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Featured Application: Phenotype classification of zebrafish larvae from brightfield microscopic
images.

Abstract: Classification of different zebrafish larvae phenotypes is useful for studying the
environmental influence on embryo development. However, the scarcity of well-annotated training
images and fuzzy inter-phenotype differences hamper the application of machine-learning methods in
phenotype classification. This study develops a deep-learning approach to address these challenging
problems. A convolutional network model with compressed separable convolution kernels is adopted
to address the overfitting issue caused by insufficient training data. A two-tier classification pipeline
is designed to improve the classification accuracy based on fuzzy phenotype features. Our method
achieved an averaged accuracy of 91% for all the phenotypes and maximum accuracy of 100% for
some phenotypes (e.g., dead and chorion). We also compared our method with the state-of-the-art
methods based on the same dataset. Our method obtained dramatic accuracy improvement up to
22% against the existing method. This study offers an effective deep-learning solution for classifying
difficult zebrafish larvae phenotypes based on very limited training data.
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1. Introduction

The zebrafish and its larvae are becoming prominent vertebrate models in biological and
medical research [1–6]. The transparency of zebrafish larvae facilitates convenient observation
of the experimental process. Compared to the observations made by naked eyes in early days,
the development of modern microscopy and imaging technology has facilitated the implementation of
more complicated experiments by obtaining and storing massive zebrafish phenotype imaging data
digitally [7].

Early methods of phenotype image analysis mostly rely on manual work which is labour intensive
and error prone. Due to the increasing amount of image data, efficient image-processing methods
extracting meaningful information from a massive amount of phenotype images are increasingly
important [8]. So far, automatic approaches have been proposed for classifying the stages of zebrafish
embryo development [3,9,10] and recognition of adult fish behavior [11–13], following classical
image-processing techniques like wavelet analysis and fractal geometry [14–16]. These studies opened
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a new era of computerized zebrafish microscopic image analysis, liberating biologists from tedious
manual work and increasing the objectivity of the task.

Comparing to the development of image-analysis methods for zebrafish adults or eggs, the studies
on zebrafish larvae are relatively rare. The analysis of the larvae image remains a challenging task due to
the complexity and diversity of larvae phenotypes [17–19]. The distinctions among different phenotypes
are difficult to identify even for human experts. Among the limited number of existing zebrafish
larvae image-analysis studies, Nathalie Jeanray et al. proposed an automatic approach for larvae
defects classification from microscopic images using a supervised machine-learning approach [20].
They used dense random sub-windows to extract hand-crafted image features for phenotype defects
classification. For nine out of 11 classification categories, their method reached 90% to 100% agreement
with consensus voting of biologists. This method gives new insights into automatic recognition of
zebrafish larvae phenotypes by replacing human labour with the computerized method.

Even though the machine-learning method using hand-crafted features achieved comparable
performance to human experts, there is still significant scope to improve the accuracy and automation
of the method. The accuracy of these methods mostly depends on the quality of the extracted features.
The process for feature extraction involves subjective factors and human interventions. In contrast to the
classical machine-learning methods using hand-crafted features, the newly developed deep-learning
(DL) methods automatically extract image features and achieved a dramatic improvement of the
classification accuracy. In the last decade, DL methods, especially convolutional neural networks
(CNNs), have revolutionised the field of image analysis [21–23]. Despite the success of deep learning in
image processing, there are some unique difficulties of zebrafish larvae microscopic images hampering
the application of DL approaches:

(i) Scarce training data. Biological experiments usually produce small datasets far from enough for
training large neural networks. It is difficult to generate a large training set of expert-annotated
zebrafish larvae images. Manual annotation of the training images is labour-intensive. It is
unlikely to create large annotated biological image datasets with comparable scale to the natural
image datasets [24].

(ii) Fuzzy inter-class difference. The appearance difference between different zebrafish larvae
phenotypes are sometimes too trivial to be identified by the naked eye, and even human experts
do not agree with each other on the annotation labels.

