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Featured Application: Manufacturing Polyurethane Foams, Chemical Engineering.

Abstract: In the manufacturing process of hard-board poly-urethane foams, the uniformity is a very
important issue for the raw compound of the liquid poly-urethane system flow for the quality control
of such products. One of the universal methods to generate more uniform flow is that some obstacles
are located inside the diffuser at the end of injector. For the regime of non-Newtonian laminar flow,
better flow uniformity can be achieved with the enhancement of mixing in the wake after the resistive
obstacles. In this research, the parametric study is made for the gap interval between adjacent obstacle
components as well as the cross-sectional shape with a computational fluid dynamics (CFD) technique.
The flow fields around circular and elliptic cylinders are visualized for flow velocity and vorticity
with the comparison of root-mean-square (RMS) error for the deviation of velocity at the outlet as a
lumped parameter to estimate flow uniformity and mixing. When the blockage ratio is fixed 0.3 for
the pipe of Reynolds number 58.5 based on its diameter, eliminating the effect of wall boundary ratio
with the classical Blasius velocity profile, the RMS error is reduced 77% to 92% from the baseline case
in the case of 60%-diameter gaps for the figure of circles and 2:1 longitudinal ellipse, respectively.
The flow is visualized around obstacle components with vorticity as well as flow velocity where the
three-dimensional components of vorticity vector are also elucidated in physics for the evolution of
complex multi-dimensional flow wake.

Keywords: high-viscous fluid; flow uniformity; polyurethane board; mixing performance;
non-Newtonian fluid

1. Introduction

Polyurethane foam is often used for adiabatic elements in the building construction owing to its
excellent characteristics of such as mechanical strength, resistive endurance, elasticity, heat insulation,
etc. Generally, a hard urethane board is manufactured through the four steps: mixing, reactions,
injection, coagulation, and cutting. Briefly speaking on the process, first the precise pump transports
the compound of liquids to the mixing chamber for the step of mixing and reaction. Then, the mixture
is injected to be spread on the upper surface of a conveyer belt through an injection nozzle or diffuser
before the reaction begins, which depends on the speed of both conveying and injection, also passed
for the pressurization section to generate the foam by a series of counter-rotating rollers. Soon the
rheological system is hardened for the coagulation at the atmospheric condition. The hard urethane
board is produced as a commercial product after it is cut in a suitable size of length and width. In
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the entire process, there are various parameters effecting on production and manufacture such as
distribution of materials, size, and shape of bubbles inside the foam, related with the defect ratio as well
as the overall mechanical property of the foam such as density, strength, hardness, etc. [1]. However,
the most important key parameter, or the figure of merit is the uniformness of compound flow that
results in quality of the product directly since it strongly induces all the above parameters. To achieve
the uniform flow system, a transverse array of multiple obstacles is often located inside the diffuser of
injector. Therefore, the main problem in this research is what will be the optimal configurations of
these obstacle components in numbers, shapes, intervals, etc.

The mixture liquid for the raw material of polyurethane foams is that of high molecular weight
matters, or a kind of non-Newtonian fluids with the characteristics of shear-thickening. Owing to
their high viscosity levels, this material is generally regarded to be processed in the laminar flow
conditions in the moderate flow speed. Various non-Newtonian fluids such as polymeric systems
display viscoelastic behaviors, but so far only a few available literatures have been published either for
the creeping flow past a single cylinder or over a periodic transverse array of cylinders across the main
flow, which implies that the viscoelastic effects have not been well investigated as they are regarded
as minor in the present flow configuration [2], but so far the researches on numerical analyses have
been much published in the category of rheology using the index of power law [3–17]. Some of them
manifested various physics related with flow such as drag coefficient, vortex shedding, heat transfer,
etc., around single shape or many figures of circular or elliptic cylinders [18,19]. However, it is hard
to find an investigation on the flow uniformity and the mixing characteristics through a nozzle or a
diffuser containing multiple bodies of repetitive configurations. In the past, the authors studied some
exercises similar problems of Newtonian flow, and an optimal configuration could be found for the
flow uniformity in the mixing characteristics of laminar flow [20]. Therefore, this study will be the
extension of them to a non-Newtonian version.

