximum of 0.655 and a minimum of 0.0. The error of
reasoning was small; thus, the accuracy was better evaluated. The average of the MNSE calculated
using the FA approach was −0.459, ranging from 1.0 to −2.0. The average of the MNSE calculated
using the PFA approach was −1.20 with a maximum of 1.0 and a minimum of −4.40. The MNSE values
based on the two approaches were slightly smaller than zero; therefore, the reasoned performance was
slightly conservative due to the values being lower than the actual risk performance.
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5. Analysis and Discussion

5.1. Sensitivity Analysis

Five groups of test data of the bauxite shipping process were selected for sensitivity evaluation.
Scenario No. 1 featured normal conditions based on the No. 1509 voyage of M.V. Yuming. Quantitative
analysis was carried out on the conformity of risk performance under each scenario. The sensitivity
function of the risk reasoning model established previously was used to obtain the degree of sensitivity
(DOS) for each scenario relative to normal scenario No. 1.

Table 3 indicates that the effects of scenarios No. 2 and No. 5 were relatively close, representing
the worst risk performance deviated from the normal scenario for bauxite shipping. Compared with
the FA-based DOS, the PFA-based DOS was more sensitive. The risk assessment and classification of
scenarios No. 2 and No. 5 were the best, with sensitivity values above 95, meaning that any abnormal
risk performance of bauxite shipping can be detected more accurately. The sensitivity of scenario
No. 4 was very small, showing that the model could not effectively distinguish the risk performance of
bauxite shipping using the benchmark model. When the environment was poor, the risk performance
of scenario No. 4 was consistent with that of normal scenario No. 1, and the risk was very low.

Table 3. Degree of sensitivity (DOS) of HMM for risk performance reasoning.

Scenario Scenario No. 2 Scenario No. 3 Scenario No. 4 Scenario No. 5

FA-based DOS 88.962 35.789 3.118 89.567
PFA-based DOS 96.234 80.398 0.001 96.854

5.2. Pre-Warning of Threat

The risk performance reasoning model constructed in this paper is based on the normal conditions
of cargo, ship, and environment for Handy bauxite carriers. The data of factors for scenarios No. 2 to
No. 5 were input into the HMM for risk performance reasoning based on Scenario No. 1, where the
log-likelihood probability of the output could provide a guide to abnormal risk monitor. A larger
log-likelihood would denote a greater probability of low risk performance. Figure 13 demonstrates the
log-likelihood value of 15 time series for scenarios No. 1 to No. 5.Appl. Sci. 2020, 10, x FOR PEER REVIEW 19 of 23 
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The logarithm likelihood values of scenario No. 3 with unsatisfactory ship conditions and of
scenario No. 4 with a terrible environment were close to those of the normal scenario No. 1.
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The log-likelihood value of scenario No. 2 with worse cargo conditions more obviously deviated
from that of scenario No. 1 than that of Scenario No. 3 and Scenario No. 4, indicating that the risk
performance of the Handy bauxite carrier in scenario No. 2 was worse, and that the deterioration of
cargo with respect to ship conditions and the environment had a greater impact on the total safety of
the bauxite shipping process.

Scenario No. 5 had a more serious deviation from the normal condition. This deviation was more
significant than the worst scenario of single-category factors such as the cargo, ship, or environment,
which all contribute to the total risk of bauxite shipping process. It was found that the coupling effect
of risk factors produced a coupling risk, which aggravated the total risk performance during the
shipping process.

When using the PFA-based risk reasoning model to detect the performance, the log-likelihood
value of individual time points was negative infinite, indicating that the risk behavior at this time
was seriously inconsistent with the normal scenario. The risk performance at this time point can be
determined as the highest rating, which is unacceptable.

In scenarios No. 3, 4, and 5, the log-likelihood probability decreased gradually, showing that the
total performance deviated from the normal condition and deteriorated gradually, thereby achieving
the state monitoring and issuing a pre-warning threat during the shipping process.

5.3. Risk Performance Reasoning with Hidden Markov Model

• The influencing factors of the reasoning performance were obtained through the demonstration,
thereby providing a reference for optimizing the model parameters and the reasoning approach.
According to the results and analysis of the risk performance reasoning, increasing the training
data and identifying principal factors can improve the reasoning performance.

