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Abstract: With increasing of the size of spatial truss structures, the beam component will be subjected
to the overall motion with large deformation. Based on the local frame approach and the geometrically
exact beam theory, a beam finite element, which can effectively reduce the rotational nonlinearity
and is appropriate for finite motion and deformation issues, is developed. Dynamic equations are
derived in the Lie group framework. To obtain the symmetric Jacobian matrix of internal forces, the
linearization operation is conducted based on the previously converged configuration. The iteration
matrix corresponding to the rotational parameters, including the Jacobian matrix of inertial and
internal forces in the initial configuration, can be maintained in the simulation, which drastically
improves the computational efficiency. Based on the Lagrangian multiplier method, the constraint
equation and its Jacobian matrix of sliding joint are derived. Furthermore, the isogeometric analysis
(IGA) based on the non-uniform rational B-splines (NURBS) basis functions, is adopted to interpolate
the displacement and rotation fields separately. Finally, three dynamic numerical examples including
a deployment dynamic analysis of spatial truss structure are conducted to verify the availability and
the applicability of the proposed formulation.

Keywords: geometrically exact beam; local frame; isogeometric analysis; sliding joint;
dynamic analysis

1. Introduction

The deployable spatial truss structure is a typical flexible multibody system consisting of beam
members. With the increase of the size, the deployable spatial truss structure usually undergoes finite
deformation when refer to finite displacement and rotation. The most common modeling methods in
flexible multibody system for beams are the Absolute Nodal Coordinate Formulation (ANCF) and
the Geometrically Exact Beam Theory (GEBT). Both approaches can provide the solution of finite
deformation and finite motion. The ANCF, proposed by Shabana [1,2], is one of the methods aimed
at multibody system dynamics areas recent years. The method uses slopes instead of infinitesimal
rotations to simplify the parameter updating algorithm, but at the cost of introducing more degrees of
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freedom, which reduces the computational efficiency. Comparisons of ANCF and GEBT have been
accomplished by Romero [3] and Bauchau et al. [4]. To reduce the computational cost, the latter is
employed in this work.

The geometrically exact beam theory (GEBT) is also known as the Simo–Reissner beam theory,
which was initially proposed by Reissner [5,6] and then developed by Simo [7–9] and other pioneers;
for example, Cardona and Géradin [10], Ibrahimbegović et al. [11], and Crisfield and Jelenic [12,13].
In GEBT, the compositions of translations and rotations are typically uncoupled in the space of
R3
× SO(3). The cross-section position is considered in the linear space R3, while the rotation belongs

to a nonlinear space, the special orthogonal group SO(3). In general, the incremental position and
rotation variables are described in the global frame, thereby leading to a strong rotational nonlinearity.
Based on the classical GEBT, describing the finite rotation variables in the local frame can reduce
the rigid rotational nonlinearity. It is implied that the iteration matrix corresponding to the rotation
parameters in the initial configuration can be maintained in the simulation, which drastically improves
the computational efficiency, especially for the multibody systems, which undergo large displacement
and rotation. For cases of finite strain and material nonlinearity, the extension of GEBT can be found
in [14,15] based on the Geometric Continuum Mechanics.

An obvious feature of a multibody system is that the connection between different bodies is
usually achieved through some joint constraints, such as spherical joint, sliding joint, etc. More different
types of classical joint constraints can be found in [16]. For a majority of spatial deployable structures,
the sliding joint is often applied and plays an important role. The most common method in defining
the friction-free sliding is the Lagrangian multiplier method. Employing this method, Bauchau and
Bottasso [17,18] formulated the sliding joint based on the GEBT and pointed out the difference between
the prismatic joint and sliding joint, while Sugiyama et al. [19] and Gerstmayr and Shabana [20]
modeled the sliding joint applying ANCF. However, the Jacobian matrix of the sliding joint constraint
equation is not found in [17,18]. More application of the Lagrangian multiplier on the problems can
be found in [21,22]. Besides, there are different methods being employed in modeling sliding joint,
such as the master–slave method [23].

Moreover, the Lagrange basis functions have always been applied for finite element discretization
in such research, which gives rise to the gap between computer-aided design (CAD) and computer-aided
engineering (CAE). The isogeometric analysis (IGA), which was introduced in 2005 by Hughes et al. [24],
is filling the traditional gap between CAD and finite element solvers. Over the last decade, IGA
has become a well-established method used in structural modeling [25–27]. The application of the
non-uniform rational B-splines (NURBS) basis functions is shown to be much more advantageous
than conventional finite element analysis [28,29]. It is remarked that for the case of sliding along
very flexible beam, the IGA method takes more advantage on accuracy and efficiency when using
the Ck–continuous NURBS basic function (k ≥ 1). However, under the concept of IGA, the dynamic
analysis of the beam structure with a sliding joint, based on the GEBT and Lagrangian multiplier
method, has rarely been reported.