In this study, a commercial code for the numerical analysis, COMSOL Multiphysics 5.3a is used for
the whole simulations for the injection diffuser flow model. As the flow regime of liquid polyurethane
system lies in rheological pseudo-plasticity characteristics of a non-Newtonian fluid, a model of power
law is applied for this numerical analysis where the flow viscosity is a power function of strain rate
with empirical coefficients, which can be edited in the COMSOL source code.

2. Methods of Research

2.1. Model for Analysis

The geometrical configuration is shown for the present models in Figure 1 where the dimension
data are presented in Table 1 [20]. The obstacles installed inside the diffuser are in shape of columns
transversely blocking the cross-section where the diameter of circles or the short-axis length of ellipses
is each fixed to 5 mm. The blockage ratio defined as the area ratio blocking the cross section at
the transverse position of interest is set as a fixed value 0.3, and the multiple obstacles of circular
or longitudinally elliptic cylinders are installed transversely inline, respectively, where the gap of
obstacles are parameterized from 2 mm to 7 mm with 1 mm intervals (six cases each). Therefore, test
cases are 12 in total for two kinds of obstacles: circular and 2:1 elliptic cylinders to analyze the flow
uniformity and the mixing performance.

Table 1. Dimensions of diffuser elements.

Symbols in Figure 1 Value
(Unit: mm; θ in Degrees) Symbols in Figure 1 Value

(Unit: mm; θ in Degrees)

Di 12 Lθ 70.7
Lt 400 Ln 94
w1 100 L1 30
w2 40 L2 64
θ 25◦ L3 24
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2.2. Governing Equations

Three-dimensional incompressible Navier–Stokes equations are used as the governing equations:

∂ρ

∂t
+∇(ρV) = 0 (1)

ρ

{
∂V
∂t

+ (V·∇)V
}
= −∇p +∇(µ∇V) (2)

consisting of continuity equation, Equation (1), and momentum equations, Equation (2); V is the
velocity vector; p is pressure; and ρ is mean density of the compound.

The ‘Laminar Fluid Flow’ module in COMSOL Multiphysics is utilized to discretize Equations (1)
and (2). The numerical method based on finite element method (FEM) used in this code adopts flexible
generalized minimum residual (FGMRES) linearization and Petrov–Galerkin least-square artificial
dissipation terms [21].

To analyze non-Newtonian flow, the rheological characteristics are reflected as a power-law model
such as [22]:

µi, j = m
( .
γi, j

)n−1
(3)

.
γi, j =

∣∣∣∣∣∣∂ui
∂x j
−
∂u j

∂xi

∣∣∣∣∣∣ (4)

The dynamic viscosity µ in Equation (2) should be modified as the function of
.
γ that is called shear

rate like Equations (3) and (4) where the subscripts i and j denotes the directions in three dimension
for the viscosity tensor in Equation (2), and m is the flow consistency index; the power n is the flow
behavior index forced as constants for the majority of non-Newtonian fluid models.

2.3. Boundary Conditions

Boundary conditions are marked and pointed in Figure 2 where the obstacles are omitted in
Figure 1, simply applied with no-slip conditions. The flow properties are listed in Table 2, and the mass
flow rate is that used for the commercial 115 mm thickness urethane boards. The Reynolds number
based on the inner diameter of the feeding pipe and its critical value are defined from the power law of
Equation (3) as follows, respectively [23]:

Red,PL = 23−n
( n

3n + 1

)n V2−n
avg Dn

i ρ

m
(5)

Red,PL,critical = 2100
(4n + 2)(5n + 3)

3(3n + 1)2 (6)
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Figure 2. Schematic diagram of boundary condition.

Table 2. Boundary conditions.

Properties Value Unit

Mass flow rate at the inlet 779.5 g/s
Gauge pressure at the outlet 0 Pa

Density 1154 kg/m3

Non-Newtonian
viscosity

Properties [24]

m 8.8562 Pa·sn

n 0.7669 -
Wall velocity 0 (no slip) -

Recall that the critical Reynolds number becomes the same as that of a simple Newtonian pipe
flow when we substitute n = 1 to Equation (6), which allow µ = m in Equation (5). For the present cases,
the Reynolds number calculated from Equation (5) is 58.5, which is far less than 2225 from Equation (6),
a calibrated critical Reynolds number from a generally accepted value in the internal pipe flow, so all
the flow regime can be assumed as laminar in the present simulations.

