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Abstract: Conventional recommender systems are designed to achieve high prediction accuracy
by recommending items expected to be the most relevant and interesting to users. Therefore, they
tend to recommend only the most popular items. Studies agree that diversity of recommendations
is as important as accuracy because it improves the customer experience by reducing monotony.
However, increasing diversity reduces accuracy. Thus, a recommendation algorithm is needed
to recommend less popular items while maintaining acceptable accuracy. This work proposes a
two-stage collaborative filtering optimization mechanism that obtains a complete and diversified item
list. The first stage of the model incorporates multiple interests to optimize neighbor selection. In
addition to using conventional collaborative filtering to predict ratings by exploiting available ratings,
the proposed model further considers the social relationships of the user. A novel ranking strategy
is then used to rearrange the list of top-N items while maintaining accuracy by (1) rearranging the
area controlled by the threshold and by (2) maximizing popularity while maintaining an acceptable
reduction in accuracy. An extensive experimental evaluation performed in a real-world dataset
confirmed that, for a given loss of accuracy, the proposed model achieves higher diversity compared
to conventional approaches.

Keywords: recommender systems; collaborative filtering; diversity; multi-interest; ranking function

1. Introduction

The advent of the Internet has exacerbated the information overload problem, which increasingly
complicates the retrieval of useful information from the Internet. A recommender system (RS) [1–3] is
a powerful tool for solving the information overload problem in many online applications, and the use
of RS has steadily increased in recent years. Typically, an RS is designed to recommend proper items
to proper users based on their ratings or on their online behavior such as purchasing behavior [2].
Current RS methods can be classified as content-based filtering methods [4,5] and collaborative filtering
methods [6–8]. Content-based RSs generate recommendations after analyzing item descriptions and
user interest profiles, whereas collaborative filtering RSs recommend items that are of particular
interest to the active user by identifying similarities between users or between items. Collaborative
filtering is among the most effective and widely used RS methods in many domains due to its easy
implementation, e.g., it does not require specific domain knowledge.

The major task of collaborative filtering is to compute the distances between users or between
items based on how users have interacted with the system in the past [2,3]. Since users or new users
rarely interact extensively in the system, calculating the precise distances and similarities between
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users or items is difficult however because user ratings and user feedback are limited. This problem is
known as the “cold start” problem, or the “data sparsity” problem [8–11]. Most collaborative filtering
RSs substantially reduce performance in a cold start scenario.

A common solution for the cold start problem is to consider additional information sources.
For example, recommendation performance can be improved by considering information about the
social relations of users, such as their social network friendships [12], or by considering the context of
information [13]. For example, in an E-commerce scenario, the purchasing decisions made by users
are usually affected by the opinions of their friends. Proposed methods of using information about
social relationships to improve the prediction accuracy of an RS and to alleviate the cold start problem
include SoRec [14], RSTE [15], SoReg [16], and TrustSVD [17]. The objective of these methods is to
identify users who are representative of the actual user because of their implicit social relationships
with the actual user.

Previous studies of RS design [18–23] have focused on using rating information to improve
prediction accuracy. However, this approach can limit recommendation results and introduce
the long tail recommendation problem [24,25]. For example, if a movie RS is initially used to
get recommendations for comedy movies, the RS may tend to continue recommending the same
genre of movies in the future. Thus, the user may soon begin to disregard the recommendations.
A recommendation list that has high diversity, markedly increases the interest of users [26]. Therefore,
an effective RS requires not only high accuracy, but also high diversity. To enhance the diversity of
a recommendation list, researchers have attempted to develop methods of maximizing the range of
interests considered by the RS [27]. Since increasing diversity reduces prediction accuracy, the optimal
trade-off [28,29] between diversity and accuracy must be determined.

To address the above problems, this study proposes a novel diversity optimization method:
Diversity Balancing for Two-Stage collaborative filtering (DBTS). In the first stage of the filtering
process, DBTS uses both the social relationships of the user and user-based recommendations to predict
missing ratings. In the second stage, the rating recommendation list is generated by leveraging user
interests and social influences. The main contributions of this paper are the two novel characteristics of
the proposed DBTS: (1) a two-stage optimization strategy for balancing accuracy and diversity and (2)
the use of social relationship filtering combined with collaborative filtering to enhance the robustness
of the RS. Extensive experiments performed in a real-world dataset confirmed the good performance
of the algorithm in terms of diversity and accuracy.

