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Abstract: Denoising and compression of 2D and 3D images are important problems in modern
medical imaging systems. Discrete wavelet transform (DWT) is used to solve them in practice. We
analyze the quantization noise effect in coefficients of DWT filters for 3D medical imaging in this
paper. The method for wavelet filters coefficients quantizing is proposed, which allows minimizing
resources in hardware implementation by simplifying rounding operations. We develop the method
for estimating the maximum error of 3D grayscale and color images DWT with various bits per color
(BPC). The dependence of the peak signal-to-noise ratio (PSNR) of the images processing result on
wavelet used, the effective bit-width of filters coefficients and BPC is revealed. We derive formulas for
determining the minimum bit-width of wavelet filters coefficients that provide a high (PSNR ≥ 40 dB
for images with 8 BPC, for example) and maximum (PSNR =∞ dB) quality of 3D medical imaging by
DWT depending on wavelet used. The experiments of 3D tomographic images processing confirmed
the accuracy of theoretical analysis. All data are presented in the fixed-point format in the proposed
method of 3D medical images DWT. It is making possible efficient, from the point of view of hardware
and time resources, the implementation for image denoising and compression on modern devices
such as field-programmable gate arrays and application-specific integrated circuits.
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1. Introduction

Medical imaging uses many different methods such as magnetic resonance (MR) imaging [1–8],
radiography [4,9–11], radionuclide [8,12], optical [11,13,14], ultrasound [1,15] and medical robotics [16,17].
The typical medical imaging system consists of three components (Figure 1): data acquisition, data
consolidation and data processing. The data acquisition card, which filters incoming data, is the most
cost-sensitive system card. Usually, a diagnostic imaging system will consist of multiple data acquisition
cards. Once the data is compensated and filtered in scanners, it is sent to the data consolidation
card for buffering and data alignment. Once the data has been collected, it is sent to the image
processing cards [18]. These cards perform heavy-duty filtering and the most algorithm-intensive
image reconstruction. Modern field-programmable gate array (FPGA) devices are widely used in data
consolidation, and image processing for sophisticated application algorithms implementation including
pattern recognition, image enhancement and data compression [19,20].

Denoising of 2D and 3D medical images is an important problem in modern medical imaging
systems. The noisy pattern is not always bad in medical images, but in most cases is a problem. MR
images are inherently noisy and thus filtering methods are required to improve the data quality [5].
Rheological methods of increasing MR elastography resolution determine viscoelastic properties
through wave inversion, which is highly ill posed and sensitive to noise [1]. In radiology using
computed tomography (CT) or related morphological imaging modalities, noise affects the analysis of
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anatomical structures and thus impedes diagnostic applications [11]. Low dose radiation exposure
for patient safety leads to noisy and low-contrast fluoroscopic sequences [11]. The reconstruction
process of the positron emission tomography images includes inherent multiplicative noise, which
prevents the analysis of visual data [12]. In optical CT for retinal imaging as another example use case,
noise limits the measurement of structural features in the human eye, e.g., retinal layer properties [11].
Denoising facilitates visual data interpretation from echocardiography [15].
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Medical imaging systems produce increasingly accurate images with improved quality using
higher spatial resolutions and bit-depths with advances in scanning technology and digital devices.
Such improvements increase the amount of information that needs to be processed, transmitted and
stored. This is especially true when using 3D scanning technology [4]. For example, four sets of
positron emission tomography medical images of one patient may require more than 4 GB of storage
space [21]. Video recording of a relatively short retinal peeling procedure may require over 40 GB of
memory storage [14]. The capacity of hard drives is on average 1–2 TB with the current level of storage
technology development. Thus, the compression of 3D medical images is also an important problem
in modern medical imaging systems.

