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Abstract: The thickness of the oil film in ceramic ball bearings varies greatly at starved lubrication
conditions, thus leading to non-uniform contact between the balls and raceways in the circumference.
The lubrication parameters have a direct impact on the thickness of the oil film and then affect the
dynamic characteristics of the ceramic ball bearings. A nonlinear dynamic model of ceramic ball
bearing with limited lubrication is presented in this paper, and parametric studies on the effect
of lubrication parameters are conducted. In starved conditions, the uneven contact between the
ball and ring leads to changes in vibration, and the inner ring vibration is applied to evaluate the
degree of starved lubrication. The results show that as the oil quantity increases, the bearing stiffness
increases and results in increased peak frequency. As the oil quantity decreases, the thickness of the
oil film reduces, resulting in the bearing vibration increase. The research findings provide a theoretical
reference for ceramic ball bearing design and have guided significance for improving the service
performance of ceramic ball bearings.
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1. Introduction

Ceramic ball bearings have excellent performance and perform well in high temperature and
high-speed environments, which can ensure the normal operation of high-speed devices [1,2]. Bearings
are important to support components for equipment. The vibration characteristics of ceramic ball
bearings directly affect the accuracy and vibration characteristics of the equipment.

The mechanism of bearing vibration is very complex, involving many factors, such as process
errors, structural parameters, and operating parameters [3–9]. Zhang et al. [10] established a dynamic
model to analyze the influence of structural parameters on bearing vibration. Cui et al. [11] used
the theory of rolling bearing dynamics to establish a dynamic analysis model of angular contact ball
bearings. It is found that adjusting the structural parameters and the axial preload can reduce the
vibration of the bearing. Bai et al. [12] developed a nonlinear dynamic model of full ceramic bearings,
considering different diameters of the ball, oil film forces, and load. The dynamic response of each
element of the full ceramic bearing is obtained by solving the model.

Bearing vibration is not just related to structural parameters, but is also affected by the working
parameters, including lubrication [13–15]. The lubricating oil cannot enter the bearing smoothly under
high-speed, heavy-duty conditions. The amount of oil inside the bearing gradually decreases and the
starvation state occurs [16–22]. This phenomenon has attracted a lot of research interest in the field of
starvation lubrication. Tanaka [23] studied the hydrodynamic performance of journal bearings in the
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absence of lubrication from theoretical and experimental conditions. The reduction in film thickness
along the bearing circumference can affect the static and dynamic performance of journal bearings.
Maruyama and Saitoh [24] studied the relationship between oil supply flow and oil film thickness
under stable starvation lubrication conditions. The flow rate of the supplied oil was precisely controlled
in the experiment and the oil film thickness was measured. The relationship between the oil supply
flow rate and the oil film thickness is determined. Ebner et al. [25] studied the effects of insufficient
lubrication on the working behavior of elastohydrodynamic lubrication (EHL) contactors in gears.
The results show that a small amount of initial oil can lubricate normally and have different operating
performance on different surfaces. Results show that a very small amount of initial oil is sufficient
for lubrication and different operating behaviors for different surfaces. Hamrock and Dowson [26,27]
simulated the starvation phenomenon by moving the entrance to the contact center and calculated the
actual distance of the entrance by the correction factor of the oil film thickness. Wedeven et al. [28]
studied the effect of lubricant distribution on oil film thickness in the inlet area of EHL. The minimum
meniscus length of the EHL inlet area is theoretically determined to prevent insufficient lubrication.
Liu et al. [29] studied the sliding contact situation under various lubricant quantities. Theoretical
results show that the starved film has a certain carrying capacity and the film thickness is a sensitive
function of the amount of lubricant supplied. Venner et al. [30] proposed a model for predicting the
change in the grease layer in a rolling bearing because of the centrifugal force of the ball and the EHL
contact pressure. This model estimates the longest local replenishment interval to ensure the normal
bearing operation and helps to improve bearing life predictions related to lubricants.

However, the currently developed models are based primarily on the theory of EHL to analyze
the effect of the amount of lubricant on the operation of the mechanism. There are few studies
on the impact of the amount of lubricant on the dynamic performance of bearings in dynamic
models. Recently, Bai et al. [31] showed that uneven contact between the ball and ring would affect
the vibration conditions of the entire ceramic bearing. In the starving lubrication, uneven contact
becomes more apparent. Under starvation lubrication conditions, the thickness of the lubricant film
that transfers the load between the ball and the raceway is very thin and unstable. Different oil film
thickness will lead to different bearing load conditions and then affect the dynamic characteristics
of the bearing. In this paper, a nonlinear dynamic model of ceramic ball bearings with starved
lubrication is established. Considering detailed lubrication conditions with lubrication parameters,
through numerical calculations, the influence of the oil amount on the vibration of the bearing inner
ring was studied.