(iii) Multi-label nature. Unlike the natural image classification tasks which assign one unique label
(e.g., cat or dog) to each subject, some zebrafish larvae phenotypes may simultaneously belong to
multiple classes. For example, a larva with a necrosed yolk sac may also have an up curved short
tail. Existing DL models are mostly designed for single-label classification task thus cannot be
directly applied to zebrafish larvae phenotype classification.

Considering these difficulties, it is necessary to develop a specific deep-learning method for
zebrafish phenotype classification from brightfield microscopic images. In this work, to cope with
the scarce training data problem, we adopted the idea of separable convolution from the Xception
(extreme inception) network [25] to overcome the overfitting issue caused by limited training data.
To tackle the fuzzy inter-class difference and multi-label problems, a two-tier classification strategy is
used. The phenotypes that are easy to recognize are firstly recognized in the first-tier classification
process. The remaining difficult phenotypes are then recognized with dedicated trained classifiers in
the second tier. For each of the difficult phenotypes, we train one network for each single phenotype,
so that the networks are more focused on the specific phenotypes. Since each test image is processed
with multiple networks, multiple phenotype labels can be assigned to one image, thus the multi-label
problem is tackled.

To test our algorithm and compare it fairly with the state-out-the-art solutions, we used a publicly
available zebrafish larvae microscopic image dataset [20] which has corresponding human expert
annotation labels. Based on the researching achievements of the predecessor, we worked further on
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this dataset and developed a DL-based zebrafish larvae classification model that is more robust and
accurate. In Section 2, the dataset annotated elaborately by the Nathalie Jeanray et al. is described.
Section 3 introduces the detailed structure and method. Experimental results are reported in Section 4,
with further discussions presented in Section 5.

2. Materials and Methods

2.1. Data Collection

To train and develop an effective model for phenotype classification, the quality of the carefully
collected dataset is crucial. Ground-truth datasets acquired and annotated by domain experts with
the depiction of various classes are required [26]. Research based on publicly available ground-truth
datasets has the advantage of enabling better evaluation and comparison of algorithms to enable
continuous progress. Therefore, we chose the dataset from the Jeanray et al. group which were
produced and collected with rigorous processes [20].

To obtain a collection of different defect phenotypes, Jeanray et al. used increasing concentrations of
varied chemicals for zebrafish embryo treatment, including propranolol, amiodarone, acetaminophen,
valproic acid caffeine, theophylline 4,5-dichloroanilin, as well as heavy metals such as thallium,
methylmercury, lead acetate and zinc sulfate. Phenotype images of control or treated embryos were
captured in a lateral view with a high-resolution Olympus SZX10 microscope coupled with a camera
and transmitted light illumination. The acquired images were in the size of 2575 × 1932 pixels.

A sophisticated workflow of manual annotation was performed to build a high-quality
ground-truth dataset. Three biologists labelled images with different categories of phenotypes
by observations only in the first round. For each phenotype assigned to each image, the ground-truth
was calculated by majority voting. Ten categories of phenotypes are identified, i.e., “normal”, “dead”,
“chorion”, “down curved tail”, “hemostasis”, “necrosed yolk sac”, “edema”, “short tail”, “up curved
tail” and “up curved fish”. Sample images for different phenotypes are shown in Figure 1. By contrast
with a regular classification dataset, there may be more than one phenotype assigned to a single image
since more than one deformity may be found on one larva. Next, all annotations were reviewed by
three biologists at the same time in order to reach agreement on phenotypes assigned to each image.
After repeating the annotation and voting session, consensus was reached on 870 images. In total,
529 of them acquired in five independent acquisition days were set as a training dataset and other
341 images acquired in three additional acquisition days were integrated into the test dataset. The
rigorous process of building the ground-truth dataset has laid the foundation of high-performance
phenotype classification algorithms. Table 1 reports the number of training and testing images in this
dataset. The training images are to be used for training the machine learning model for phenotype
classification. The testing images are used for validating the trained model. The testing images are not
included in the training images.

Table 1. The number of training and testing zebrafish larvae microscopic images of each phenotype.