Various transforms are used to solve problems of 2D and 3D medical images denoising and
compression in practice. The most common of them are discrete Fourier transform (DFT) [3,7,14,22]
and discrete wavelet transform (DWT) [1,9,11,14]. DFT is widely used in the frequency domain but the
domain characteristics disappeared after it. We cannot determine the time position and the degree of
intensity after signal DFT. It is not possible to describe the local properties of the time domain of the
image. DWT solves these problems because it allows obtaining both frequency and time information
about a signal [23,24]. 2D and 3D images DWT is performed by convolution with a pair of lowpass
and highpass wavelet filters of filter bank that highlight main and detailed information respectively.
Denoising and compression of images are performed by detailed information manipulating in modern
algorithms such as set partitioning in hierarchical trees (SPIHTs) [25] and embedded zerotrees of
wavelet transforms (EZWs) [26]. The convolution operation has high computational complexity.
Hardware implementation on modern microelectronic devices such as field-programmable gate arrays
(FPGAs) and application-specific integrated circuits (ASICs) working with fixed-point numbers is
one of the ways to improve its characteristics [27–29]. Quantization noise occurs when converting
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wavelet filters coefficients into this format, due to which convolution is performed with an error.
The question arises about the accuracy of wavelet filters coefficients representation in the device’s
memory, which is efficient in terms of resources and enough to achieve the required quality of image
processing. A novel area-efficient high-throughput 3D DWT architecture for real-time medical imaging
based on distributed arithmetic is proposed by the authors [30]. The design and implementation of
3D Haar wavelet transform with transpose based computation and dynamic partial reconfiguration
for 3D medical image compression are presented in [31]. The implementation of positron emission
tomography using DWT on FPGA is proposed by authors [32]. In paper [33] described the architecture
based on the use of DWT for biomedical signals compression. The design and implementation of
context-based adaptive variable length coding and comparative analysis of trade-off offered by DWT
for 3D medical image compression systems are described by authors [34]. In [35] presented the design
and implementation of 3D DWT with a transpose-based method for medical image compression
on FPGA. Experimental results from [36] showed that the system constructed a 1D DWT system
based on FPGA can filter the noise and extract the electroencephalogram (EEG) signal well. The
design and implementation on FPGA of 3D DWT using Daubechies wavelets with a transpose-based
method for medical image compression are presented in [37]. The design and implementation of
distributed arithmetic architectures of 3D DWT with a hybrid method for medical image compression
are presented in [38]. Authors [39] presented the FPGA-based embedded system design using DWT
and its evaluation for a pre-processing stage of EEG signal analysis. A detailed review of FPGA and
ASIC architectures for DWT implementation in biomedical and intelligent applications, which can be
designed either for higher-accuracy or for low-power consumption is provided by the authors [29].
In [40], the authors showed that DWT along with Gaussian filtering shows better results in removing the
noise and smoothes the electrocardiogram signals. Authors [41] described the design and implement a
complete hardware model based on DWT for EEG data compression and reconstruction on FPGA.
A framework is offered in [42] based on DWT using linear and non-linear classifiers for detecting an
epileptic seizure from EEG data recorded from normal subjects and an epileptic patient. There are
no references to selected bit-width of wavelet filters coefficients in the materials studied about the
hardware implementation of medical images DWT on FPGA and ASIC [29–32,34–42]. Authors [33]
quantized wavelet filters coefficients by 16 bits, but there is no rationale for this choice. The problem of
analyzing the quantization noise effect in wavelet filters coefficients for 2D grayscale and color images
DWT with 8 bits per color (BPC) was solved in [43].

Analysis of 3D medical images DWT result quality dependence on noise arising from filters
coefficients quantizing of wavelet with compact support is the purpose of this work. Particular
attention is paid to determining the minimum bit-width of wavelet filters coefficients, at which this
noise does not have a significant impact on the 3D medical images DWT result (PSNR ≥ 40 dB for
images with 8 BPC, for example), or does not affect it at all (PSNR = ∞). The values PSNR ≥ 40
dB describes the difference between the two images with 8 BPC almost imperceptible for human
eyes [44,45]. The value PSNR = ∞ for identical images.