The objective of this paper is to propose a geometrically exact beam element based on the local
frame approach under the concept of IGA. The proposed element can be applied to the cases of
finite deformation and rotation in dynamic analyses of flexible multibody systems, especially for the
deployable spatial truss structures with a sliding joint. The analytical expressions of internal and
inertial forces and their Jacobian matrices for present beam element are strictly derived based on
the framework of Lie group. To obtain a symmetric tangent stiffness, the increments are described
based on the previously converged configuration, as suggested by Cardona and Géradin [10]. To
promote the integration of CAD and CAE, the displacement and rotation fields are interpolated
separately using the NURBS basis functions. Due to the application of the Crisfield and Jelenić
interpolation algorithm [12], the strain measures automatically satisfy the property of objectivity.
Besides, the dynamic equations expressed in a set of Differential Algebraic Equations (DAEs) are solved



Appl. Sci. 2020, 10, 1231 3 of 19

by the generalized-α method [30,31]. The sliding joint is modeled using the Lagrangian multiplier
method. The constraints equations relative to the sliding joint and its Jacobian matrix are also given.

The paper is organized as follows: The basic theory of the geometrically exact beam theory
including beam kinematics, static equations, dynamic equations, and their linearization are introduced
in Section 2. Finite element strategies are employed in Section 3. In Section 4, the modeling of
sliding joint is conducted. In Section 5, two dynamic numerical examples and a deployment dynamic
analysis of spatial truss structure are implemented to verify the availability and the applicability of the
formulation proposed in this paper. Conclusions are presented in Section 6.

2. The Geometrically Exact Beam Model

2.1. Beam Kinematics

In this section, a straight beam element with a square cross section was used as an example,
and this method can be easily extended to curved beam elements with arbitrary cross sections.
A reference configuration B0 and a current configuration B are displayed in Figure 1. For an arbitrary
cross-section, the reference point of the local frame is assumed to coincide with the centroid O(o2, o3).
A unit orthogonal basis system A = {A1, A2, A3} along with the material coordinates {ξ1, ξ2, ξ3} is
introduced. The axis of the beam is initially along A1, with the length of beam l and the arc-length
parameter S = ξ1 ∈ [0, l] of the spatial curve. The orientation of the cross-section is described by the
basis vectors {A2, A3}. The local frame a = {a1, a2, a3} is attached to the cross-section in the current
configuration, which is characterized by the time parameter t. For convenience, it is assumed that the
material frame Ai and inertial frame ei initially coincide, and thus the relationship between the basis
vectors Ai and ai is as follows:

ai = RAi for i = 1, 2, 3 (1)

where the operator R is the cross-section orthogonal rotation tensor with respect to inertial frame. In
general, the rotation tensor is defined from the exponential map and can be expressed directly by
Rodrigues formula [32]:

R = exp(
~
Θ) = I3×3 + a1(Θ)

~
Θ + a2(Θ)

~
Θ

~
Θ (2)

with

a1(Θ) =
sin(‖Θ‖)
‖Θ‖

, a2(Θ) =
1− cos(‖Θ‖)

‖Θ‖2
(3)
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Figure 1. Initial configuration and the current configuration.

The notation •̃ indicates that there is an invertible linear map from Rk to the Lie algebra; and the

expression of which depends on the dimension k. The variable
~
Θ in the SO(3) framework represents
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the skew-symmetric matrix of the rotational vector Θ and ‖Θ‖means the magnitude of the rotational
vector. On the contrary, the inverse map of the exponential map is the logarithmic map [33], giving:

log(R) =
~
Θ =

03 if R = I3×3
θ

2 sin(θ) (R−RT) if R , I3×3
(4)

with θ = arccos
(

1
2 (trace(R) − 1)

)
and the absolute value |θ| < π.

An arbitrary point p on the cross-section in the current configuration can be expressed by:

xp(ξ1, ξ2, ξ3) = x
(
ξ1)+R(ξ1)yp(ξ2, ξ3) (5)

in which yp = ξ2A2 + ξ3A3, and is defined from the reference configuration since the cross-section is
assumed to remain undeformed.