Dataset- Normal Dead Necrosed
Yolk Sac Edema Hemostasis Short

Tail

Up
Curved

Tail

Up
Curved

Fish
Chorion

Down
Curved

Tail

Training 160 114 167 160 57 49 32 64 18 11
Testing 82 53 11 54 83 149 17 13 5 16
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Figure 1. Example images of ten zebrafish larvae phenotypes from the publicly available dataset 
provided by Jeanray et al. A detailed description of these phenotypes are referred to the original paper 
of this dataset [20]. Note that some larvae have multiple phenotype labels, such as the larva of “edema 
1” and “up curved fish 1”, as well as the larva of “necrosed yolk sac 2” and “up curved fish 2”. 

2.2. Data Pre-Processing 

One of the greatest impediments to developing deep-learning networks for biological images is 
that the sizes of training datasets from biological experiments are usually too small. The zebrafish 
larvae image dataset used in this study is the biggest dataset we could find, but its data size (hundreds 
of images) is still up to four orders of magnitudes less than the number of images needed to train a 
deep neural network. Training a deep network using such a small dataset will inevitably cause 
overfitting, leading to imperfect generalization ability of the network. Another obstacle is that the 
numbers of each category of the dataset are seriously imbalanced (as Table 1 reports). Imbalanced 
training samples will result in poor classification performance for those phenotypes with insufficient 
training samples. 

To address the problem of the small and imbalanced training dataset, a data argumentation 
strategy is applied. Data augmentation is an effective way to extend an existing dataset by creating 
altered versions of the training data according to possible varied experimental situations. The trained 
network will be more robust against possible image variations due to the added possible 
diversification. Image augmentation is proved to be one of the effective solutions for preventing over-
fitting. In this way, a wider variety of images is available for training the classification network to 
make it more robust to possible image variations. 

Data-augmentation techniques were chosen based on the peculiarity of the zebrafish larvae 
microscopic image dataset. The most possible variations of the microscopic images were caused by 
random larvae placement which resulted in slight differences of the larvae location and orientation. 
Therefore, each training image was shifted and rotated in different directions to generate pseudo 
augmented images. We applied small shifting in four directions of the objects, i.e., up, down, left and 
right. Similarly, we also added small rotations to the original and shifted images in both clockwise 
and counterclockwise directions to simulate possible deviation caused by manual operation during 
experiments. 

Figure 1. Example images of ten zebrafish larvae phenotypes from the publicly available dataset
provided by Jeanray et al. A detailed description of these phenotypes are referred to the original paper
of this dataset [20]. Note that some larvae have multiple phenotype labels, such as the larva of “edema
1” and “up curved fish 1”, as well as the larva of “necrosed yolk sac 2” and “up curved fish 2”.

2.2. Data Pre-Processing

One of the greatest impediments to developing deep-learning networks for biological images is
that the sizes of training datasets from biological experiments are usually too small. The zebrafish
larvae image dataset used in this study is the biggest dataset we could find, but its data size (hundreds
of images) is still up to four orders of magnitudes less than the number of images needed to train a deep
neural network. Training a deep network using such a small dataset will inevitably cause overfitting,
leading to imperfect generalization ability of the network. Another obstacle is that the numbers of each
category of the dataset are seriously imbalanced (as Table 1 reports). Imbalanced training samples will
result in poor classification performance for those phenotypes with insufficient training samples.

To address the problem of the small and imbalanced training dataset, a data argumentation
strategy is applied. Data augmentation is an effective way to extend an existing dataset by creating
altered versions of the training data according to possible varied experimental situations. The trained
network will be more robust against possible image variations due to the added possible diversification.
Image augmentation is proved to be one of the effective solutions for preventing over-fitting. In this
way, a wider variety of images is available for training the classification network to make it more
robust to possible image variations.

Data-augmentation techniques were chosen based on the peculiarity of the zebrafish larvae
microscopic image dataset. The most possible variations of the microscopic images were caused by
random larvae placement which resulted in slight differences of the larvae location and orientation.
Therefore, each training image was shifted and rotated in different directions to generate pseudo
augmented images. We applied small shifting in four directions of the objects, i.e., up, down,
left and right. Similarly, we also added small rotations to the original and shifted images in both
clockwise and counterclockwise directions to simulate possible deviation caused by manual operation
during experiments.