2. Materials and Methods

DWT is a signal transform using a filter bank, which is a convolution of the input data with
wavelet filters that translate them from a time representation into a time-frequency domain. Wavelet
filters F of filter bank consist of coefficients fF,i, where i = 1, . . . , k and k is the number of coefficients.
Coefficients of lowpass and highpass wavelet filters of decomposition (LD, HD) and reconstruction
(LR, HR) are related by equation [27]

fHD,i = (−1)i+1 fLD,k−1−i, fLR,i = fLD,k−1−i, fHR,i = (−1)i fLD,i. (1)

We shall consider only wavelets with compact support [46]. Daubechies wavelets db(k/2) (where
db1 with k = 2 is Haar wavelet), symlets sym(k/2) and coiflets coi f (k/6) are the most common ones.
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Consider a 3D digital medical image I of X rows, Y columns and Z frames as a function I(x, y, z),
where 0 ≤ x ≤ X− 1, 0 ≤ y ≤ Y− 1 and 0 ≤ z ≤ Z− 1 are the spatial coordinates of I. Thus, voxel values
(analogues of 2D pixels for 3D space) are represented as I(x, y, z) for grayscale images and as I(x, y, z, c)
for color images, where c is the color number (for example, c = 1, 2, 3—red, green and blue colors
respectively for RGB images). We assumed that all image voxels are isotropic [47], hereinafter.

Convolution of a 3D image with wavelet filters is performed by formulas

I′(x, y, z) =
k∑

i=1

I(x− i, y, z) · fF,i, I′′ (x, y, z) =
k∑

i=1

I′(x, y− i, z) · fF,i,

I′′′ (x, y, z) =
k∑

i=1

I′′ (x, y, z− i) · fF,i,

where I′, I′′ and I′′′ is the convolution results by strings, columns and frames respectively. 3D image
DWT is performed by sequential convolution with wavelet filters (Figure 2) in the steps below.

1. Row analysis is performed by decomposing the original image I by rows with lowpass LD and
highpass HD wavelet filters and downsampling, indicated by the symbol ↓ 2 (for example,
the array [2, 8, 5, 1,−1, 3] is transformed into an array [2, 5,−1] after the operation ↓ 2).

2. Column analysis is performed by columns similar to the row analysis for coefficients obtained
at stage 1.

3. Frame analysis is performed by frames similar to the row analysis for coefficients obtained at
stage 2.
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We get 8 sets of coefficients, LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH, of image
decomposition as a result of original image I analysis. These sets can be divided into
approximating (LLL) and detailing (LLH, LHL, LHH, HLL, HLH, HHL and HHH). Approximating
coefficients correspond to the lowpass part of the signal and contain main information about the
image I. Detailing coefficients to correspond to the highpass part of the signal and contain detailed
information about the image I. 3D image denoising and compression are carried out by manipulating
detailing coefficients (LLH, LHL, LHH, HLL, HLH, HHL and HHH) of image decomposition.
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4. Frame synthesis is performed by upsampling, indicated by the symbol ↑ 2 (for example, the
array [2, 5,−1] is transformed into an array [2, 0, 5, 0,−1, 0] after the operation ↑ 2), of image
decomposition coefficients by frames, reconstructing with lowpass LR and highpass HR wavelet
filters and summation of the corresponding results.

5. Column synthesis is performed by columns similar to the frame synthesis for coefficients obtained
at Stage 4.

6. Row synthesis is performed by rows similar to the frame synthesis for coefficients obtained at
Stage 5.

We get the reconstructed image Ĩ as a result of image decomposition coefficients synthesis.
Theoretically, the original image should be fully reconstructed since the scheme in Figure 2 has
the perfect reconstruction property [48]. However, quantization noise occurs due to the digital
format of wavelet filters coefficients representation in practice. Quantization noise distorts all image
decomposition coefficients LLL, LLH, LHL, LHH, HLL, HLH, HHL and HHH as well as reconstructed
image Ĩ. The images DWT result may have a quality unacceptable for the task depending on the
magnitude of quantization noise.