2.2. Beam Statics and Its Linearization

According to continuum mechanics, the Green-Lagrangian strain tensor E(ξ1, ξ2, ξ3) is defined as:

Ei j =
1
2

(
FT

ikFkj − δi j
)
=

1
2

∂xT
p

∂ξi

∂xp

∂ξ j
−

∂x0T
p

∂ξi

∂x0
p

∂ξ j

 (6)

in which Fkj is the deformation gradient, and δi j is the Kronecker delta. The derivatives of the
displacement field in Equation (5) with respect to ξi (i = 1, 2, 3) are given by:

∂xp(ξ1,ξ2,ξ3)

∂ξ1
= x

′

+ R
′

yp
∂xp(ξ1,ξ2,ξ3)

∂ξ2
=RA2

∂xp(ξ1,ξ2,ξ3)

∂ξ3
=RA3

(7)

where (·)′ denotes the derivative relative to arc-length parameter S.
In the classical geometrically exact beam theory, the strain measures ε can be represented as:

ε =

[
γ

κ

]
=

[
RTx

′

−RTx
′

0

TΘ
′

−TΘ
′

0

]
(8)

For an initially straight beam, the strain measures ε can be thus written as:

ε =

[
γ

κ

]
=

[
RTx

′

−A1

TΘ
′

]
(9)

in which γ = [γ1, γ2, γ3]
T quantifies the beam axis extension and two shearing; κ = [κ1, κ2, κ3]

T

measures its twist and two curvatures in local frame. The tangent operator can be obtained from [10],
giving:

T = I3×3 − a2(Θ)
~
Θ + a3(Θ)

~
Θ

~
Θ (10)

with the coefficients:

a3(Θ) =
‖Θ‖ − sin(‖Θ‖)

‖Θ‖3
a4(Θ) =

1

‖Θ‖2

(
1−
‖Θ‖

2
cot(
‖Θ‖

2
)
)

(11)
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Consequently, based on the rigid perimeter and small strain assumptions, the non-vanishing
terms in Equation (6) can be given as:

E =


γ1 + κ3ξ2 − κ2ξ3

1
2 (γ2 + κ1ξ3)

1
2 (γ3 − κ1ξ2)

1
2 (γ2 + κ1ξ3) 0 0
1
2 (γ3 − κ1ξ2) 0 0

 (12)

Assuming a constitutive law of isotropic linear elastic materials, the second Piola–Kirchhoff stress
tensor S = [S11, S12, S13]

T refers to:

S = DE, D =


E 0 0
0 G 0
0 0 G

 (13)

in which E, and G are the elasticity modulus and shear modulus, respectively. Based on the
Green-Lagrange strain tensor, the internal virtual work can be computed as:

δWint =

∫
V
δETSdV =

∫
l
δ

¯
E

T ¯
D

¯
Edξ1 (14)

with
¯
E = ε and the elastic matrix:

¯
D =



EA 0 0 0 0 0
τGA 0 0 0 0

τGA 0 0 0
GI0 0 0

Sym EI33 −EI32

EI22


(15)

where τ is the shear coefficient. The notation A in Equation (15) denotes the area of the cross-section
and four constant section properties are calculated from the following formulas:

I22 =

∫
A
ξ2

2dA, I33 =

∫
A
ξ2

3dA, I32 =

∫
A
ξ2ξ3dA, I0 = I22 + I33 (16)

The stress measures can be given by:

¯
S =

¯
D

¯
E =

[
NT MT

]T
(17)

in which the stress resultant N = [N1, N2, N3]
T represents one normal force and two shear forces in

local frame; the stress couple M = [M1, M2, M3]
T includes one torsional moment and two bending

moments in local frame.
According to Equation (9) the variation of the strain measures can be written as:

δ
¯
E = δε =

[
δγ

δκ

]
= Bδh (18)

with δh = [δxT, δΘT]
T

and the strain operator:

B =

 RT ∂
∂ξ1

R̃Tx′

0 ∂
∂ξ1

+
~
κ

 (19)
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In each iterative step, the computed rotation increments lie in the tangent space of the current
configuration. To obtain a symmetric tangent stiffness, as suggested by [10], the rotation variation in
local frame is transformed in terms of the rotation increment ϕ with respect to previously converged
configuration with the relationship:

δΘ = Tδϕ (20)

Then the Equation (18) can be further expressed as:

δ
¯
E = B∗δh∗ (21)

with the generalized displacement variations δh∗ = [δxT, δϕT]
T and the strain operator:

B∗ =

 RT ∂
∂ξ1

(R̃Tx′)T

0 T ∂
∂ξ1

+ T
′

+
~
κT

 (22)

Then the internal virtual work can be further written as:

δWint =

∫
l
δh∗TB∗T

¯
Sdξ1 (23)

Thus, the tangent stiffness matrix can be derived by linearization of Equation (23), giving:

∆(δWint) =

∫
l
δh∗TB∗T

¯
DB∗∆h∗ + δh∗T∆B∗T

[
N
M

]
dξ1 =

∫
l
δh∗TΠ∆h∗ + δh∗TΥ∆h∗dξ1 (24)

in which the first term is the material part and the second term is the geometric part. By introducing
an operator Ξ, the continuous geometric stiffness matrix can be further obtained, giving:

Υ =


0 −

(
∂
∂ξ1

)T
R

~
NT

TT
~
NRT

(
∂
∂ξ1

) TT
~
N(R̃Tx′)T + TT

~
M

~
κT + TT

~
MT

′

+ H + Ξ(∆TT
~
NRTx

′

)

+Ξ(∆TT
~

Mκ) +
(
∂
∂ξ1

)T
Ξ(∆TTM) +

(
Ξ(∆TTM) + TT

~
MT

)(
∂
∂ξ1

)
 (25)

where H is computed by the formula:

H = c1M⊗Θ
′

+ c2[(
~
ΘM) ⊗Θ

′

− (Θ
′T

Θ)
~

M + (
~

Θ
′

M) ⊗Θ] + c3[(MTΘ)Θ
′

⊗Θ + (MTΘ
′

)Θ ⊗Θ]

+c3[(MTΘ)Θ ⊗Θ
′

+ (Θ
′T

Θ)MTΘI3 + (Θ
′T

Θ)Θ ⊗M] + c5(Θ
′

⊗M + Θ
′

MI3)

+b1(Θ
′T

Θ)M⊗Θ + b2(Θ
′T

Θ)(
~
ΘM) ⊗Θ + b3(Θ

′T
Θ)(MTΘ)Θ ⊗Θ

(26)
with the coefficients,

c1 = ‖Θ‖ cos ‖Θ‖−sin ‖Θ‖
‖Θ‖3

, c2 = ‖Θ‖ sin ‖Θ‖+2 cos ‖Θ‖−2
‖Θ‖4

, c3 = 3 sin ‖Θ‖−2‖Θ‖−‖Θ‖ cos ‖Θ‖
‖Θ‖5

,

c4 = 1−cos ‖Θ‖
‖Θ‖2

, c5 = ‖Θ‖−sin ‖Θ‖
‖Θ‖3

, b1 =
(3−‖Θ‖2) sin ‖Θ‖−3‖Θ‖ cos ‖Θ‖

‖Θ‖5
,

b2 =
(‖Θ‖2−8) cos ‖Θ‖−5‖Θ‖ sin ‖Θ‖+8

‖Θ‖6
, b3 =

(‖Θ‖2−15) sin ‖Θ‖+7‖Θ‖ cos ‖Θ‖+8‖Θ‖
‖Θ‖7

.

(27)

For arbitrary 3 × 1 vector u, the operator Ξ can be expressed as:

Ξ(∆TTu) = c1(u⊗Θ) + c2[(
~
Θu) ⊗Θ] + c3[(Θ

Tu)Θ ⊗Θ] − c4
~
u + c5[(Θ

Tu)I3 + Θ ⊗ u] (28)

The matrices Π in the material part are symmetric. The Υ in the geometric part obtained here
shows non-obvious symmetry in its formula structure, although it is numerically symmetric. In the
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case of small deformation, the geometric stiffness is unnecessary in general. However, numerical
examples show that the application of geometric stiffness can improve the convergence of Newton
iterations for cases of both small deformation and finite deformation.

2.3. Beam Dynamics and Its Linearization

The weak form of dynamic equilibrium equation can be expressed as:

δWint − δWext + δWine = 0 (29)

with the internal virtual work δWint, external virtual work δWext, and inertial virtual work δWine.
Denoting ρ as the mass density of the material, the inertial virtual work δWine is given by:

δWine =
x

ρδxT
p

..
xpdAdξ1 = Aρ

∫
l
δhT

 ..
x

Jα+
~
Ω(JΩ)

dξ1 (30)

where Aρ = Aρ is the density of the cross-section. α and Ω are the angular acceleration and
angular velocity of beam cross-section in local frame, respectively. Besides, the notation J denotes the
cross-sectional moment of inertia with relative to the centroid, giving:

J =


I0 0 0
0 I33 −I23

0 −I23 I22

 (31)

Then the generalized mass matrix can be derived by linearization of the inertial virtual work
δWine, giving:

∆(δWine) = Aρ

∫
l
δh∗T


I3

(
d2

dt2

)
03

03 TT


(
J

~
α− (̃JΩ)

~
Ω +

~
ΩJ

~
Ω

)
+(

J
~
Ω − (̃JΩ) +

~
ΩJ

)(
d
dt

)
+ J

(
d2

dt2

)
T

∆h∗dξ1 (32)

Since the virtual rotational vector δϕ is defined in the local frame, it is free from the influence of
rigid rotation, which greatly reduces the rotational nonlinearity. Consequently, the parts of the stiffness
matrix and the generalized mass matrix, which corresponds to the rotation parameters, are invariable
under arbitrary rigid motion. Thereby, the number of updates required during the computation process
decreases sharply.