2.4. Mesh Generation

Tetrahedral meshes are used in overall for all cases except for the near wall domains where the
prism meshes are applied for the accuracy of computation, and hexahedral configuration of five mesh
laminates to capture the boundary layer near from the feeding tube. The grid sensitivity is checked for
the meshes shown in Figure 3a,b and the result reports that the total meshes in the whole computational
domain is about 0.33 million that is concentrated 90% on the injection diffuser part.
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To compare the Darcy friction coefficient ( f ) [25] for the various levels of grids, the Hagen–Poiseuille
solution for a straight pipe is computed for the present meshes in Figure 3, and the average flow
velocity (Vavg) is used for the computation of f :

f = −
1
4

(Di

Lt

) 2
V2

avg

∆P
ρ

(7)

f =
16

Red,PL
(8)

The pressure difference ∆P is measured for the known length of tube Lt, excluding the entrance
length, and the Darcy frictional coefficient is calculated in Equation (7) to be compare with the analytic
solution of Equation (8). The difference is checked within 1.6% error for the present level of grids, and,
therefore, the inlet flow is at least regarded as satisfying the requirement of a proper scale mesh system.

3. Verification and Validation

3.1. Verification at the Tube Section

A simplified model is proposed to verify the present method for Hagen–Poiseuille solution in a
non-Newtonian fluid: see Figure 4a. To get the fully developed flow domain, periodic flow condition
is applied in both inlet and outlet boundaries, and the length ∆z is set 0.5 mm. The corresponding
mesh system is plotted in Figure 4b, which is the identical level of the meshes in Section 2.4.
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The classical solution of Hagen–Poiseuille [23,25] shows that the axisymmetric velocity distribution
in a pipe should be given as a function of radial position, r:

u(r) =
n

n + 1

(
−

dp
dz

1
2m

) 1
n (

R
n+1

n − r
n+1

n

)
(9)

where the pressure gradient dp/dz < 0 is specified, and the tube radius is R. From the comparison of
the present numerical analysis with Equation (9) is shown in Figure 5, the maximum relative error is
within 1.4%, and the present numerical method is verified for the tube-side computational region.
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3.2. Validation at the Diffuser wall Section

The expansion angle for the present diffuser is 25
◦

, and we validated our numerical method for a
far severer problem of a sudden expansion flow at a 90

◦

backward step, one of the experimental result
from Denham and Patrick [26]. Although the fluid is Newtonian, the Reynolds number is calculated
to 73 based on its two-dimensional step height, ranged between 10 and 100. In Figure 6, the relative
error with the present result of streamwise velocity distribution, u, lies within 10% at all the wake
stations from those of experimental result [26], so the computational method can be trusted as a proper
one in the diffuser expansion part. The total meshes are 36,000, and uniform meshes are applied
in ∆x = ∆y = 0.05 [m]. However, for the whole computational domain, there are located multiple
cylindrical obstacles, this validation just works in the limited domain.
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3.3. Validation for the Body of Circular and Elliptic Shape

The flow around an element of obstacle is the key point of this research inside the diffuser.
Computational domain and boundary conditions are such as Figure 7, setup to validate the flow
around circular and elliptic obstacles [27], and Figure 8 shows the mesh used for numerical analysis
where the mesh quality used for validation is equivalent to that used for the main problem.
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Figure 8. Grids system for the validation problem: (a) distribution of 31,904 elements, (b) zoomed view
around a body.

The Reynolds number is 17, calculated from the definition as follow based on the short diameter
of an obstacle where the flow around is that of symmetric separation for steady flow.