2. Dynamic Model

2.1. Contact Model between the Balls and Inner Ring

Model of the Inner Ring

In order to facilitate the analysis of the dynamic performance of ceramic ball bearings, the following
assumptions were made: The working surface of the bearing parts has an ideal geometry and the center
of mass coincides with the centroid; the outer ring of the bearing does not rotate and the inner ring
rotates around the X-axis; each ball has the same diameter; the inertial coordinate system of the bearing
is {O; X, Y, Z}; the inner ring coordinate system of the bearing is {O; Xi, Yi, Zi}; and the coordinate
system of the jth ball is {Obj; Xbj, Ybj, Zbj}. When an angular contact ball bearing rotated at high speed,
the inner ring was subjected to the normal contact force of the ball, the traction force, the friction of the
lubricating oil, and the applied load. The force model of the inner ring is shown in Figure 1.

The inner ring dynamic nonlinear differential equations can be expressed as:

Fx +
z∑

j=1

(FRηi j cosαi j −Qi j sinαi j) = mi
..
xi (1)
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Fy +
z∑

j=1

[(FRηi j sinαi j −Qi j cosαi j) cosϕ j + (Tξi j − FRξi j) sinϕ j] = mi
..
yi (2)

Fz +
z∑

j=1

[(FRηi j sinαi j + Qi j cosαi j) sinϕ j − (Tξi j − FRξi j) cosϕ j] = mizi (3)

My +
z∑

j=1

[
ri j(−FRηi j cosαi j + Qi j sinαi j) sinϕ j +

D
2

ri jTξi j sinαi j cosϕ j] = Iiy
.
ωiy−(Iiz − Iix)ωizωix (4)

Mz +
z∑

j=1

[
ri j(−FRηi j cosαi j + Qi j sinαi j) cosϕ j +

D
2

ri jTξi j sinαi j sinϕ j] = Iiz
.
ωiz−(Iix − Iiy)ωiyωix (5)

where the contact surface between the ball and the raceway is approximately an ellipse, η and ξ are
the short axis and the long axis of the contact ellipse between the ball and the raceway, subscript i
represents the inner ring, Fx, Fy, Fz, My, and Mz are externally applied forces and torques, αij is the
contact angle between the ball and inner raceway, ϕi j is the azimuth of the jth ball, Qij is normal
contact force between the ball and inner raceway, Tηij is the traction force of the contact surfaces,
FRηij is a hydrodynamic frictional force at the inlet zone, mi is the mass of the inner ring,

..
xi,

..
yi, and

..
zi,

are the acceleration of the inner ring in the inertial coordinate system, Iix, Iiy, and Iiz are the principal
moments of inertia of the inner ring in the inertial coordinate system, ωix, ωiy, and ωiz represent
the angular velocity of the inner ring in the inertial coordinate system,

.
ωiy and

.
ωiz are the angular

accelerations of the inner ring in the inertial coordinate system, D is the normal ball diameter, and rij is
the rolling radius:

ri j = 0.5d−Ri cosαi j (6)

where d is the pitch diameter of the bearing and Ri is groove curvature radius of the inner race raceway.
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Figure 1. The force model of the inner ring in the plane XOZ (a) and in the plane YOZ (b). 

2.2. Model of the Ball at Normal Lubricated Conditions 

When fully lubricated, the oil filled the gap between the ball and the inner ring to allow the ball 
to be loaded. The force acting on the loaded ball is shown in Figure 2. 

The dynamic differential equations of the fully lubricated ball are shown as: 
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Figure 1. The force model of the inner ring in the plane XOZ (a) and in the plane YOZ (b).

2.2. Model of the Ball at Normal Lubricated Conditions

When fully lubricated, the oil filled the gap between the ball and the inner ring to allow the ball to
be loaded. The force acting on the loaded ball is shown in Figure 2.