Similarly, the external virtual work can be computed by:

δWext =

∫ [
δxTF + δϕTTTP

]
dξ1 + δx(ξ)T ¯

F + δϕ(ξ)TTT ¯
P (33)

where F and
¯
F represent the distributed force and the concentrated force on the centerline of the beam

in the inertial frame, respectively. P and
¯
P represent the distributed moment and the concentrated

moment on the cross-section of the beam in the local frame, respectively.

3. Finite Element Formulation

3.1. Spatial Discretization: NURBS Basis Functions

In general, the dynamics equilibrium equations of the geometrically exact beam can be transformed
into a set of nonlinear algebraic equations by finite element spatial discretization and time discretization.
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In the spatial domain, the linearized governing equations described above are discretized by adopting
the IGA; namely, both the geometry and the unknown variables are approximated by NURBS [24].

Denote Ψ as a non-decreasing knot vector, giving:

Ψ =
{
Ψ1, · · · , Ψn+ς+1

}
(34)

with the degree of basis functions ς and the number of control point n. According to the Cox-de Boor
recursion formula, a B-spline basis function can be obtained from a linear combination of two B-spline
basis functions of degree ς-1, giving:

χi,ς(Ψ) =
Ψ −Ψi

Ψi+ς −Ψi
χi,ς−1(Ψ) +

Ψi+ς+1 −Ψ
Ψi+ς+1 −Ψi+1

χi+1,ς−1(Ψ) (35)

with

χi,0(Ψ) =

{
1 if Ψi ≤ Ψ < Ψi+1

0 otherwise
(36)

when ς = 0.
Then, a NURBS basis function can be derived through introducing the weight factors wi, giving:

Ni,ς(Ψ) =
χi,ς(Ψ)wi∑m

j=1 χ j,ς(Ψ)w j
(37)

in which χi,ς is the B-spline basis function. Obviously, the NURBS basis function degenerates into the
B-spline basis function when all weight factors are equal to one. The position coordinate vector of any
point can be calculated from interpolation and written as:

r(Ψ) =
m∑

i=1

Ni,ςPi (38)

where Pi is the control point.
The continuity of the NURBS basis function is determined by the multiplicity of a knot. Given

multiplicity k of a knot, the continuity of the basis function is C∞ between knots, while it is Cς−k at
the knot. Thus, NURBS can accurately describe various types of curves and surfaces, such as circles,
hyperbolas, and elliptic surfaces.

3.2. Discretization of the Linearized Equations

It is worth noting that separate interpolations of the displacement and rotation fields are conducted
to make the geometric representations uniform in the finite element analysis and CAD. Since the
displacement field takes values in linear space R3 while the rotation field in nonlinear manifold SO(3),
the interpolations of the displacement and rotation field are conducted in different methods. To satisfy
the objectivity of strain measures, the Crisfield and Jelenić interpolation algorithm [12] is adopted, in
which the relative rotation is interpolated. The interpolation formulas are given by:

x = NIxI, x
′

= N′IxI (39)

Θr
I = NI log(R−1

r RI) (40)

where NI is the NURBS basis function corresponding to control point I, and a summation is extended
to all the control points of the element. The notation Θr

I is the relative rotation, and Rr is the rotation
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matrix of the reference point, which is typically chosen as the first control point on an element. The
strain measures can thus be interpolated as:

ε =

[
γ

κ

]
=

[
RTN′IxI −A1

T(NIΘ
r
I)N

′
IΘ

r
I

]
(41)

With
R = Rr exp(

~
Θ

r
) (42)

Hence, the generalized displacement variation and its derivative can be discretized into:

δh∗ = NIδh∗I , δh∗′ = N′Iδh∗I (43)

where δh∗I is the generalized displacement variation of the control point. The strain-displacements
matrix B∗I is the discrete counterpart of the strains operator B∗, as shown in Equation (22), giving:

B∗I =

 RTN′I (R̃Tx′)TNI

0 TN′I + (T
′

+
~
κT)NI

 (44)

Consequently, the strain measures can be written as:

δ
¯
E = B∗Iδh∗I (45)

The generalized internal force and inertial force can be discretized from Equations (23) and (30) as:

Fint
I =

∫
l
B∗TI

¯
Sdξ1 (46)

Fine
I =

∫
l
AρNT

I

 ..
x

TTJα+ TT
~
Ω(JΩ)

dξ1 (47)

In this work, as a separate interpolation is employed, shear locking exists in 1-order elements and
is circumvented by the selective reduced integration. The one-point quadrature strategy is employed
to calculate the shear strain, while the full quadrature, i.e., two-point quadrature for 1-order element
is used to calculate the membrane and bending strains. Besides, high-order elements will not suffer
from the shear locking problem and the full quadrature is employed to obtain all the strains in the
Equations (46) and (47).