To cope with the imbalanced training data problem, the images of different phenotypes were
augmented a different number of times to produce a more balanced dataset. The phenotypes with
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relatively abundant images (i.e., normal, dead, necrosed yolk sac, and edema) were shifted in each
direction four times with 10 pixels step and rotated in each direction three times with 10 degrees
interval, therefore they were augmented 44 × (3 × 2) = 1536 times. The phenotypes with middle
sample sizes (i.e., hemostasis, short tail, upcurved tail and upcurved fish) were shifted in each direction
four times with 10 pixels step and rotated in each direction five times with six degrees interval,
therefore they were augmented 44 × (5 × 2) = 2560 times. The phenotypes with scarce training sample
(i.e., chorion and down curved tail) were shifted in each direction five times with eight pixels step and
rotated in each direction 10 times with three degrees interval, they were augmented 54 × (10 × 2) =

12,500 times. Table 2 summarizes the number of training images of each phenotype before and after
data augmentation.

Table 2. The number of training images of each phenotype before and after data augmentation.

Normal Dead Necrosed
Yolk Sac Edema Hemostasis Short

Tail

Up
Curved

Tail

Up
Curved

Fish
Chorion

Down
Curved

Tail

Before 160 114 167 160 57 49 32 64 18 11
After 2.46 × 105 1.75 ×

105
2.56 × 105 2.46 ×

105
1.46 × 105 1.25 ×

105
8.19 ×

104
1.64 ×

105
2.25 ×

105
1.38 ×

105

2.3. Network Structure

Augmented and normalized images were then fed into our classification module to identify the
malformation type of each larva. Unlike regular classification datasets of which one image belongs to
one category only, images of zebrafish larvae can be classified to have more than one label. Therefore,
we used a two-tier classification pipeline to address the multi-label problem. As Figure 2 shows, the
first-tier classifier performs a tri-category classification, classifying the input image as edema, chorion
or other phenotypes. We separate edema and chorion from other classes because they are quite easy to
recognize, and it is not necessary to train individual classifiers for them. If the image is classified as
others, it will go into the second-tier classification process in which eight binary classifiers are applied
in parallel. Each of the classifiers is only responsible to judge whether the larva belongs to one of the
eight classes. The objective of the second-tier classification is to find out whether the larva has one or
more of the labels out of the eight phenotypes.
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2.4. Larva Classification Network

For the entire pipeline, we use the same network structure for both the first- and second-tier
classification. We adopt the Xception network as the classifier model. The network structure is
illustrated in Figure 3. For conciseness of the article, we refer the readers to [25] for a detailed
explanation of the network architecture. For the first-tier classification, the network outputs the
probabilities of three phenotypes, i.e., edema, chorion and others. The phenotype label with the
maximum probability is assigned to the target larva. For the second-tier classification, the same
network is used for each binary classifier, outputting the probability of belonging to each of the eight
phenotypes. If the probability of a certain phenotype is over 0.5, the larva is classified to have the label
of this phenotype.
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stands for ‘convolution kernel’ and ‘rectified linear unit’, respectively.