The dynamic differential equations of the fully lubricated ball are shown as:

Qi j sinαi j −Qe j sinαe j + Tηi j cosαi j − Tηe j cosαe j − FRηi j cosαi j + FRηe j cosαe j + PSξ j + PRξ j = mb
..
xb j (7)

Qi j cosαi j −Qe j cosαe j − Tηi j sinαi j + Tηe j sinαe j + FRηi j sinαi j − FRηe j sinαe j + Fη j − PSη j − PRη j = mb
..
yb j (8)

Tξe j − Tξi j − FRξe j + FRξi j + Qc j − FDj − Fτ j = mb
..
zb j (9)
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(Tξe j − FRξe j)
D
2

cosαe j + (Tξi j − FRξi j)
D
2

cosαi j−(PSη j + PRη j)
D
2
− Jx

.
ωxj = Ib

.
ωb jx (10)

(FRξe j − Tξe j)
D
2 sinαe j + (FRξi j − Tξi j)

D
2 sinαi j −Gyj−(PSξ j + PRξ j)

D
2 − Jy

.
ωyj = Ib

.
ωb jy − Ibωb jz

.
θbj (11)

(Tηi j − FRηi j)
D
2
+ (Tηe j − FRηe j)

D
2

cosαi j −Gzj − Jz
.
ωzj = Ib

.
ωb jz − Ibωb jy

.
θbj (12)

where subscript e represents the outer ring, αij, and αej are the contact angles between the ball and
raceway, Qij, and Qej are the normal contact forces between the ball and raceway, Tηij, Tηej, Tξij,
and Tξej are traction forces of the contact surfaces, Qcj is the collision force between the jth ball and
the cage, Fηj and Fτj are components of the ball’s center, PRηj and PRξj are the rolling frictional forces
acting on the ball’s surfacem PSηj and PSξj are the sliding frictional forces acting on the ball’s surface,
FRηij, FRηej, FRξij and FRξej are the hydrodynamic frictional forces at the inlet zone, Jx, Jy and Jz are
components of the ball’s moment of inertia of xbj, ybj, and zbj directions, Gyj and Gzj are components of
the ball’s inertia moment of ybj and zbj directions, FDj is the aerodynamic resistance acting on the ball
by the gas–oil mixture, ωxj, ωyj and ωzj are the angular velocity of the jth ball in {Obj; Xbj, Ybj, Zbj},
and

.
ωxj,

.
ωyj,

.
ωzj are the angular accelerations of the jth ball in {Obj; Xbj, Ybj, Zbj}. mb is the mass of the

ball
..
xb j,

..
yb j, and

..
zb j are the displacement accelerations of the jth ball in the inertial coordinate system,

Ibj is moments of inertia of the jth ball, ωbjx, ωbjy, and ωbjz are the angular velocities of the jth ball in
the inertial coordinate system,

.
ωb jx,

.
ωb jy, and

.
ωb jz are the angular accelerations of the jth ball in the

inertial coordinate system, and
.
θb j is orbit speed of the jth ball in the inertial coordinate system.
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2.3. Model of the Ball at Starved Lubricated Conditions

The lubrication regime in bearings was governed by EHL. In this application, when the amount
of lubricant was enough to fill the inlet of the contact, the lubrication method was called full filling.
However, in the process of bearing a high-speed operation, the oil could not be replenished quickly
enough after the ball rolling. At this point, the lubricant supply at the inlet was insufficient and entered
the stage of oil starvation.

When there was enough oil, the central oil film thickness hc was generally a function of viscosity,
load, contact material, and shape, regardless of temperature, and can be expressed as:

hc = f (α0, η0, u, R, Q, E) (13)

where α0 is the pressure index of viscosity, η0 is the dynamic viscosity at normal pressure, R is the
equivalent radius of curvature, Q is the normal contact force between the ball and raceway, and u is the
average surface velocity and can be expressed as:

u =
d2
−D2

4d
ω (14)
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where ω is the angular velocity of the inner ring and E is the equivalent elastic modulus and satisfies
the following equation:

1
E
= 0.5

1− ν2
1

E1
+

1− ν2
2

E2

 (15)

where E1 and E2 are elastic moduli of the two contact materials and v1 and v2 are Poisson’s ratios of
the two contact materials.

In order to facilitate analysis, these parameters were dimensionless, as follows:

Hc = ϕ(U, W, G) (16)

where Hc is a dimensionless central film thickness:

Hc =
hc

Rx
(17)

where Rx is the equivalent radius of curvature in the long axis direction.
The velocity parameter U is expressed as

U =
η0u
ERx

, (18)

the load parameter W is expressed as

W =
Q

ERx
, (19)

and the material parameter G is expressed as

G = α0E. (20)

Using these dimensionless parameters, Hamrock and Dowson [26] proposed a formula for
calculating the numerical solution of point contact dimensionless elastohydrodynamic lubricating film
thickness and dimensionless minimum film thickness:

Hc = 2.69U0.67W−0.067G0.53(1− 0.61e−0.72k) (21)

Hmin = 3.63U0.68W−0.073G0.49(1− e−0.68k) (22)

where k is the ellipticity and can be expressed as:

k =
a
b
≈ 1.03391

(
Ry

Rx

)0.636

(23)

where a is the long half axis of the ellipse, b is the short half axis of the ellipse, and Ry is the equivalent
radius of curvature in the short axis direction.