The rest of this paper is organized as follows. The next section provides an overview of existing
collaborative filtering methods and diversity enhancing methods. Section 3 presents the details of
the proposed approach and the design of the algorithm. Section 4 describes the set-up used in the
experiments, the evaluation metrics, and the experimental results. The final section concludes the
whole paper.

2. Related Works

2.1. Social-Based Recommender Systems

Although large numbers of users and items generally participate in an RS, user feedback on items
is usually limited. A simple and effective way to improve RS accuracy is to consider information sources
such as demographic characteristics [29] or information about friends of users in social networks [30–33].
Before making decisions, real-world users tend to consider the opinions and suggestions of friends
they trust. Hence, social relationships are a possible source of information that can be used to enhance
RS performance. [14–16,18,19].

A social media based RS solves the cold-start and sparsity problems by rating the strengths
of social relationships and then considering recommendations from friends who have the strongest
relationships with the user. Methods of evaluating social information can be categorized as implicit
trust-based methods and explicit trust-based methods [6]. Explicit trust, such as a list of trusted users
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on the Epinions website or the “friends list” on Facebook, are demonstrated by the user explicitly.
Explicit trust values are values that are explicitly stated by the user. Implicit values are those that are
not explicitly stated but are inferred on other evidence, such as user profile.

Various methods of exploiting implicit trust information in Collaborative Filtering (CF) systems
have already proven effective. For example, the approach described in [30] was based on both
user-based and item-based trust information. Implicit trust and global reputation were computed
and then used to alleviate the data sparsity problem. Another approach is to use the framework
described in [20] to identify implicit trust statements based on the Pareto dominance relations of users.
In this recommendations approach, non-prominent users, i.e., those whose opinions are not effective,
are excluded from consideration. Based on the small-world property of user communities, ref. [31]
presented an algorithm that can derive implicit trust values from user ratings. Implicit trust-based
models infer global trust or reputation across the entire user community. Therefore, implicit trust-based
models often give inaccurate recommendations when malicious or fraudulent user behaviors are
encountered. Thus, explicit trust-based models have attracted interest in recent research.

The probabilistic matrix factorization method is proposed in [14], which combines social network
with a user-item rating matrix. This method shares the latent feature space of the user to make social
recommendations. A user decision is considered a balance between the personal preference of the user
and the preferences of trusted friends. Ref. [15] proposed a social trust ensemble method (RSTE) to
linearly combine the preferences of the user and the preferences of trusted friends. Another approach
used in [32] was to explicitly merge the performance of trusted neighbors and the active user by
averaging their ratings, which eliminated the data sparsity problem. In [33], an ant colony optimization
algorithm was used in a trust graph to identify a set of users that are like the active user. In [19],
a combination of similarity values and trust statements was used to construct a trust network for the
active user. A novel reliability measure was used to evaluate the prediction accuracy of the system.
Ref. [34] presented a hybrid approach in which both user preferences and social trust are used to make
appropriate recommendations. Rating prediction accuracy was improved by considering untrusted
relationships as well as propagation effects among users. The authors of [35] proposed an unsupervised
learning approach to applying explicit trust in a global reputation model. Their experiments showed
that global reputation becomes significant only when the scale of the ego-network of users is small. The
level of trust between an active user and the trustees may change over time. To address the time-variant
characteristics of trust, [36] developed a dynamic analysis in which a pheromone updating strategy
based on ant colony optimization is used to analyze trust. In [37], the authors compared the advantages
and disadvantages of implicit trust and explicit trust and concluded that explicit trust-based methods
usually outperform implicit trust-based methods.

2.2. Improving RS Diversity

To improve the user experience in RSs, researchers have attempted to improve the novelty and
diversity of suggested items and to improve the visibility of long tail items [24,26,27]. Attempts
to improve RS accuracy have focused on finding items highly similar to the past preferences of
active users while attempts to improve diversity have focused on evaluating “dissimilarity” among
recommended items. Methods of improving accuracy are often incompatible with those for improving
diversity. Therefore, the trade-off between accuracy and diversity must be optimized. A major
challenge of designing an effective RS is to determine the maximum diversity that can be achieved for
an acceptable loss in prediction accuracy.