Red =
ρU2−n

in Dn

m
(10)

where Uin is the average inlet velocity.
The results are listed in Tables 3 and 4 for a circle and an ellipse, respectively. The CDP is the

pressure drag coefficient, and CDF is the friction drag coefficient integrated from pressure and shear
stress distribution at the surface of obstacles, respectively. Therefore, the total drag coefficient is the
sum of these two drags, or CD = CDP + CDF. The maximum error is estimated as 6%, so the present
grid scale is regarded as proper.
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Table 3. Numerical values of drag coefficients with power-law analysis around a circular obstacle.

Coefficients
CDP CDF CD CDP CDF CD CDP CDF CD

n = 1 n = 0.6 n = 0.2

Present 1.274 0.8362 2.111 1.355 0.6272 1.982 1.439 0.3372 1.776
Sivakumar, P., et al. [16] 1.201 0.8047 2.005 1.304 0.6137 1.918 1.484 0.3394 1.824

Error (%) 5.8 3.8 5.0 3.7 2.2 3.2 3.1 0.7 2.7

Table 4. Numerical values of drag coefficients with power-law analysis around an elliptic obstacle.

Coefficients
CDP CDF CD CDP CDF CD CDP CDF CD

n = 1 n = 0.6 n = 0.2

Present 0.9457 1.222 2.168 1.030 1.030 2.060 1.161 0.6817 1.843
Sivakumar, P., et al. [16] 0.8893 1.173 2.063 0.9900 1.013 2.003 1.184 0.7020 1.886

Error (%) 6.0 4.0 4.9 3.9 1.6 2.8 2.0 3.0 2.3

4. Results and Discussion

4.1. Flow Uniformity

The effect of obstacles is surveyed for its contribution on the flow uniformity. However, the edge
flow accelerated from the blockage of the main central one effects on the unnecessary fluctuation near
the side wall of diffuser. In Figure 9, the effect of boundary layers, or the shaded area neighboring to
the side walls must be neglected to make a fair comparison.
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The boundary layer on a flat plate is calculated with Blasius theory to simplify Equations (1) and
(2) to the following incompressible boundary-layer equations in the two-dimension for the region of
boundary layer near the side wall [20,22,24]:

∂u
∂x

+
∂v
∂y

= 0 (11)

u
∂u
∂x

+ v
∂v
∂y

= −
1
ρ

dp
dx

+ ν
∂
∂y

(
∂v
∂y

)n

(12)

where the kinematic viscosity is simply defined as ν = µ/ρ just like Newtonian fluid, which does not
lose the generality even for such non-Newtonian fluids.

The stream function, ψ is defined as, satisfying Equation (11),

u =
∂ψ

∂x
, v = −

∂ψ

∂y
(13)
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A dimensionless distance and the stream function are also defined as, just like those of Blasius,

η = y
(

U2−n
∞

νx

) 1
n+1

(14)

ψ(η) =
(
νxU2n−1

∞

) 1
n+1 f (η) (15)

Substituting Equation (15) into Equation (13), from a simple calculus, we get the velocity
components such as

u = U∞ f ′ (16)

v =
1

n + 1

(
ν

U2n−1
∞

xn

) 1
n+1

(η f ′ − f ) (17)

Note that there is no change in Equation (16) from the Newtonian fluid, and Equation (17) also
falls down to Newtonian if n = 1.

As the outer flow from a flat plate, dU∞/dx ≈ 0, and the pressure gradient term in Equation (12)
is erased out. Equations (16) and (17) are substituted to Equation (12), the final ordinary equation is
written down as

n(n + 1)( f ′′ )n−1 f ′′′ + f f ′′ = 0 (18)

The boundary condition of Equation (18) is also specified from the no-slip condition at the wall
(u = v = 0, or f ′ = f = 0 at η = 0) and the inviscid condition at the outer edge of boundary layer
(u = U∞, or f ′ = 1 at η→∞ ).