The question arises about the minimum bit-width of wavelet filters coefficients fF,i, necessary for
efficient software and hardware implementation of 3D images DWT on modern devices and enough
for high-quality images processing. The speed of operations with a fixed-point number is higher than
with a floating-point number on modern devices. This can be used to develop 3D medical imaging
devices. Therefore, wavelet filters coefficients are quantized and converted into a fixed-point format in
the proposed method by scaling by 2n and rounding up

f ∗F,i =
⌈
2n fF,i

⌉
. (2)

Bit-width r of quantized wavelet filters coefficients f ∗F,i can be determined by the formula r = n+ 1
in this case. The digital image I∗ processed according to the scheme in Figure 2 using quantized wavelet
filters coefficients f ∗F,i. Voxel values of an image I∗ should be normalized by scaling by 2−6n (2−n for
each convolution, according to the scheme from Figure 2) and rounding down

Ĩ =
⌊
2−6nI∗

⌋
. (3)

We get only integers as a result of images DWT with unquantized coefficients. The quantization
error of the wavelet filters coefficients rounded up is strictly redundant. Rounding down of the DWT
results minimizes this error and cannot cause an error by itself. Rounding up and down operations
are performed by discarding the fractional part of the number with the addition of one in the case of
rounding up an integer. The rounding errors will have different signs and partially compensate each
other for rounding in different directions. Rounding operations in this order require fewer resources
for hardware implementation than rounding operations to the nearest integer. This is due to the fact
wavelet filter coefficients are known a priori and their quantization with rounding up can be made in
advance. Thus, wavelet filters coefficients will be used in the form of constants in the software and
hardware part. The convolution is performed using arithmetic logic devices, and its result is rounded
down by simply discarding the fractional part and does not require additional hardware and time costs.

We used the peak signal-to-noise ratio (PSNR) between two images (original image I and processed
image Ĩ) to quantify the image processing quality. The PSNR logarithmic nature makes it possible
to clearly interpret results that differ slightly from each other. Other metrics usually only show a
big difference. This characteristic is measured in decibels (dB) and is calculated by the following
formula [49]

PSNR = 10 log10


(
2B
− 1

)2

MSE

 = 10 log10

(
M2

MSE

)
,
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where: B is the image BPC; M is the maximum brightness of the image voxels (for example, B = 8 and
M = 28

− 1 = 255 for 8-bit grayscale image and 24-bit RGB image); MSE is the mean square error of
brightness, which is calculated for grayscale (MSEgrayscale) [50] and color (MSEcolor) [51] 3D images
by formulas

MSEgrayscale =
X−1∑
x=0

Y−1∑
y=0

Z−1∑
z=0

(
I(x, y, z) − Ĩ(x, y, z)

)2

X ·Y ·Z
,

MSEcolor =
1
C

C∑
c=1

X−1∑
x=0

Y−1∑
y=0

Z−1∑
z=0

(
I(x, y, z, c) − Ĩ(x, y, z, c)

)2

X ·Y ·Z
.

The value PSNR = ∞ for identical images. The image processing quality is considered high if
PSNR ≥ Q, where Q describes the difference between the two images almost imperceptible for human
eyes. Q = 40 dB for images with 8 BPC [44,45]. We propose to generalize Q to the case of images with
12 and 16 BPC using formula

Q = 5B. (4)

Thus, Q is equal 40 dB, 60 dB and 80 dB for images with 8, 12 and 16 BPC respectively.

3. Results

3.1. Theoretical Analysis of the Maximum Error of the 3D Medical Images DWT

The error of 3D medical images DWT occurs as a result of wavelet filters coefficients conversion
(quantization noise) by Formula (2). Convolutions, upsampling and the summing of convolution
results cause an increase in this error. Rounding down normalized voxel values of the restored image
also has an effect. Note the important facts.