Proposed models for improving RS diversity can be categorized as two-stage models and unified
models. Unified models [24–28] have a single stage optimization framework for solving the joint
formulation of a weighted combination of diversity and accuracy. For example, the DiABlO single stage
optimization solution proposed in [26] was based on latent factor models. A diversity enhancement
regularization term was then used to improve recommendation diversity by constraining the matrix
factor decomposition model. In [27], the authors presented a unified framework and a unified convex



Appl. Sci. 2020, 10, 1257 4 of 16

formulation based on available ratings and item metadata. The split Bregman technique used to
solve this formulation achieved an acceptable accuracy–diversity trade-off. In [28], a heat conduction
algorithm was proposed for solving the triple dilemma of simultaneously optimizing stability, accuracy,
and diversity by ranking the stability of similarities and then considering only the most stable ones.

The recommendation performance of unified models mainly depends on the performance of the
optimization algorithms. In many cases, falling into local optimal solutions is more likely than falling
into global optimal solutions. However, the first stage of a two-stage recommendation strategy [38–40]
focuses on predicting the missing ratings and on using the collaborative filtering method to generate
a candidate recommendation list. The second stage applies a certain ranking strategy to maximize
diversity of the list. The ranking strategies often require a pre-defined heuristic threshold. Items rated
above the threshold are added to the recommendation list. Unlike the item list in a conventional RS,
recommended items appear in a descending order of predicted ratings. To improve diversity, various
strategies have been proposed for ranking the predicted ratings in the second stage. The RS design
described in [41] considered the popularity of items in addition to their relevancy. A multi-objective
evolutionary algorithm for simultaneously optimizing accuracy and diversity was then proposed.
In [42], clustering technique was used to segregate items. Items were then selected from each cluster
to ensure a high diversity of the recommendation list. Ranking strategies developed in other works,
e.g., [38,39], have used greedy optimization, item popularity to promote diversity.

The works discussed above either use trust relationship to alleviate the problem of cold start
and sparsity so as to improve recommendation accuracy or propose new recommendation list
ranking strategies to improve recommendation diversity. However, they neglect the impact of
interest overlapping between the target users and trust users on both accuracy and diversity of
recommendations. Trust relationships and common interests can connect two users who do not know
each other, and they are equally important. Users with the same trust level may have different interests.
We consider both multiple interests and trust relationships of users, so diversity and accuracy are
reflected in the final recommendation list. The proposed method increases both personalized diversity
and aggregate diversity with minimal loss of accuracy.

3. Diversity Balancing for Two-Stage Collaborative Filtering

This section describes the details of the main stages of the proposed DBTS. The aim of the method
is to recommend items of interest to users by hybridizing available rating values and social trust
information to increase recommendations of long-tail items. The DBTS is a two-stage collaborative
filtering algorithm. Users’ social information has been used to alleviate the user cold start problem.
At the first stage of DBTS, there is a trust propagation strategy to generate trusted users for new users
based on users’ trust data. The trust-based similarities between users are calculated by Equation
(1). Users are then divided into high-trust ones and low-trust ones according to a predefined trust
threshold. The similarities of trusted users and the interest distributions of the active user are then
used to build a multi-interest collaborative filtering model, which predicts ratings and generates a
top-N candidate item list for the active user. The second stage uses a re-rank strategy to adjust the
recommendation list based on item popularity and diversity. Figure 1 is a flowchart of the DBTS.
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Figure 1. Overview of the main stages of the proposed method.

3.1. Trust Ranking

In the first stage of the proposed DBTS method, the user trust network G = <U,TD> is constructed
according to user trust relationships. Each node u ∈ U of network G represents a neighbor of the active
user v. The TD denotes the direct trust set of v. Each edge Tu,v ∈ TD represents the direct trust between
users u and v.

However, methods that only consider direct trust often have limited effectiveness when the sparse
data problem occurs. Implicit trust relationships that enrich the trust relationships of users can be
obtained by further analyzing rating values. That is, although user u and v do not have a direct trust
relationship, an implicit trust value is calculated by applying the Pearson correlation coefficient to the
two users based on their available ratings. However, numerous implicit trust relationships are not
required. According to the Three Degree of Influence Rule [43], a strong connection with user u, i.e.,
a short connection distance to user u (less than 3 degrees) might lead to a similar behavior, while a weak
connection with user u, i.e., a long connection distance to user u (more than 3 degrees) only transmits
information. Therefore, more users with no direct relation would be connected by expanding the
implicit trust relations to their third-degree neighbors. As described in [37], the trust-based similarity
values TSu,v between user u and v can be calculated as:

TSu,v =


2×sim(u,v)×Tu,v

sim(u,v)+Tu,v
sim(u, v) + Tu,v , 0 and sim(u, v) × Tu,v , 0

Tu,v sim(u, v) = 0 and Tu,v , 0
sim(u, v) sim(u, v) , 0 and Tu,v = 0

(1)

where Tu,v denotes the trust relation between user u and v, which is calculated as:

Tu,v =
H −Nu,v + 1

H
(2)

where H denotes the maximum trust propagation distance among all users. The Nu,v denotes the
trust propagation distance between users u and v. Trust can propagate from one network node to
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another via multiple paths. Here, the indirect trust value is set to the trust value for the shortest path.
The sim(u, v) is the similarity value for users u and v, which is computed as:

sim(u, v) =

∑
i∈Iu,v (Ru,i −Ru)(Rv,i −Rv)√∑

i∈Iu,v (Ru,i −Ru)
2
√∑

i∈Iu,v (Rv,i −Rv)
2
×ωu (3)

where Ru,i and Rv,i are the ratings of user u and user v, respectively, for item i and where Ru and Rv are
the average ratings for user u and user v, respectively. The Iu,v is the item set rated by both user u and
user v. Sometimes, users have few mutually rated items but high rating similarities. Therefore, mutual
rating factor ωu = |Iu,v|/|Iu| is introduced to moderate the influences of mutual ratings in the similarity
calculation. The |Iu,v| is the number of items rated by both user u and user v. The |Iu| represents the
number of items rated by user u.

Finally, according to the trust-based similarity values TSu,v, users can be divided into a high trust
value set (TSu,v ≥ θ) and a low trust value set (TSu,v < θ), where θ is the predefined trust threshold.

3.2. User Interest Distribution

3.2.1. Acquisition of Item Category

To construct a multi-interest model that can be used to obtain the interest distribution of a user,
all item categories must be identified, and the user rating information for all item categories must be
collected. The K-means clustering algorithm is generally used to cluster items [41]. The item sets are
defined as I = {i1, i2, . . . , im}, the user sets are defined as U = {u1, u2, . . . , un}, and the item category sets
after clustering are defined as C = {c1, c2, . . . , ck}.

3.2.2. User Interest Distributions

The user rating values and number of rated items are used to calculate user interests. A user who
has given high rating values for items in a certain item set is assumed to be very interested in these
items. The interest distribution and average rating given by user u for item set c are computed as:

IDu,c =
Mu,c

Mu
and R′u,c =

Ru,c

Rmax
(4)

where IDu,c represents the interest distribution of user u for c. The Mu,c represents the quantities of
item c that have been rated by user u. The Mu represents the quantities of all items that have been rated
by user u. The R’u,c represents the rating preference for category c. The Ru,c represents the average
rating that user u has given for c. The Rmax represents the highest rating given by user u for each item.
For user u, the preference for c is calculated as:

pre fu,c =
2× IDu,c ×R

′

u,c

IDu,c ×R′u,c
(5)

where pre fu,c = {prefu,c1,prefu,c2, . . . ,prefu,ck} represents the preferences of user u for all item categories.
User u participates in the calculation of interest weight only when the preference of user u is greater
than that of user v. The mutual preference of users u and v is calculated as:

pre fu,v =

C∑
c∈C

∣∣∣pre fv,c >= pre fu,c
∣∣∣∣∣∣pre fu

∣∣∣ (6)
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3.2.3. Trust and Interest Weight Aggregation

In the trust propagation process, the calculation of a similarity weight for two users who are
low-trust neighbors must consider not only their trust relations, but also their mutual interests.
Therefore, two thresholds are defined in the calculation of aggregation weights:

Wu,v =


TSu,v TSu,v ≥ θ
γTSu,v + (1− γ)pre fu,v 0 < TSu,v < θ
0 else

(7)

Definition 1. Trust threshold θ. If the trust between two users has a value greater than θ, the users are high
trust neighbors. One user might accept the recommendation of the other user even if they do not have similar
preferences. If the trust between the two users is less than θ, they are low trust neighbors. Their trust relations
and multi-interest preferences should be considered simultaneously in the recommending process.