Therefore, the corresponding central oil film thickness and minimum film thickness are shown as:

hc = HcRx = 2.69α0
0.53(η0u)0.67Rx

0.464Q−0.067E−0.073
(
1− 0.61e−0.72k

)
(24)

hmin = HminRx = 3.63α0
0.49(η0u)0.68Rx

0.466Q−0.073E−0.017
(
1− e−0.68k

)
(25)

where e is the constant of nature.
Hamrock and Dowson [26] simulated starvation by moving the inlet to the contact center

and proposed a correction coefficient to show the change of oil film thickness with the inlet
distance. They calculated the minimum length of the film inlet area to ensure adequate lubrication.
Mohammadpour [32] obtained a photo–micrograph of the interferogram of the lubricant film under
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the same conditions as the isobaric curve, as shown in Figure 3. The actual distance Xb between the
inlet and the Hertz contact center is marked in Figure 3.
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Xb can be expressed as:

Xb = b + (
hb/hc − 1

1.21
)

2
3
(Rhc)

2
3 b
−1
3 (26)

where hb is the oil film thickness at the lubrication inlet:

hb = (
3Qvτ

2πω2r2 )

2
3

(27)

where Qv is the supplied oil flow rate, τ is the kinematic viscosity of the lubricating oil and ω is the
angular velocity of the inner ring, and r is the inner ring radius.

Let L be a dimensionless parameter of Xb, so the dimensionless distance L is determined by

L = (
Xb

b
) (28)

The boundary between fully flooded and starved (L*) can be expressed as:

L∗ = 1 + 3.06[(
Rx

b
)

2
Hc]

0.56

(29)

where Hc is dimensionless hc (Hc = hc/Rx). Thus, the starvation condition can be determined by the
boundary condition on L. When L > L*, the lubricating oil completely flooded the inlet zone, and when
L < L*, the oil film thickness decreased and the bearing entered a starvation state. The actual central oil
film thickness, hc1, can be obtained as:

hc1 = (
L− 1
L∗ − 1

)
0.25

hc (30)

when fully lubricated, the thickness of the lubricant was sufficient to carry the load. When the oil
decreased gradually, it was not enough to fill the gap, so the ball could not contact the inner race.
At this time, the differential equations of the ball in the starvation lubrication state are shown as:

−Qe j sinαe j − Tηe j cosαe j + FRηe j cosαe j + PSξ j + PRξ j = mb
..
xb j (31)

Qe j cosαe j + Tηe j sinαe j − FRηe j sinαe j + Fη j − PSη j − PRη j = mb
..
yb j (32)
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Tξe j − FRξe j + Qc j − FDj − Fτ j = mb
..
zb j (33)

(Tξe j − FRξe j)
D
2

cosαe j−(PSη j + PRη j)
D
2
− Jx

.
ωxj = Ib

.
ωb jx (34)

(FRξe j − Tξe j)
D
2

sinαe j −Gyj−(PSξ j + PRξ j)
D
2
− Jy

.
ωyj = Ib

.
ωb jy − Ibωb jz

.
θbj (35)

(Tηe j − FRηe j)
D
2

cosαi j −Gzj − Jz
.
ωzj = Ib

.
ωb jz − Ibωb jy

.
θbj (36)

3. Numerical Simulation

The main parameters of the bearing used in the calculation are shown in Table 1.

Table 1. The major parameters of the bearing.

Item Value

Outer ring diameter (mm) 75
Inner ring diameter (mm) 45

Ball number 18
Nominal Ball diameter (mm) 8
Initial contact angle (degree) 15

The balls are marked 1–18 sequentially, as shown in Figure 4.
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3. Numerical Simulation 

The main parameters of the bearing used in the calculation are shown in Table 1. 
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Nominal Ball diameter (mm) 8 
Initial contact angle (degree) 15 

The balls are marked 1–18 sequentially, as shown in Figure 4. 
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The red line shown in Figure 5 is the calculated dimensionless inlet distance at the boundary
between fully flooded and starved (L*), and L decreased with the decrease of Qv. When L < L*, it was
the starved state.