So far, various types of convolutional networks have been developed for image classification.
The reason we chose the Xception network instead of other classical networks (e.g., VGG16 [27])
is that the Xception network uses the so-called ‘separable convolution’ mechanism (shown as the
blue blocks in Figure 3) to reduce the number of network hyperparameters. Figure 4 compares the
separable convolution architecture with conventional convolution architecture. The input of the
convolutional architecture is a k-channel feature map (k = 4 in Figure 4 as an example) produced by
the previous network layer. The separable convolution architecture (Figure 4a) conducts separated
channel-wise and space-wise convolutions while the conventional convolution architecture (Figure 4b)
conducts channel-wise and space-wise convolutions simultaneously using a k × 3 × 3 kernel containing
9k hyperparameters. The channel-wise convolution is firstly performed using a k × 1 × 1 kernel,
producing a single-channel intermediate feature map which is further convoluted with a 1 × 3 × 3
kernel. Such separable convolution uses only 9 + k hyperparameters which is much less than the 9k
parameters of the conventional convolution. The merit of separable convolution for zebrafish larvae
image classification is that it avoids overfitting to the limited training data because the network has
much fewer hyperparameters than the conventional CNN.
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To further relieve the problem of scarce training data, a technique called transfer learning is
used to train a robust network for complicated zebrafish larvae classification. By transfer learning,
we can obtain deep features that an existing model has learned from tens of thousands of natural
images, therefore the burden of training such a deep network from scratch is alleviated. We used an
existing Xception network pretrained on the imagenet datasets [25] and froze the hyperparameters of
the feature extraction layers, leaving only the classification layers trainable (i.e., the global average
pooling layer, the fully-connected layers and the logistic regression layer as marked in Figure 3). These
classification layers were trained on our augmented dataset using the stochastic gradient descent (SGD)
optimizer with a slow learning rate of 0.0001 and a momentum of 0.9. We used such a slow learning
rate because the network was already pretrained, the learning rate should be small enough to fine tune
the network to suit the limited training data of zebrafish larvae.

3. Results

Thanks to the availability of public zebrafish larvae microscopic images, we can compare our
approach with the published state-of-the-art machine learning methods based on the same training
and test data. As explained in the Introduction Section, the strength of our method lies in the usage of
a two-tier classification pipeline and the Xception network. To prove the advantages of the two-tier
pipeline, we compare our method with a single-tier classification pipeline. To evaluate the effectiveness
of the Xception network, we run a comparison with an existing method using other classical CNN
models, including AlexNet, the Visual Geometry Group networks of 16 and 19 layers (VGG16 and
VGG19) and GooLeNet [24,27,28]. All these comparisons were conducted using the classification
accuracy as the performance metric, i.e., Accuracy = (NTP + NTN)/Nall, where NTP, NTN and Nall

denote the number of true positive, true negative, and all test samples respectively for each phenotype.
Our networks were programmed with the Keras platform running on a server using NVIDIA TITAN X
graphics processing unit (GPU). The training process took −200 min on the entire augmented training
set and took −2 s on each test image.

3.1. Comparison with the State-of-the-Art Larva Phenotype Classification Method

In the previous study by Jeanray et al. [20], they published the zebrafish larvae image dataset
along with a supervised phenotype classification algorithm using a randomized trees classifier, which
is a conventional machine learning method dedicatedly adapted to the zebrafish larvae images. They
also used a two-tier classification strategy quite similar to ours, and therefore the major difference
between our and their method is whether the deep learning approach was used. We refer Jeanray’s
method as the state-of-the-art baseline method and conducted the comparison based on the same
training images (as listed in Table 2) and testing images (as listed in Table 1). Figure 5 plots the
classification accuracies of the two methods. The accuracy values of the baseline method were collected
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from Jeanray’s original paper [20]. Our method achieved evident accuracy improvement over the
baseline method for most phenotypes. For the phenotypes which are easy to recognize (dead and
chorion), our method yielded an accuracy of 1.0 which is quite promising. Jeanray’s method also
obtained accuracy over 0.95 for these phenotypes but did not reach 1.0. The biggest improvement is
with hemostasis, for which our method obtained an accuracy of 0.73 vs. 0.51 of the baseline method.
Normal and short tail are the two phenotypes for which our method yielded slightly lower accuracies
than the baseline method, but the differences (0.010 and 0.005 for normal and short tail, respectively)
were too small to be considered significant.
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3.2. Comparison with the Single-Tier Classification Pipeline