Definition 2. Interest threshold γ. If two users are low trust neighbors, they have small overlapped interest
fields. It will increase the possibility of finding potential interests for the target user, while the recommendation
accuracy is decreased. Therefore, the interest threshold γ is set that two users participate in the weight calculation
process only when their interest weight exceeds γ.

3.3. Rating Prediction and Top-N Re-Ranking

3.3.1. Rating Prediction

After ranking the aggregated weights, the top n users with the highest weights are selected as
neighbors who participate in the rating prediction. Further, according to the prediction ratings in
multiple item categories, items with the highest rating values are selected for use in constructing the
top-N recommendation candidate list. Ratings are predicted as:

Pu,i = Ru +

∑
v∈Uu W(u, v) × (Rv,i −Rv)∑

v∈Uu W(u, v)
(8)

3.3.2. Top-N Re-Ranking

The conventional recommendation list uses rating values to rank items. Given the difficulty of
identifying the potential interests of users, its objective is simply to increase recommendation accuracy.
Thus, a diversity factor is introduced to adjust the proportion of items with high diversity. The
predicted ratings of the top M items in the candidate list are assumed to exceed the average ratings of
users. Equation (9) compares the similarities between the [(1-β)N,M] items and the top βN items. The
item with the lowest similarity is then selected for use as a replacement item.

min
∑

i∈[0,βN], j∈[(1−β)N,M]

(Ri −R j

Pi − P j

)
(9)

where Ri and Rj are the rating values that user u gives for items i and j, respectively, and where Pi and
Pj are the popularity of items i and j, respectively.

For a clear understanding of the proposed DBTS algorithm, the detailed steps of the method are
given in Algorithm 1.
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Algorithm 1. Diversity Balancing for Two-Stage collaborative filtering (DBTS)

Input: rating matrix R, social trust matrix T, active user u, trust threshold θ, interest threshold γ, ranking
strategy threshold β.

Output: the top-N recommendation list.
Begin

//Stage I: calculate user similarities.

Step 1 Calculate similarities between users using (1).
Step 2 Divided users into low similarities set and high similarities set using θ.

//Stage II:calculate the integrated weights.
Step 3 Use K-means to cluster items.
Step 4 Calculate interest weights between active user and other users using (6).
Step 5 Integrate interest weights and similarities using (7).

//Rating prediction and ranking.
Step 6 Sort users based on their weights in descending order.
Step 7 Choose the top n users as active user neighbors.
Step 8 Predict unknown ratings for the active user.
Step 9 Select n items with highest predicted ratings.
Step 10 Calculate replacement items using (9).
Step 11 Put items with the lowest ratings into recommendation list.
Step 12 Generate the top-N recommendation list.

End

4. Experiments and Analysis of Results

The hardware environment that we use in this study is an MAC system of i7-4870HQ CPU@2.50
GHz and 16GB RAM. The Python3 programming language and third-party libraries such as SciKit-learn
and Pandas are used for algorithm implementation and data processing. The dataset is divided into
training set (80%) and testing set (20%) for five-fold validations. The training set is randomly divided
into five groups. The training set is constructed by selecting four groups randomly, and the fifth group
is used as test set. The experiment result is the average value of five experiments.

To evaluate the performance of the DBTS method with well-known recommendation models,
we compare the method in this paper with four other algorithms. The focus of the DBTS algorithm is
to generate a list of top-N recommendations, so Precision and Recall are used in terms of accuracy.
The indicators that include personalized diversity (PD) and aggregate diversity (AD) are used in
diversity. The four recommendation algorithms that participate in the comparison are as follows:

User-based Collaborative Filtering, UCF [1]: The UCF method calculates similarity between pairs
of users by using the cosine similarity formula. It builds neighborhoods of users who have similar
rating patterns. Then the algorithm makes a list of recommendations on unseen items based on
opinions of the neighbors.

MoleTrust(MT) [6]: MoleTrust is a local trust propagation algorithm. It calculates the local trust
score of two users by walking their social network and by propagating trust along trust edges. Then it
predicts the ratings a user gave to an item based on his/her trusted friends.

Latent Dirichlet Allocation (LDA) based Model [44]: It models users as documents, items as
words. Then the LDA model is used to generate recommendations.