The solution of Equation (18) under the given boundary values are computed with 5th order
Runge-Kutta method [22]: see the graphical result in Figure 10. This scheme works also in
non-Newtonian fluid. Therefore, the thickness of boundary layer from the slanted side wall of
diffuser in Figure 9 is easily found as the following scheme:

RePL =
u2−n
θ

Ln
θ
ρ

m
(19)

uθ =

.
mi
ρLθh

cos θ (20)

δθ = Lθ
6.0

Re
1

n+1
PL

(21)

δo =
δθ

cosθ
(22)

where
.

mi is the mass flow rate. In Figure 11, the velocity profile at the diffuser outlet f ′ = u/U∞ = 0.99
when η ≈ 6.0, and Equation (21) is derived for the thickness of boundary layer. Therefore, the thickness
in the transverse direction, or δO (see Figure 9) is computed approximately to 30 mm.

Thirteen cases including the baseline (with no obstacle) are defined from the parameter table
(Table 5), and the gap size of multiple transverse obstacles located in Figure 1 is set from 2 to 7 mm
with interval 1 mm, and the shapes are circle or 2:1 longitudinal ellipse where the diameter or the short
axis length is set 5 mm.
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Table 5. Computational cases.

Case Gap [mm] Cross-Sectional Shape

1~6 2~7 (interval: 1) Circle

7~12 2~7 (interval: 1) 2:1 Ellipse (longitudinal)

This thickness is reduced in Figure 11a,b for circle and ellipse, respectively, the outlet velocity
profile, just filtering the velocity data to calculate the root-mean-square (RMS) of percentage deviation
to determine the flow uniformity as follows:

RMS =
urms

uavg
× 100(%) (23)

urms =

√√
1
n

n∑
i=1

(
ui − uavg

)2
(24)
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As seen in Figure 11a,b, Cases 1 and 7 reveals that there are overshoots of velocity at the boundary
layer region, and the central velocity deficits due to the continuity of flow. In Figure 12, the difference
of RMS value is not remarkable without cutting the edge or filter out the effect of the side diffuser
walls, but with cutting the boundary data, Cases 2 and 8 are picked as the least RMS, which means the
optimal flow uniformity, or the flattest central velocity profile at the wake of obstacles array.
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4.2. Growth of Vorticity and Pressure Drop

Cases 2 and 8 in Figure 12, which are picked as the best cases for the flow uniformity, are compared
for velocity and vorticity field in Figures 13 and 14. In Figure 13a,b, the flow is observed to be
accelerated at the narrow gaps between each obstacle. The elliptic cylinders scatter the accelerated flow
region far longer because its longitudinal axis distance is longer than that of circular ones. Figure 14a,b
shows the vorticity, or the geometrical norm of curl V, to see the rotational mixed flow: for Case 2
(circular), it is observed that a microscopic flow separation develops a weak vortex shedding at the
wake direction while the vortices generated from the boundary layer in Case 8 (elliptic) is shown to be
attached at the long streamwise surface to delay the flow separation. It is understood that this slight
difference results in more stable uniform flow at the wake of elliptic cylinders than that of circular ones.
The penetrated vorticity providing the rotation to the flow wake is considered as the most dominant
cause to increase mixing in the laminar flow. The larger the vorticity and the longer the rotational
region will improve the mixing characteristics.
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For a quantitative comparison, two lumped parameters are proposed as follows:

Ip =
∆p8

∆p2
(25)

Iω =

∫
ω8dS∫
ω2dS

(26)

where the subscripts 2 and 8 represent Cases 2 and 8, respectively. Equation (25) indicates the overall
ratio of pressure drop where the symbol ∆ indicates the difference of values measured on the discharge
of pipe and the outlet of diffuser, and Equation (26) is the ratio of integrated vorticity, or circulation for
the estimation of flow rotation where dS stands for the area segment on the surface of all the obstacles.
Ip = 1.03 means that the pressure drop after elliptic cylinder increases only 3% compared with that
of the circular cylinder. However, the integrated vorticity increases as much as 49% since Iω = 1.49.
Consequently, the choice of a 2:1 ellipse shape can be even better than a cylinder because it can increase
the overall mixing performance in spite of very minor increase on the adverse effect of pressure loss.