In order to obtain the detailed variation of vibration, L = 1.1, 1.3, 1.5, 1.7, and 1.9 were selected to
represent the amount of lubricant for analysis, and the bearing vibration conditions, in which different
dimensionless inlet distances L are different, were studied. When the lubricating oil was sufficient
with L = 1.9, the bearing vibration could be obtained from Equations (1)–(30). When the bearing
ran in the starved conditions with L = 1.1 to 1.7, the vibration of the bearing could be obtained from
Equations (1)–(6) and (13)–(36). The difference in the dynamic response under certain radial loads
under different lubrication conditions is shown in Figures 6–10. Assuming the rotation speed of the
inner ring is 15,000 r/min, the radial force (Fz) was 10 N, 20 N, and 30 N, respectively.
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With the increase in oil content, the friction coefficient between the ball and inner ring decreased
gradually, and the contact load distribution became uniform. These changes caused the vibration of
the bearing inner ring to decrease slightly. In Figure 6, when the dimensionless inlet distance was
small (L = 1.1), the bearing vibration amplitude could reach 32 mm/s. In Figure 7, the dimensionless
inlet distance was set to 1.3 and the bearing vibration amplitude was 24 mm/s, which was lower
than Figure 6. In Figures 8–10, the maximum amplitudes were 19, 20, and 16. This shows that the
amplitude of bearing vibration decreased slightly with the increase of oil amount. By comparison,
the vibration amplitude of the bearing in Figure 6 was significantly smaller than that in Figure 10,
which verifies the analysis results. As the oil amount increased, the trend of vibration amplitude
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decreased. This shows that the applied load had a greater influence on the bearing of starved lubrication
conditions. Furthermore, it can be seen in Figures 6 and 10 that the natural frequency of the bearing
was considerably increased. This is explained by the fact that the natural frequency of the bearing is
related to the stiffness. The oil film stiffness Koil between the ball and the raceway is expressed as:

Koil =
dQ

dhmin
= 6.4066× 108hmin

−14.6986U9.31507G6.7123Rx
15.6986E

(
1− e−0.68k

)13.6986
(37)

The contact stiffness Kc between the ball and the raceway is expressed as:

Kc =
dQ
dδ

= 1.5
(
K2Q

)1/3
(38)

where K is the contact coefficient between the ball and the raceway. Krij refers to the radial component
of the comprehensive stiffness between the ball and the inner ring, and Kaij refers to the axial component
of the comprehensive stiffness between the ball and the inner ring.

Kri j =
(Koil)i j × (Kc)i j

(Koil)i j + (Kc)i j
× cos2 αi j (39)

Kai j =
(Koil)i j × (Kc)i j

(Koil)i j + (Kc)i j
× sin2 αi j (40)

Kae j =
(Koil)e j × (Kc)e j

(Koil)e j + (Kc)e j
× sin2 αe j (41)

Kre j =
(Koil)e j × (Kc)e j

(Koil)e j + (Kc)e j
× cos2 αe j (42)

where (Koil)ij is the oil film stiffness of the jth ball and the inner ring and (Kc)ij is the contact stiffness
between the jth ball and the inner ring. Bearing axial stiffness Ka and radial stiffness Kr can be
expressed as:

Ka =
Z∑

j=1

Kai jKae j

Kai j + Kae j
(43)

Kr =
Z∑

j=1

Kri jKre j

Kri j + Kre j
cos2(2π/Z( j− 1)) (44)

The natural frequency of the bearing vibration can be expressed as:

fx = (0.5π)
√

Ka/M (45)

fy = (0.5π)
√

Kr/M (46)

where M is the mass of the bearing system.
When the thickness of the oil film was small, for example, L = 1.1, some balls could nor contact

the raceway, and the contact stiffness Kc was 0. According to Equations (39)–(42), this shows that Krij,
Kaij, Krej, and Kaej were also 0. Therefore, by calculating Equations (43) and (44), we can get the total
stiffness. When the thickness of the oil film was large, for example, L = 1.9, all the balls could contact
the raceway. By calculating (41) and (42), this shows that the stiffness at this time was greater than
the stiffness at L = 1.1. According to Equations (45) and (46) that the greater the stiffness, the greater
the natural frequency of the bearing. This phenomenon can be seen in Figures 6–10. It can also be
seen from Figures 6–10 that the bearing vibration natural frequency increased with radial load. As a
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result, the increase in load increased the contact force between the ball and the raceway. As a result,
the minimum oil film thickness was reduced, and the oil film stiffness increased.