Bayesian Personalized Ranking (BPR) [45]: BPR is a ranking algorithm based on matrix
decomposition. By observing positive observations, real negative feedback (the user is not interested
in buying the item) and missing values (the user might want to buy the item in the future), a pairwise
relation between users and multiple items is established to conduct recommendation ranking.
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4.1. Dataset

The FilmTrust (http://trust.mindswap.org/FilmTrust/) dataset was used to evaluate the proposed
method. This dataset was collected from an internet movie website that enables users to give feedback
and share opinions with others. Users rate movies on a scale from 0.5 to 4. A high rating value
represents a high preference for an item. The dataset contains 35,497 ratings given by 1508 users for
2071 movies. The rating matrix has a density of 1.14%. A user who trusts another user is denoted by a
value of 1 in the trust matrix. Otherwise, a user is denoted by a value of 0 in the trust matrix. The
trust matrix includes 1853 trust relations among 1642 users. The trust matrix has a density of 0.42%.
Fivefold cross validation was used to divide the dataset into a training set (80%) and a testing set (20%).

4.2. Evaluation Metrics

4.2.1. Accuracy Metrics

We use the well-known metrics of Precision and Recall to evaluate the accuracy of the algorithm.
Precision, a concept borrowed from information retrieval [26], is defined as

Precision =
tp

tp + fp
(10)

where tp means true positive, denoting the correctly classified positive examples; fp means false positive,
denoting incorrectly classified positive examples. Precision usually decreases as the length of the
recommendation list increases. A high precision value indicates that many users are interested in the
recommended items.

Recall measures the chances that a relevant item is selected for recommendation.

Recall =
tp

tp + fn
(11)

where fn is the false negative, denoting the incorrectly classified negative examples. The Recall value
usually increases as the length of recommendation list increases.

4.2.2. Diversity Metric

Previous works have generally used two criteria to evaluate recommendation diversity [26,27]:
First, personalized diversity (PD) is used to describe the dissimilarity between any two items in

the recommendation list. As the diversity of the recommended items increases, the probability of users
finding items of interest increases. The PD is defined as

PD =
1
|U|

∑
u∈U

1−

∑
i, j∈L(u),i, j(1− sim(i, j))

1
2

∣∣∣L(u)∣∣∣(∣∣∣L(u)∣∣∣− 1
)  (12)

where |U| is the number of users and where sim(i, j) is the similarity between item i and item j; L(u) is
the recommendation list of the users and |L(u)| is the number of items in the L(u).

Secondly, aggregate diversity (AD) is measured by the total number of unique items recommended
for all users. A high AD value ensures that more items can be seen by users of an RS. The AD is
defined as

AD =

∑
u∈U

∣∣∣L(u)∣∣∣
|I|

(13)

where |I| is the number of recommended items for all users.

http://trust.mindswap.org/FilmTrust/
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4.3. Sensitivity Analysis

The proposed method has three pre-defined parameters: trust threshold θ, interest threshold γ,
and ranking strategy threshold β. The optimal values of θ and γ are determined by the highest accuracy
the algorithm achieves. θ is used to distinguish high trust users from low trust users. Users with
similarities below θ will participate in the stage 2 of the DBTS algorithm. In the following experiments,
the number of neighbors is set to K = 20. The top n items in the candidate set are selected from the
recommendation list set on n = 20.

4.3.1. Effect of Trust Threshold θ

An experiment was performed to determine the appropriate trust threshold θ; θ ranges from 0 to
1 in increments of 0.1. Figure 2 shows the effect of θ in the DBTS method.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 2. Effect of trust threshold θ on (a) accuracy and (b) diversity of Diversity Balancing for
Two-Stage collaborative filtering (DBTS).

We first examine the effect of trust threshold θ, ranging from 0 to 1 with increment of 0.1. Figure 2a
shows the accuracy and Figure 2b the diversity of the DBTS algorithm for different values of θ. The
optimal value of θ leads to the best performance in terms of accuracy and diversity. From Figure 2a
we can see that θ has very little influence on either precision or recall. The highest accuracy happens
when θ = 0.4. From Figure 2b we can see that the algorithm also has the highest diversity when θ = 0.4.
Therefore, the optimal value of θ is set to 0.4.