In this study, we used the two-tier pipeline to make the classifiers focus on the fuzzy phenotypes
which are difficult to recognize. To evaluate the effectiveness of the two-tier pipeline, we also conducted
phenotype classification based on a single-tier pipeline, in which 10 separated binary classifiers were
trained for each of the 10 phenotypes. By doing so, each classifier has to recognize one phenotype
from 10 phenotypes, which might be more difficult than recognizing one from eight as in the two-tier
pipeline. Figure 6 compares the accuracies of the two-tier vs. single-tier pipelines. It can be observed
that although the two-tier pipeline does not outperform the single-tier pipeline for all the phenotypes,
and it achieved much better accuracy for those difficult phenotypes including edema, hemostasis and
down curved tail whose accuracies were improved by 0.06, 0.03 and 0.09, respectively.
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3.3. Comparison with the Classical Convolutional Neural Network (CNN) Model

To validate the advantage of using the Xception network instead of a conventional CNN,
we compare our method with an existing study using the classical CNN model [19]. VGG16 is a widely
used CNN model for image classification [27]. Tyagi et al. fine tuned a pre-trained VGG16 model
for zebrafish larvae microscopic image classification [19]. Their experiments were also based on the
same ground-truth dataset from the Jeanray group. In their experiment, the network was trained to
classy different combinations of five, eight and all phenotypes, respectively. They aimed to validate
the classicization performance for different numbers of target phenotypes. The combination of five
phenotypes included hemostasis, necrosed yolk sac, edema, short tail and normal. The combination
of eight phenotypes included the normal, dead, down-curved tail, chorion, up-curved tail, short tail,
edema and necrosed yolk sac.

To conduct a fair comparison, we followed the same experiment setup of Tyagi et al. [19] That
is, our Xception network was also trained to classify the same combinations of five, eight and all
phenotypes, respectively. The averaged classification accuracy of each combination is compared
with Tyagi’s accuracy in Table 3. For all the combinations, the Xception network resulted in better
accuracy than the VGG16 network. When more phenotypes are included in the combination, the
improvement of accuracy becomes larger. This result means that the Xception network is more suitable
for multi-phenotype classification and better suits the multi-label nature of the zebrafish larvae.

Table 3. Comparison of classification accuracy between our Xception-based method with Tyagi’s
VGG16-based method [19] and our finetuning based on AlexNet [24], VGG19 [27], and GoogLeNet [28].

# of Network
Parameters

# of Weight
Layers

Five-Phenotype
Combination

Eight-Phenotype
Combination

All-Phenotype
Combination

Xception 22M 16 0.86 0.92 0.92
AlexNet 60M 8 0.80 0.75 0.70
VGG16 138M 16 0.85 0.87 0.84
VGG19 144M 19 0.88 0.87 0.85

GoogLeNet 5M 22 0.85 0.86 0.88

Besides the VGG16-based method of Tyagi et al., we further compared our method with
transfer learning using three other popular CNN models including AlexNet [24], VGG19 [27], and
GoogLeNet [28] which were all pretrained with the ImageNet data. For a fair comparison, these
networks were also validated on the combinations of five, eight and all phenotypes, respectively.
The validation results are reported in Table 3 as well. For the five-phenotype combination, VGG19
achieved the best accuracy (0.88) while our Xception-based method yielded suboptimal accuracy (0.86).
For both the eight- and all-phenotype combinations, our method was the most accurate.

4. Discussion

In this study, we take advantage of deep learning to classify zebrafish larvae phenotypes from
brightfield microscopic images. We aim to solve the classification problems especially for those
phenotypes with fuzzy class features. Based on the same training and testing data, Jeanray et al.
had already developed a larvae phenotype classification method using the classical machine
learning method [20]. Their method provides a state-of-the-art baseline for our DL-based approach.
The experimental results of Figure 5 reveals that our deep-learning method outperforms the baseline
method in terms of classification accuracy. Besides the accuracy improvement, the advantages of the
deep-learning method also include the avoidance of designing hand-crafted image features. Jeanray
et al. used image edge and sub-window intensity distribution as the image features, but these
features may not be optimal for classifying some difficult phenotypes like edema and hemostasis. Our
deep-learning approach automatically learns the crucial image features for phenotype classification.
The deep-learning approach not only relieves the algorithm developers from the burden of image
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feature design but also automatically discovers the useful features which the human designers cannot
conceive of. As a result, we observe dramatic accuracy improvement for the phenotypes with fuzzy
class features, such as edema and hemostasis.