Assuming the rotation speed of the inner ring was 15,000 r/min, the axial force (Fx) was 10 N,
20 N, and 30 N, respectively, and the radial force (Fz) was 0 N. Figures 11–15 show the relationship
between the axial load of the bearing and the vibration of the bearing when the dimensionless inlet
distance L was different.
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It can be observed from Figures 11–15 that as the amount of oil increased, the amplitude of
bearing vibration significantly reduced. The dominant frequency of the bearing increased as the oil
quantity increased. These characteristics were the same as the changes in Figures 6–10. As shown,
during the increase, the bearing vibration decreased with a certain amount of force. According to
Equation (1), the force generated in the bearing could be balanced when by applying a certain axial
load, and the vibration of the bearing reduced. When the load continued to increase, it increased the
bearing vibration. Therefore, for bearings with a given structure, there was a reasonable range of axial
loads that made the bearings vibrate less during operation.

Figures 16 and 17 show the relationship between the inlet distance and the peak vibration
frequency fp of the bearing under different working conditions.
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As the oil increased, the contact stiffness of the ball with the inner ring increased, resulting in an
increase in the natural frequency of the bearing. When the amount of oil increased and L > L*, the oil
film thickness did not change substantially, and the influence of the increase of the oil quantity on
the rigidity became small. Therefore, the natural frequency of the bearing did not change any more,
as shown in Figures 16 and 17.

Figures 18 and 19 show the relationship between the inlet distance and the amplitude of axial and
radial vibration velocity of bearing vibration under different working conditions.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 13 of 17 

 
Figure 17. Peak vibration frequency with different axial loads. 

As the oil increased, the contact stiffness of the ball with the inner ring increased, resulting in an 
increase in the natural frequency of the bearing. When the amount of oil increased and L > L*, the oil 
film thickness did not change substantially, and the influence of the increase of the oil quantity on 
the rigidity became small. Therefore, the natural frequency of the bearing did not change any more, 
as shown in Figures 16 and 17. 

Figures 18 and 19 show the relationship between the inlet distance and the amplitude of axial 
and radial vibration velocity of bearing vibration under different working conditions. 

When the oil film thickness was very small, the ball and the inner ring could be regarded to be 
in direct contact. The contact surface friction was enhanced, causing the bearing to generate a large 
amplitude of vibration. As the amount of lubricating oil increased, the oil film separated the ball from 
the raceway. The contact surface friction was reduced, the contact load distribution was uniform, and 
the amplitude of the bearing vibration gradually decreased. In Figures 18 and 19, it can be obviously 
observed that as L increased, the vibration amplitude of the bearing greatly reduced. When the oil 
quantity increased to L > L*, there was no substantial change in oil film thickness. At this time, the 
influence of the increase of oil amount on the friction of the contact surface became small. Therefore, 
the vibration amplitude of the bearing no longer changed. 

 
Figure 18. The vibration amplitude with different radial loads. 
Figure 18. The vibration amplitude with different radial loads.Appl. Sci. 2020, 10, x FOR PEER REVIEW 14 of 17 

 
Figure 19. The vibration amplitudes with different axial loads. 

4. Discussion 

By considering the lubrication in the differential equation of bearing dynamics, the influence of 
the amount of lubricant on the dynamic characteristics of the bearing can be obtained, as well as the 
degree of influence of the amount of lubricant on the vibration of the bearing inner ring under 
different external loads. This paper is based on the critical inlet distance L* defined by Hamrock [26] 
to determine whether the bearing is starved. According to Figures 16–19 the lines trend changed at 
the boundary between fully flooded and starved conditions. This indicates that the bearing vibration 
changed under starvation and full flooding. In the absence of oil, factors such as uneven contact 
between the ball and the inner ring can have a greater impact on bearing vibration. The degree of 
changing in bearing vibration with load was also more pronounced. The contact force and friction 
between the inner ring and the ball increased because of starved lubrication. The contact force 
between the ball and the inner ring was stronger, and the vibration of the inner ring increased. 
Lubrication increased the contact stiffness of the contact pairs in the bearing, and the natural 
frequency of the bearing vibration also increased. In the case of a sufficient amount of oil, the 
thickness of the oil film substantially unchanged. The contact load between the ball and the inner ring 
was evenly distributed, and the frictional force decreased to gradually reduce the bearing vibration 
and reach a steady state. The contact stiffness of the contact pair in the bearing tended to be stable, so 
the inherent frequency of the bearing vibration did not change. 