4.3.2. Effect of Interest Threshold γ

To determine the optimal interest threshold γ, we performed an experiment in which γ ranges
from 0 and 1 with increments of 0.1. Figure 3 shows the accuracy and diversity of the DBTS method for
varying γ.
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Figure 3 shows the accuracy and diversity of DBTS for different values of interest threshold γ.
From Figure 3a we can see that γ has very little influences on either precision or recall. Figure 3b shows
that a high value of γ leads to low diversity performance of the DBTS algorithm in metrics of both PD
and AD. Considering both accuracy and diversity, we set γ to the optimal value 0.4.

4.3.3. Effect of Weight Parameter β

The ranking strategy threshold determines whether the recommendation results emphasize
accuracy or diversity. Figure 4 shows the accuracy and diversity of the DBTS algorithm for different
values of β.
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Figure 4a shows that, when β increases, there is a gradual decent on the curves of both precision
and recall, which indicates the more items reordered in the recommendation list, the less accuracy the
algorithm performs. In terms of accuracy metrics values, the method performs best when β ranges
from 0.1 to 0.4. Figure 4b shows that both PD and AD curves first rise and then descend. When β is set
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from 0.3–0.5, the DBTS algorithm achieves the best diversity performance. Therefore, we set β = 0.4,
which has the smallest decrease in accuracy and the highest increase in diversity.

4.3.4. The Execution Time of DBTS

Several experiments were conducted in order to compute the execution time of DBTS. The results
are reported in Figure 5.
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Like other two-stage recommendation methods, the DBTS algorithm has an offline computing
stage and an online recommendation stage. First, we experimented the offline stage of the DBTS
algorithm. Ten independent experiments were conducted, which are shown in Figure 5a. It can be
seen that the offline execution time has a mean value of 360 s and a standard deviation of 37.7 s. This
stage has a long computation time because it needs to calculate trust and interest similarities according
to the trust propagation algorithm. Then we experimented the online stage of the DTBS algorithm.
The number of recommendation list was set as 10, 15, 20, and 25. Four groups of experiments were
carried out with 10 independent ones for each group. The experiment results are shown in Figure 5b.
When the number of recommendations is set as n = 10, the online stage’s execution time is around 3 s.
As the length of the recommendation list increases up to 20 and more, the algorithm’s execution time
increases to above 15 s.

4.3.5. Discussion of Experimental Results

To validate the effectiveness of the proposed method, the DBTS algorithm was compared with
several conventional recommendation algorithms, in metrics of accuracy and diversity. Figure 6 shows
the results for the four algorithms.
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Figure 6a shows that the DBTS has higher accuracy compared to UCF (13%) and MoleTrust (40%),
but has poorer accuracy than BPR (2%) and LDA (7%). The UCF has lower accuracy because only
user similarities determined by ratings of corresponding items are used to predict user preferences.
When UCF is applied in social networking environments, its performance is the worst among the three
methods because it does not consider the social relations of users or the popularities of items.

Figure 6b indicates that the DBTS algorithm achieves the highest diversity compared to other
algorithms. The recommendations of BPR and LDA are highly biased towards popular items, which
hugely limited their diversity performance. The UCF has lower diversity because, as the number of
recommended items increases, UCF only considers user preferences regarding popular items. Thus,
personalized diversity and aggregate diversity are decreased. MoleTrust treats the trust of users
equally and ignores differences in user selections under different trust values, which decreases accuracy.
The DBTS uses a diversity factor to adjust the proportion of re-ranked items, which simultaneously
improves aggregate diversity and personalized diversity.

5. Conclusions

The novel DBTS recommender method proposed in this study alleviates monotonous
recommendations in RSs based on the social relationships and multiple interests of users. The proposed
method is performed in two stages. The rating prediction stage sets a trust threshold and an interest
threshold to integrate the trust similarities of users with multiple interest distributions. The problem
of sparse data is also alleviated. In the recommendation list generating stage, a ranking strategy is
applied to increase diversity with an acceptable loss in accuracy. The recommendation list is then
generated and adjusted according to the popularity and diversity of items. The proposed DBTS method
was validated through a series of experiments based on a real-world dataset. The validation results
indicate that DBTS effectively improves both the aggregate diversity and the personality diversity of
recommendations while maintaining high accuracy.

Several directions for future research can further improve the performance of the proposed
method. First, since DBTS requires arbitrarily pre-defined ranking threshold values, our future
studies will investigate the use of an optimization algorithm for automatically choosing the proper
parameters. Second, we will investigate how time and context information can cause dynamic changes
in user interests.
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