To address the scarce training data problem, we performed augmentation to the training data.
We augmented different phenotypes with different scales to compensate for the imbalanced training
data. As Figure 5 reveals, this strategy decreased the inter-class accuracy differences compared to
the baseline method using original training data. However, some phenotypes with too few original
training samples (e.g., hemostasis) still have relatively lower accuracy than other phenotypes. This
is because our augmentation process only implemented image shifting and rotation, its capacity to
improve data variability is limited. For a future study, we will introduce more variations into the data
augmentation step, such as non-linear image deformation and image contrast variations [29].

To cope with the problems of fuzzy inter-class differences and multi-label issues, we used the
two-tier classification pipeline. Experiment results proved the effectiveness of the two-tier strategy.
Accuracy improvements against the single-tier pipeline were observed for the difficult classes like
edema, hemostasis and down-curved tail. The improvements for these phenotypes are 0.06, 0.03 and
0.09, respectively. It is worth mentioning that Jeanray et al. also compared the two-tier and single-tier
pipelines using their randomized tree classifier [20]. However, their two-tier pipeline only improved
the accuracy of edema and down-curved tail by 0.01 and 0.03, respectively, which are much less than
our improvements. For hemostasis, their two-tier pipeline even resulted in a 0.03 decrease in accuracy.
It is obvious that the advantage of the two-tier strategy is more obvious for our method, thanks to the
superior classification ability of the DL models.

Currently, there are various types of DL models for image classification. We chose Xception as
the classifier because of its small hyperparameter scale [25]. Training a smaller network on scarce
annotated data can potentially avoid the overfitting problem because larger networks are more flexible
on data fitting and tend to overfit the limited training data. The conventional VGG16 network [27] has
over 138 million parameters which is much more than the 22 M parameters of the Xception network.
As we compared our Xception-based approach with the VGG16-based approach [19], an obvious
improvement of classification accuracy was observed. More importantly, the improvement becomes
bigger when more phenotypes are involved as the target classes. That means the VGG16 network has
imperfect generalization ability for more classes. The Xception network successfully alleviated the
overfitting issue without losing the accuracy of classification. Our study has explored an effective way
to cope with scarce annotation data for biological image classification.

As we further compare our method with more CNN networks, it seems that deeper network tends
to yield more accurate results. An intuitive explanation is that deeper networks are better at learning
deep features from the large ImageNet dataset and thus performs better at transfer learning. However,
the Xception network that we use is not the deepest, but it yielded the most accurate results for eight-
and all-phenotype combination tests. This might be attributed to the residual connections (i.e., the
shortcut connections of 1 × 1 convolution in Figure 3) which does not exist in AlexNet, VGG16, VGG19
or GoogleNet. As demonstrated in the original paper of the Xception network [25], such a residual
connection is essential for increasing the classification accuracy since it improved the convergence
performance on a large pretraining dataset and helped the network to learn more distinctive image
features for transfer learning.

As a limitation of this study, we only tested our method on a publicly available dataset. However,
the appearance of zebrafish larvae microscopic images may vary between institutes, acquisition devices
and sample preparation procedures. It is important to test our method with more diverse datasets.
Moreover, our method also needs to be implemented in an on-site experimental environment to
produce real-time classification results. Fortunately, the Xception model has small file size which can
be implemented easily in embedded operating systems.
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5. Conclusions

We developed a deep-learning pipeline for zebrafish larvae phenotype classification from
brightfield microscopic images. Facing the difficulties of scarce training data, fuzzy inter-class
difference and the multi-label problem, we used a two-tier classification pipeline and the Xception
network architecture to address all these challenges. Experimental results proved the effectiveness of
our solution. We look forward to applying our method in daily biological experiments and making
further improvements to process more diverse datasets. The method in this paper is also transferable
to other biological phenotype recognition problems for researchers who are facing similar challenges
of biological image classification.
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