4.3. Effect of Crossflow in the Three Dimension

As the height of diffuser is short in the z-direction, the only observation at the xy plane is not
regarded as proper because the flow must be three-dimensional in the narrow channel. Figure 15a,b
represents the magnitude of vorticity from Figure 14a,b along the transverse section at the position of
leading edge, center, and trailing edge of obstacles, respectively. The three components of vorticity are
denoted as ωx, ωy, ωz, marked in Figure 16.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 16 

49% since 𝐼𝜔 = 1.49. Consequently, the choice of a 2:1 ellipse shape can be even better than a cylinder 

because it can increase the overall mixing performance in spite of very minor increase on the adverse 

effect of pressure loss. 

4.3. Effect of Crossflow in the Three Dimension 

As the height of diffuser is short in the z-direction, the only observation at the xy plane is not 

regarded as proper because the flow must be three-dimensional in the narrow channel. Figure 15a,b 

represents the magnitude of vorticity from Figure 14a,b along the transverse section at the position 

of leading edge, center, and trailing edge of obstacles, respectively. The three components of vorticity 

are denoted as 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧, marked in Figure 16. 

(a) 

(b) 

                        Unit [1/s] 

Figure 15. Vorticity magnitude for (a) Case 2 and (b) Case 8. 

 

Figure 16. Schematic of the three-dimensional vortices around obstacle. 

The 𝜔𝑧 effects obviously on the two-dimensional uniformity mentioned in the previous section, 

but the narrow gap between upper and lower plates of diffuser results in 𝜔𝑥 , which is almost 

independent on the existence of obstacles. However, the crossflow or three-dimensional effect can be 

found in Figure 15a,b where it is denoted as 𝜔𝑦, consisting of a horse sue figure of vortex filament 

with 𝜔𝑥 in Figure 16. The strength of them is compared in Figure 17a–f where 𝜔𝑦 is only marked 

significant at the leading edge position, but is diffused at the downstream: see Figure 17b,e. In Figure 

17a–f, the magnitudes of 𝜔𝑥  and 𝜔𝑧  seems to be similar orders. Overall, the magnitudes are 

compared as 𝜔𝑥 ≈ 𝜔𝑧 > 𝜔𝑦 , and, therefore, the vorticity components 𝜔z  (major) and 𝜔y  (minor) 

contributes to the mixing with the installation of obstacles inside the diffuser. 

Figure 15. Vorticity magnitude for (a) Case 2 and (b) Case 8.



Appl. Sci. 2020, 10, 1228 13 of 16

Appl. Sci. 2020, 10, x FOR PEER REVIEW 12 of 16 

49% since 𝐼𝜔 = 1.49. Consequently, the choice of a 2:1 ellipse shape can be even better than a cylinder 

because it can increase the overall mixing performance in spite of very minor increase on the adverse 

effect of pressure loss. 

4.3. Effect of Crossflow in the Three Dimension 

As the height of diffuser is short in the z-direction, the only observation at the xy plane is not 

regarded as proper because the flow must be three-dimensional in the narrow channel. Figure 15a,b 

represents the magnitude of vorticity from Figure 14a,b along the transverse section at the position 

of leading edge, center, and trailing edge of obstacles, respectively. The three components of vorticity 

are denoted as 𝜔𝑥 , 𝜔𝑦, 𝜔𝑧, marked in Figure 16. 

(a) 

(b) 

                        Unit [1/s] 

Figure 15. Vorticity magnitude for (a) Case 2 and (b) Case 8. 

 

Figure 16. Schematic of the three-dimensional vortices around obstacle. 

The 𝜔𝑧 effects obviously on the two-dimensional uniformity mentioned in the previous section, 

but the narrow gap between upper and lower plates of diffuser results in 𝜔𝑥 , which is almost 

independent on the existence of obstacles. However, the crossflow or three-dimensional effect can be 

found in Figure 15a,b where it is denoted as 𝜔𝑦, consisting of a horse sue figure of vortex filament 

with 𝜔𝑥 in Figure 16. The strength of them is compared in Figure 17a–f where 𝜔𝑦 is only marked 

significant at the leading edge position, but is diffused at the downstream: see Figure 17b,e. In Figure 

17a–f, the magnitudes of 𝜔𝑥  and 𝜔𝑧  seems to be similar orders. Overall, the magnitudes are 

compared as 𝜔𝑥 ≈ 𝜔𝑧 > 𝜔𝑦 , and, therefore, the vorticity components 𝜔z  (major) and 𝜔y  (minor) 

contributes to the mixing with the installation of obstacles inside the diffuser. 