5. Conclusions 

This paper proposes a bearing dynamic model that considers the change of the lubrication 
parameters and conducts investigations on the bearing vibration based on the models. The results 
show that the vibration conditions of the bearing under the starved lubricated conditions are different 
from those with enough oil. In the case of oil starvation, factors such as non-uniform contact between 
the ball and inner ring have a greater impact on bearing vibration. The bearing vibration decreases 
as the oil flow increases, and the bearing vibration can be minimized when the amount of lubricant 
is just enough to prevent a substantial reduction in the minimum film thickness. Furthermore, the 
peak frequencies also increase with the oil flow, and the growth flattens as the oil continues to 
increase towards fully flooded. This study obtained the impact of lubricant supply on bearing 
vibration and provided theoretical foundations to the application of full ceramic bearings. 

Author Contributions: Conceptualization, K.Z. and X.B.; formal analysis, K.Z. and X.W.; funding acquisition, 
K.Z. and X.B.; investigation, X.W.; methodology, Z.W. and X.B.; resources, K.Z. and D.Z.; supervision, K.Z. and 
X.B.; validation, J.S. and D.Z.; visualization, X.W.; writing—original draft, X.W.; writing—review and editing, 
K.Z. and X.B. 

Funding: This research was funded by the National Key R&D Program of China [grant number 
2017YFC0703903], National Natural Science Foundations of China [grant number 51675353, 51905357] and 
Scientific Research Project of Liaoning Provincial Department of Education [grant number lnqn201909]. 

Figure 19. The vibration amplitudes with different axial loads.

When the oil film thickness was very small, the ball and the inner ring could be regarded to
be in direct contact. The contact surface friction was enhanced, causing the bearing to generate a
large amplitude of vibration. As the amount of lubricating oil increased, the oil film separated the
ball from the raceway. The contact surface friction was reduced, the contact load distribution was
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uniform, and the amplitude of the bearing vibration gradually decreased. In Figures 18 and 19, it can
be obviously observed that as L increased, the vibration amplitude of the bearing greatly reduced.
When the oil quantity increased to L > L*, there was no substantial change in oil film thickness. At this
time, the influence of the increase of oil amount on the friction of the contact surface became small.
Therefore, the vibration amplitude of the bearing no longer changed.

4. Discussion

By considering the lubrication in the differential equation of bearing dynamics, the influence
of the amount of lubricant on the dynamic characteristics of the bearing can be obtained, as well as
the degree of influence of the amount of lubricant on the vibration of the bearing inner ring under
different external loads. This paper is based on the critical inlet distance L* defined by Hamrock [26]
to determine whether the bearing is starved. According to Figures 16–19 the lines trend changed at
the boundary between fully flooded and starved conditions. This indicates that the bearing vibration
changed under starvation and full flooding. In the absence of oil, factors such as uneven contact
between the ball and the inner ring can have a greater impact on bearing vibration. The degree of
changing in bearing vibration with load was also more pronounced. The contact force and friction
between the inner ring and the ball increased because of starved lubrication. The contact force between
the ball and the inner ring was stronger, and the vibration of the inner ring increased. Lubrication
increased the contact stiffness of the contact pairs in the bearing, and the natural frequency of the
bearing vibration also increased. In the case of a sufficient amount of oil, the thickness of the oil film
substantially unchanged. The contact load between the ball and the inner ring was evenly distributed,
and the frictional force decreased to gradually reduce the bearing vibration and reach a steady state.
The contact stiffness of the contact pair in the bearing tended to be stable, so the inherent frequency of
the bearing vibration did not change.

5. Conclusions

This paper proposes a bearing dynamic model that considers the change of the lubrication
parameters and conducts investigations on the bearing vibration based on the models. The results
show that the vibration conditions of the bearing under the starved lubricated conditions are different
from those with enough oil. In the case of oil starvation, factors such as non-uniform contact between
the ball and inner ring have a greater impact on bearing vibration. The bearing vibration decreases as
the oil flow increases, and the bearing vibration can be minimized when the amount of lubricant is
just enough to prevent a substantial reduction in the minimum film thickness. Furthermore, the peak
frequencies also increase with the oil flow, and the growth flattens as the oil continues to increase
towards fully flooded. This study obtained the impact of lubricant supply on bearing vibration and
provided theoretical foundations to the application of full ceramic bearings.
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Nomenclature