3.3. Time Discretization: Lie Group Generalized-α Method

The dynamics equilibrium equations can be expressed by a set of Differential Algebraic Equations
(DAEs), giving: {

Fint(q) + Fine(q) − Fext(q) + ΦT
qλ = 0

Φ(q, t) = 0
(48)

where Fext is the generalized external force; the notation Φ and Φq denote the constraint equations
and its Jacobian matrix relative to the generalized coordinates; and λ is the Lagrange multiplier vector.

For time discretization, the generalized-αmethod is employed to solve the DAEs. The displacement
field is handled with the conventional generalized-α method [30] while the Lie group time
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integrators [31] are adopted to solve the rotation field. The solvers of the rotation field are based on
the equations: 

Rn+1 = Rn exp
( ~
Θn+1

)
Θn = hΩn + h2(0.5− β)an + h2βan+1

Ωn+1 = Ωn + h(1− γ)an + hγan+1

(1− αm)an+1 + αman = (1− α f )αn+1 + α fαn

(49)

in which Θn represents the rotational vector from time tn to time tn+1; h = tn+1 − tn means the time
step; αm, α f , γ, and β are algorithmic parameters for the generalized-α method. According to the
simultaneous Equations (48) and (49), the rotation matrix Rn+1, angular velocity Ωn+1, and angular
acceleration αn+1 at time tn+1 can be obtained through newton iterations.

4. Sliding Joint

In this work, the sliding joint is implemented using the Lagrange multiplier method. The constraint
of sliding joint is composed of three position constraint equations and one constraint equation, which
is expressed according to three Lagrange multipliers and one non-generalized degree of freedom that
represents the arc length parameter ζ. The complete constraint equations can be written as: Φ = xA − xB(ζ) = 0

∂xB
∂ζ · λ = 0

(50)

where the vectors xA and xB denote the position of joint point on slider and carrier beam, respectively.
The constrain Φ in Equation (50) actually leads to a spherical joint, and the Lagrange multiplier
λ = [λ1, λ2, λ3]

T is employed to connect with the constraint forces applied to both bodies. When the
vector λ is perpendicular to the sliding direction, the constraint force in this direction is released so
that the joint point can move along the midline of carrier beam under the frictionless condition.

In the simulation, denoting
^
q

T
= [qT, ζ] as the generalized coordinates, the dynamics equilibrium

equations in Equation (48) would be further written as:
Fint(q) + Fine(q) − Fext(q) + ΦT

^
q
λ = 0

∂xB
∂ζ · λ = 0

Φ(
^
q, t) = 0

(51)

The Jacobian matrix of the equilibrium equation can be evaluated as:

∆Jac =




Kint + Kine

−Kext + (ΦT
^
q
)

,q
λ

∂ΦT
^
q

∂ζ λ

( ∂xB
∂ζ ),q

· λ
∂2xB
∂2ζ
· λ

 ΦT
^
q

Φ^
q

0


(52)

in which the matrices Kint, Kine, and Kext are interpreted as the Jacobian matrix of generalized
internal force, generalized inertia force, and generalized external force. The notation (•),q denotes the
derivative relative to generalized coordinates q. Note that the position vector xB is calculated from
interpolation, giving:

xB = NIxBI (53)

The subscript I is determined by the interpolation function. It is remarked that for the case of
sliding along very flexible beam, the IGA method takes more advantage on accuracy and efficiency
when using the Ck–continuous NURBS basic function (k = 1).
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5. Numerical Examples

Three typical dynamic examples are adopted in this paper. The first one is a high-speed flexible
slider-crank with moderate deformation, which tests the proposed method’s character of reducing the
rotational nonlinearity. The second one is a typical testing case of the sliding joint, which demonstrates
that the present formulation is applicable to the analysis of the structures including the sliding joint,
and undergoing finite deformation and motion. Finally, the dynamics of a deployable truss structure
unit is investigated based on the proposed formulation. The IGA based on the high-order NURBS
basis function is applied in all examples.

5.1. High-Speed Flexible Slider-Crank

This example is about a flexible slider-crank suffered from a constant moment M, which aims at
studying the influence of proposed method on the rotational nonlinearity. As shown in Figure 2, Rod I
is connected to the earth and Rod II through a spherical joint at the same time; the rigid slider was also
hinged with Rod II by a spherical joint and is restricted to moving along the X-axis. The mass of the
slider was 0.1 kg and the moment was M = 500 Nm. Initially, Rod I and Rod II were both horizontally
stationary in the X-Y plane, that is, α = 0. Other geometrical and material parameters are shown in
Table 1. In the simulation, both rods are discretized into six elements using the 3-order NURBS basic
function; the total simulation time was 0.2 s with two different time steps h = 0.0001 s and h = 0.0005 s.
The elastic deformation of rod was measured by the distance between the midpoint of rod and the
midpoint of the line connecting the two ends of rod. The deformation rate was the ratio between the
elastic deformation of the rod and the original length of the rod. Obviously, the deformation of Rod II
during the simulation increased gradually with the increase of rotation speed, as displayed in Figure 3.
The maximum deformation of Rod II and the maximum rotational speed of Rod I exceeded 5% of the
rod length and 320 rad/s, respectively.
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Table 1. Parameters for the flexible slider-crank.