Figure 16. Schematic of the three-dimensional vortices around obstacle.

Theωz effects obviously on the two-dimensional uniformity mentioned in the previous section, but
the narrow gap between upper and lower plates of diffuser results in ωx, which is almost independent
on the existence of obstacles. However, the crossflow or three-dimensional effect can be found in
Figure 15a,b where it is denoted as ωy, consisting of a horse sue figure of vortex filament with ωx

in Figure 16. The strength of them is compared in Figure 17a–f where ωy is only marked significant
at the leading edge position, but is diffused at the downstream: see Figure 17b,e. In Figure 17a–f,
the magnitudes of ωx and ωz seems to be similar orders. Overall, the magnitudes are compared as
ωx ≈ ωz > ωy, and, therefore, the vorticity components ωz (major) and ωy (minor) contributes to the
mixing with the installation of obstacles inside the diffuser.
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Figure 18 is the comparison of ωz at the trailing edge of obstacles for case 2 (circle) and 8 (ellipse).
The difference of vorticity components shows a remarkable difference between two cases: the amplitude
of ωz in the ellipse shape is approximately half of that in the circle shape. Thus, this elucidates the
better characteristics of flow uniformity when we used 2:1 elliptic cylinders: see Figure 12.
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5. Conclusions

In this research, the flow uniformity and the increase of vorticity are analyzed with computational
fluid dynamics applying non-Newtonian fluid model in the range of laminar flow whose Reynolds
number is 58.5 based on the inner diameter of feeding pipe.

The remarkable findings on the present study are summarized as: with an inline transverse
configuration of resistive obstacles and the control of gap interval, 12 cases are tested for numerical
analysis, and finally an optimal case is determined for the uniformity of outlet flow as 60% of gap to
diameter ratio and 2:1 ellipse shape. This result is not so different from that of Newtonian fluid [2].

For a proper analysis with RMS values, the effect of boundary layer should be filtered, generated
from two side walls in the diffuser. For the purpose of this, the boundary layer of two-dimensional
non-Newtonian flow is calculated with a type of Blasius similarity solution, and the boundary layer
thickness at the outlet is computed as 30 mm for the baseline case. From the RMS analysis excluding
the effect of boundary layer at the side walls, the RMS of velocity deviation at the diffuser outlet
indicates 77% decrease in Case 2 of circular cylinders and 92% decrease in Case 8 of 2:1 elliptic cylinders
compared with the baseline case. If we just change the cross-sectional shape circle to longitudinal
ellipse, the RMS error decreases no less than 15% points. The reason is analyzed that the smoother
flow along the surface of body is extended at the wake region due to suppress of vortex shedding
originated from the flow separation.

The increases of pressure drop and vorticity are investigated for the best cases of Cases 2 and 8,
when the cross sectional shape is changed from circle to ellipse, the pressure drop is increased just in
minor 3%, but the vorticity at the body surface increased 49%, which means a remarkable improvement
of mixing efficiency with a small effort. That is, the final configuration seems to be very effective for the
enhancement of mixing properties for the laminar flow regime, and therefore it has so wide possibility
of engineering application on various mechanical parts concerning low Reynolds number fluids.

The analyses of flow vorticities at the cross sections around the obstacles results in overall
ωx ≈ ωz > ωy for the order of magnitude, which are interpreted as the effect of diffuser walls, obstacles,
and crossflow, respectively. The vorticity, ωz drives primarily the supply of mixing energy to the main
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flow to enhance the mixing of outlet flow. When the z-axis component is compared for Cases 2 and
8 at the line cutting trailing edges, the amplitude was decreased almost half for the 2:1 ellipse case
compared with the circle case, which has more uniform velocity distribution at the outlet.

6. Patents

A patent related with the present study has been applied to Korea Patent Office (1020180051213)
on 3 May 2018, and open to the public (1020190056945) on 27 May 2018, entitled “Nozzle having
resistance object for uniform flow in the poly-urethane coating process.”
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