1. The analyzing and synthesizing wavelet filters consist of the same coefficients, according to
Formula (1), hence, the limited absolute errors of computations will also be equal. Therefore,
within the framework of theoretical calculations, wavelet filters are classified only into lowpass L
and highpass H ones.

2. The sums of the lowpass and highpass wavelet filter coefficients are equal
k∑

i=1
fL,i =

√
2 and

k∑
i=1

fL,i =
√

2, respectively [27].

We introduce the following notation.

1. E j,F—limited absolute error (LAE) of calculating the value of the coefficient at the j-th stage,
resulting from convolution with a sequence of wavelet filters F.

2. SF—the exact value of the sum of the coefficients of the wavelet filter F.
3. T j,F—the exact value of the calculations in the j-th stage, after convolution with a sequence of

wavelet filters F.

The errors a of all image decomposition coefficients LLL, LLH, LHL, LHH, HLL, HLH, HHL and
HHH are separated into two groups aε (ε = 1, 2) as a result of upsampling ↑ 2 . Figure 3 shows
an example of the errors separation aε (ε = 1, 2, 3, 4) at the upsampling by frames and columns,
where Y∗ = (Y + k)/2 − 1 and Z∗ = (Z + k)/2 − 1. This situation is similar for upsampling by
strings. Upsampling is applied three times during image restoration. We got eight groups of errors
aε (ε = 1, 2, 3, 4, 5, 6, 7, 8) as a result. Thus, we would add an additional index ε to the introduced
notations, which denotes calculations by the spatial characteristics of wavelet filters coefficients.
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Next, we carried out analysis calculations for an estimation of the maximum error of the 3D
medical images DWT.

Stage 1. Wavelet filters coefficients quantization. Let us calculate the exact values of the
coefficients sums SF, SF,ε and errors E1,F, E1,F,ε of rounding up filters L and H scaled coefficients.

SL =
k∑

i=1

2n fL,i = 2n
k∑

i=1

fL,i = 2n
·

√

2 = 2n+ 1
2 , SH =

k∑
i=1

2n fH,i = 2n
k∑

i=1

fH,i = 2n
· 0 = 0,

SL,1 =

k
2∑

i=1

2n fL,2(i−1), SL,2 =

k
2∑

i=1

2n fL,2i−1, SH,1 =

k
2∑

i=1

2n fH,2(i−1), SH,2 =

k
2∑

i=1

2n fH,2i−1,

E1,L =
k∑

i=1

(⌈
2n fL,i

⌉
− 2n fL,i

)
, E1,H =

k∑
i=1

(⌈
2n fH,i

⌉
− 2n fH,i

)
,

E1,L,1 =

k
2∑

i=1

(⌈
2n fL,2(i−1)

⌉
− 2n fL,2(i−1)

)
, E1,L,2 =

k
2∑

i=1

(⌈
2n fL,2i−1

⌉
− 2n fL,2i−1

)
,

E1,H,1 =

k
2∑

i=1

(⌈
2n fH,2(i−1)

⌉
− 2n fH,2(i−1)

)
, E1,H,2 =

k
2∑

i=1

(⌈
2n fH,2i−1

⌉
− 2n fH,2i−1

)
.

Stage 2. Row decomposition. Let us calculate the exact values T2,F and errors E2,F of row
decomposition with filters L and H.

T2,L = SL ·M, E2,L = E1,L ·M, E2,H = E1,H ·M.

All convolution results T j,F with filter H are zero since Ti,F for all voxels are equal and
k−1∑
i=0

fH,i = 0 [27].

Stage 3. Column decomposition. Let us calculate the exact values T3,F and errors E3,F of column
decomposition with filters L and H.

T3,LL = T2,L · SL, E3,LL = (T2,L + E2,L)(SL + E1,L) − T3,LL,

E3,LH = (T2,L + E2,L)E1,H, E3,HL = E2,H(SL + E1,L), E3,HH = E2,HE1,H.

Stage 4. Frame decomposition. Let us calculate the exact values T4,F and errors E4,F of frame
decomposition with filters L and H.