Parameters First Case

Length of Rod I 0.3 m
Length of Rod II 0.6 m
Cross-section (0.03 × 0.03) m2

Young’s modulus 2.1e11 N/m2

Poisson coefficient 0.3
Mass density 7850 kg/m3

Mass of slider 0.1 kg
Gravity 9.81 m/s2

In general, if the Jacobian matrix corresponding to the external force is ignored, then the system
iteration matrix consists of a generalized mass matrix, a tangent stiffness matrix, and a Jacobian matrix
corresponding to the constraint equation. It is assumed that Jθ represents the iterative matrix composed
of the generalized mass matrix and the stiffness matrix corresponding to rotation parameters, and the
convergence criterion of Newton iteration is set to the incremental value of the generalized coordinate,

‖D‖2 ≤ 10−6, in which D= [∆qT, h2β∆λT
]T

. The number of times that the iteration matrix Jθ is updated
(update times) and the total iterations in the simulation for different time discretizations and update
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conditions of the truss structure unit are given in Table 2. The “Update” means Jθ is updated all the
time, and the “Frozen” denotes Jθ in the reference configuration is maintained for the whole simulation.
Obviously, if Jθ is updated in each Newton iteration step, the whole simulation needs a total of 1435
Newton iteration steps, and Jθ needs to be updated 1434 times. While the iteration matrix Jθ is kept
for the whole simulation, the total iterations merely needs 1473 times. It is demonstrated that the
rigid rotational nonlinearity is reduced dramatically based on the local frame approach, such that the
iteration matrix Jθ can remain unchanged all the time, especially for the case of moderate deformation
rate in this example. Moreover, the rigid rotational nonlinearity can be also reduced with a smaller time
step, since the total iterations remains unchanged in the condition of “Frozen”, as shown in Table 2.
From a computational point of view, however, the smaller the time step, the more iteration steps are
needed, which increases the computation cost.
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Table 2. The number of times that the iteration matrix is updated (update times) and the total iterations
in the simulation for different time discretizations and update conditions of the truss structure unit.
Update: the iteration matrix is updated all the time. Frozen: the iteration matrix in the reference
configuration is maintained for the whole simulation.

Update Frozen

h = 0.0005 s
Update times 1434 0
Total iterations 1435 1473

h = 0.0001 s
Update times 5714 0
Total iterations 5715 5715

5.2. Sliding Three-Dimensional Beam with Eccentricity

Two initial straight flexible beams connected through a sliding joint are involved in this example,
as shown in Figure 4. Two spherical joints locate at the two ends of the carrier beam AB. A concentrated
mass M is fixed at the free end of sliding beam AM. All the geometrical and material parameters
are displayed in Table 3. This is a typical test case of sliding joint, which has been proposed by
Sugiyama et al. [19] and applied by other researchers [20,23]. The ANCF and GEBT are employed
in [19,20] and [23], respectively. In reference [19,23], the carrier beam and sliding beam are both
discretized into one element thereby obtaining an un-converged solution. The convergence of solution
was investigated in [23].
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Table 3. Parameters for the carrier beam, sliding beam, and mass.

Parameters Value

Position of A [0,3,1]
Position of B [0,0,0]
Position of M [1,3,1]
Cross-section (0.01 × 0.01) m2

Young’s modulus 2e8 N/m2

Poisson coefficient 0.3
Mass density 800 kg/m3

Tip mass 1 kg
Gravity 9.81 m/s2

In the example, the carrier beam and sliding beam are discretized into 16 and 2 elements using
the 2-order NURBS basic function. For comparison, the reference solutions from ANCF with 64
and 4 elements were calculated. The calculation was conducted with the time step h = 0.001 s and
terminated once the sliding beam reaches point B, which occurred at t = 1.306 s. The deformed
configurations during the motion are shown in Figure 5 with the time interval ∆t = 0.1 s, while the
X–Z and Y–Z trajectories of the mass are plotted in Figure 6. It is shown that the flexible beams have
visible deformation during the finite translational and rotational process. The results from the present
method have a good agreement with the reference solution from ANCF. It is demonstrated that the
present formulation is applicable to the analysis of the structures with sliding joint, which undergo
finite deformation and motion.
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5.3. Deployable Spatial Truss Structure Unit

The dynamics of a deployable truss structure unit, which can be employed to construct large
space systems [34], was investigated in this section. As shown in Figure 7, the structure unit is an
assembly composed of three square frames, eight cross-bars, and eight diagonal rods joined to one
another. The cross-bars and the diagonal rods on both sides are jointed with square frames with only
the rotations around the ξ2-axis released, while the above and below diagonal rods are clamped at
corresponding points on square frames. During the deployment process, the diagonal rods on both
sides can slide between two ends of the carrier rods through a sliding joint. The geometrical and
material parameters can be found in Table 4.
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Table 4. Parameters for the deployable truss structure unit.