a The long half axis of the ellipse
b The short half axis of the ellipse
D The normal ball diameter
d The pitch diameter of the bearing
e The constant of nature
E Equivalent elastic modulus
E1, E2 Elastic moduli of the two contact materials
Fx, Fy, Fz Components externally applied forces of X, Y, and Z directions
FRηij, FRηej, FRξij, FRξej Hydrodynamic frictional forces at the inlet zone
Fηj, Fτj Inertial force component of the ball
FDj Aerodynamic resistance acting on the ball by the gas–oil mixture;
fx, fy The natural frequency of bearing vibration in axial and radial directions
G Material parameter
Gyj, Gzj Components of the ball’s inertia moment of ybj and zbj directions
hb The oil film thickness at the lubrication inlet
Hc A dimensionless central oil film thickness
hc The central oil film thickness
hmin The minimum oil film thickness
hc1 The actual central oil film thickness
Ibj Moments of inertia of the jth ball
Iix, Iiy, Iiz The principal moments of inertia of the inner ring in the inertial coordinate system
Jx, Jy, Jz Components of the ball’s moment of inertia of xbj, ybj, and zbj directions
j The jth ball
Koil The oil film stiffness between the ball and the raceway
Kc The contact stiffness
K The contact coefficient between the ball and the raceway

Krij
The radial component of the comprehensive stiffness between the jth ball and the
inner ring

Kaij
The axial component of the comprehensive stiffness between the jth ball and the
inner ring

Kaej
The axial component of the comprehensive stiffness between the jth ball and the
outer ring

Krej
The radial component of the comprehensive stiffness between the jth ball and the
outer ring

(Koil)ij The oil film stiffness of the jth ball and the inner ring
(Koil)ej The oil film stiffness of the jth ball and the outer ring
(Kc)ij The contact stiffness between the jth ball and the inner ring
(Kc)ej The contact stiffness between the jth ball and the outer ring
Ka Axial stiffness
Kr Radial stiffness
k Ellipticity
L The dimensionless distance between the inlet and the Hertz contact center
L* The boundary between fully flooded and starved
My, Mz Externally applied torques
mi Mass of the inner ring
mb Mass of the ball
M Mass of the bearing system
{O; X, Y, Z} The inertial coordinate system of the bearing
{O; Xi, Yi, Zi} The inner ring coordinate system of the bearing
{Obj; Xbj, Ybj, Zbj} The coordinate system of the jth ball
PRηj, PRξj Rolling frictional forces acting on the ball’s surface
PSηj, PSξj Sliding frictional forces acting on the ball’s surface
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Qij, Qej Normal contact forces between the ball and raceway
Qcj Collision force between the jth ball and the cage
Qv The supplied oil flow rate
Q Normal contact force between the ball and raceway
rij The rolling radius
Ri Groove curvature radius of inner race raceway
R The equivalent radius of curvature
Rx The equivalent radius of curvature in the long axis direction
Ry The equivalent radius of curvature in the short axis direction
r The inner ring radius
Tηij, Tηej, Tξij, Tξej Traction forces of the contact surfaces
u The average surface velocity
U Velocity parameter
v1 and v2 Poisson’s ratios of the two contact materials
W Load parameter
..
xi,

..
yi,

..
zi, The acceleration of the inner ring in the inertial coordinate system

..
xb j,

..
yb j,

..
zb j Displacement accelerations of the jth ball in the inertial coordinate system

Xb The actual distance between the inlet and the Hertz contact center
αij, αej Contact angles between the ball and raceway
α0 The pressure index of viscosity
δ The contact deformation between the ball and the inner ring
η The short axis of the ellipse
η0 The dynamic viscosity at normal pressure
τ The kinematic viscosity of the lubricating oil
ϕi j The azimuth of the jth ball
ξ The long axis of the ellipse
.
θb j Orbit speed of the jth ball in the inertial coordinate system
ω The angular velocity of the inner ring
ωix,ωiy,ωiz Represent the angular velocity of the inner ring in the inertial coordinate system
.
ωiy,

.
ωiz The angular accelerations of the inner ring in the inertial coordinate system

ωxj, ωyj, ωzj The angular velocity of the jth ball in {Obj; Xbj, Ybj, Zbj}
.
ωxj,

.
ωy j,

.
ωzj The angular accelerations of the jth ball in {Obj; Xbj, Ybj, Zbj}

ωbjx, ωbjy, ωbjz The angular velocities of the jth ball in the inertial coordinate system
.
ωb jx,

.
ωb jy,

.
ωb jz The angular accelerations of the jth ball in the inertial coordinate system

Subscript i Represents the inner ring
Subscript e Represents the outer ring
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