• Due to the great influence of cargo performance on the total risk performance of Handy bauxite
carriers, high-risk cargo factors should be avoided. In particular, when the size of a bauxite carrier
and the shipping environment or ship routing cannot be changed, the cargo quality related to
shipping safety must be closely monitored, and a moisture content audit must be performed
before loading, while rainproof measures should be ensured during loading and navigating.

• Compared with the effect of any single factor, the effect of the cargo, ship, and environment is
more significant, leading to a transition of the total risk performance of Handy bauxite carriers.
The process between subsystems is an important part of the shipping process risk control of Handy
bauxite carriers. In order to ensure safety of shipping, it is essential to respond to risks timely and
effectively based on accurate multi-source risk data, such as ship maneuvering, environmental
information, and dynamic cargo information from the water ingress alarm system and the radar
fluid-level meter fixed in the cargo hold. Therefore, it is essential to make full use of the Internet
of things and artificial intelligence to develop intelligent risk monitoring sensors and forecasting
equipment for shipping processes on Handy bauxite carriers.

• Based on the accurate historical data of principal factors and a more detailed classification of
risk performance, short-term process risk reasoning with high-quality can be realized. Detailed
shipping data of bauxite and Handy carriers include, but are not limited to, information from
the logbook, which can be used in parameter learning to obtain more accurate parameters of
the HMM. This will allow real-time monitoring and pre-warnings of cargo liquefaction and ship
stability for the navigator onboard and ship manager ashore.

• In total, 91% of the accidents on international routes caused by the liquefaction of solid bulk cargo
involve Handy carriers [47], which are usually between 80 m and 190 m in length. When a Handy
carrier navigates at sea with a wavelength of 90–150 m and the speed is close to the wave speed,
the ship ends up hogging and sagging, threatening the structural strength of the ship. The stability
of the ship is, thus, greatly reduced.

• If possible, Handy carriers with bauxite should avoid sailing in heavy seas. In the stormy season,
some special voyages of bauxite shipping could be conducted by larger bulk carriers or special ore
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carriers, which would have strong stability even when bauxite is liquefied. Appropriate working
conditions of the main engine and ballast water can reduce the vibration intensity in the cargo
hold, thereby reducing the risk of early cargo liquefaction, and obtaining earlier pre-warnings and
for a better response time.

6. Conclusions

The paper constructed a hidden Markov model of risk performance reasoning for bauxite shipping.
Based on the HMM parameters, a transfer matrix between observation variables and the hidden risk
status was obtained. The relationship between risk performance and principal factors was determined,
and quantification of the total risk performance was carried out. The model and algorithm of risk
performance reasoning was verified using cases of bauxite shipping processes. The effectiveness
evaluation indexes of the total risk performance, the accuracy evaluation indexes of the factor risk
performance, and the sensitivity evaluation index of the reasoning model were used to measure the
performance of the HMM-based risk reasoning approach.

Some conclusions are proposed. Firstly, the approach to risk performance reasoning with HMM can
effectively forecast the risk performance of bauxite shipping processes for Handy carriers. Furthermore,
increasing the amount of training data and identifying key risk factors can help improve reasoning
performance. The risk performance of cargo factors is critical to the overall risk state of Handy bauxite
carriers. Compared with the influence of cargo factors, the coupling effect of multiple factors has a
great influence, which leads to a leap in the overall risk scale onboard the ship. A benchmark model
of risk assessment for the bauxite shipping process was built to monitor the risk threat due to the
coupling effect of the cargo, environment, and ship; this is especially applicable to Handy carriers
which do not have a special structural design for cargoes that may liquefy.

As with the global bauxite industry undertaking research into the behavior and characteristics
of bauxite cargoes during ocean transportation, the crews and managers of Handy bauxite carriers
can be armed with the knowledge of process risk and risk control; therefore, the risk performance
analyzed in this paper is essential in relation to the bauxite shipping process, whose associated risk
remains to be officially recognized by the IMO. The output of this paper can support the captain with
quantitative risk decision-making, as opposed to previously used empirical decision-making, thereby
laying a foundation for risk pre-warnings and the process safety of bauxite cargo.
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