Parameters Value

Side length of square frame 2 m
Length of cross-bar 4 m
Length of diagonal rod

√
20 m

Inside diameter of all rods 0.055 m
Outside diameter of all rods 0.060 m
Young’s modulus 2.1e11 N/m2

Poisson coefficient 0.3
Mass density 7850 kg/m3

Gravity 9.81 m/s2

In the first test case, the first (left) square frame was fixed initially, and the structure unit was kept
with βi = 5◦ (i = 1, 2, 3, 4). Then, the structure unit was driven with the gravity 0.005 g along X-axis.
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The calculation was conducted with the time step h = 0.1 s and a single 2-order NURBS finite element
per beam. When βi = 90◦ (i = 1, 2, 3, 4), as shown in Figure 7, the sliding joints were locked in the top
end of carrier beams, and the calculation was terminated through a constraint of ζ. For comparison,
the reproductive simulation based on MSC.ADAMS and ANSYS were conducted. As suggested
by [35,36], the modal neutral files (.mnf files) was firstly obtained from ANSYS and was then imported
into ADAMS/FLEX module, which allows us to model flexible parts based on its modal frequency.
The beam members were modeled with the specified parameters in Table 4 using Solid45 element in
ANSYS. The X-position of point D during the motion calculated from proposed formulation were of
good agreement with MSC.ADAMS, as displayed in Figure 8. It was demonstrated that the present
formulation was appropriate for the deployment dynamic analysis of the spatial truss structure.Appl. Sci. 2020, 10, x FOR PEER REVIEW 16 of 20 
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In the second case, the initial configuration and material parameters were the same with the first
case, while the gravity was ignored. The structure was set to deploy in t f = 20 s through control
function applied in βi (i = 1, 2, 3, 4) synchronously with the time step h = 0.005 s, and the simulation
was terminated at 30 s. Equations (54)–(57) are the linear control function, polynomial control function,
cycloid control function, and cosine control function with β0 = 5◦, β f = 90◦, respectively.
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(i = 1, 2, 3, 4) (54)

βi(t) = (β f − β0)[6(
t
t f
)

5
− 15(

t
t f
)

4
+ 10(

t
t f
)

3
] + β0 (i = 1, 2, 3, 4) (55)
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)] + β0 (i = 1, 2, 3, 4) (56)
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)] + β0 (i = 1, 2, 3, 4) (57)

To test the convergence of element, 4 and 10 finite elements using 2-order NURBS basic function
were employed at first. As displayed in Figure 9, the motions of D in X direction obtained from
two discrete ways agreed well, which demonstrated that the results had converged. Note that the
following tests were all conducted with four finite elements. The motions of D in X direction and Z
direction calculated by four control functions are displayed in Figures 10 and 11. The results from linear
control function show visible vibration whether in the deployment process or after the deployment.
This is because the initial increment set by the linear function is too large, which causes a larger elastic
deformation and results in an unsmooth deployment. The comparison result in Z-position of point
D from other three angle control functions is plotted in Figure 12. It is illustrated that the cosine
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function is the best control strategies in four functions, since it shows the best deployment stability and
minimum residual vibration after the deployment.Appl. Sci. 2020, 10, x FOR PEER REVIEW 17 of 20 
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6. Conclusions

In order to investigate the dynamics of the deployable spatial truss structure, a beam finite
element that can effectively reduce the rotational nonlinearity thereby applicable for finite motion
and deformation issues, was proposed based on the geometrically exact beam theory and the local
frame approach. The analytical expressions of internal and inertial forces and their Jacobian matrices,
including the symmetric stiffness matrix, were strictly derived in this paper. Based on the Lagrangian
multiplier method, the constraint equation and its Jacobian matrix of sliding joint were also derived.
Using NURBS basic function, the displacement and rotation fields were interpolated separately to
be compatible with IGA. The numerical example illustrated that the iteration matrix corresponding
to the rotational parameters in the initial configuration, including the Jacobian matrix of inertial
and internal forces, could be maintained in the whole simulation, which drastically improved the
computational efficiency. Moreover, the sliding joint was also successfully tested. The application
example demonstrated that the present method was applicable to the deployable truss structure with
sliding joint. The simulation results show that the effect of the cosine function on angle planning was
better than the linear function, polynomial function, and cycloid function.
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