T4,LLL = T3,LL · SL, E4,LLL = (T3,LL + E3,LL)(SL + E1,L) − T4,LLL,
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E4,LLH = (T3,LL + E3,LL)E1,H, E4,LHL = E3,LH(SL + E1,L),

E4,LHH = E3,LH · E1,H, E4,HLL = E3,HL(SL + E1,L), E4,HLH = E3,HL · E1,H,

E4,HHL = E3,HH(SL + E1,L), E4,HHH = E3,HH · E1,H.

Stage 5. Frame reconstruction. Let us calculate the exact values T5,F,l and errors E5,F,l of frame
reconstruction with filters L and H, ε = 1, 2.

T5,LLLL,ε = T4,LLL · SL,ε, E5,LLLL,ε = (T4,LLL + E4,LLL)(SL,ε + E1,L,ε) − T5,LLLL,ε,

E5,LLHH,ε = E4,LLH(SH,ε + E1,H,ε), E5,LHLL,ε = E4,LHL(SL,ε + E1,L,ε),

E5,LHHH,ε = E4,LHH(SH,ε + E1,H,ε), E5,HLLL,ε = E4,HLL(SL,ε + E1,L,ε),

E5,HLHH,ε = E4,HLH(SH,ε + E1,H,ε), E5,HHLL,ε = E4,HHL(SL,ε + E1,L,ε),

E5,HHHH,ε = E4,HHH(SH,ε + E1,H,ε).

Stage 6. Frame summation. Let us calculate the errors E6,F,ε of sums E5,F,ε, ε = 1, 2.

E6,LL,ε = E5,LLLL,ε + E5,LLHH,ε, E6,LH,ε = E5,LHLL,ε + E5,LHHH,ε,

E6,HL,ε = E5,HLLL,ε + E5,HLHH,ε, E6,HH,ε = E5,HHLL,ε + E5,HHHH,ε.

Stage 7. Column reconstruction. Let us calculate the errors T7,F,ε and errors E7,F,ε of column
reconstruction with filters L and H.

T7,LL,1 = T5,LLLL,1 · SL,1, T7,LL,2 = T5,LLLL,2 · SL,1, T7,LL,3 = T5,LLLL,1 · SL,2, T7,LL,4 = T5,LLLL,2 · SL,2,

E7,LL,1 = (T5,LLLL,1 + E6,LL,1)(SL,1 + E1,L,1) − T7,LL,1, E7,LL,2 = (T5,LLLL,2 + E6,LL,2)(SL,1 + E1,L,1) − T7,LL,2,

E7,LL,3 = (T5,LLLL,1 + E6,LL,1)(SL,2 + E1,L,2) − T7,LL,3, E7,LL,4 = (T5,LLLL,2 + E6,LL,2)(SL,2 + E1,L,2) − T7,LL,4,

E7,LH,1 = E6,LH,1(SH,1 + E1,H,1), E7,LH,2 = E6,LH,2(SH,1 + E1,H,1), E7,LH,3 = E6,LH,1(SH,2 + E1,H,2),

E7,LH,4 = E6,LH,2(SH,2 + E1,H,2), E7,HL,1 = E6,HL,1(SL,1 + E1,L,1), E7,HL,2 = E6,HL,2(SL,1 + E1,L,1),

E7,HL,3 = E6,HL,1(SL,2 + E1,L,2), E7,HL,4 = E6,HL,2(SL,2 + E1,L,2), E7,HH,1 = E6,HH,1(SH,1 + E1,H,1),

E7,HH,2 = E6,HH,2(SH,1 + E1,H,1), E7,HH,3 = E6,HH,1(SH,2 + E1,H,2), E7,HH,4 = E6,HH,2(SH,2 + E1,H,2).

Stage 8. Column summation. Let us calculate the errors E8,F,ε of sums E7,F,ε, ε = 1, 2, 3, 4.

E8,L,ε = E7,LL,ε + E7,LH,ε, E8,H,ε = E7,HL,ε + E7,HH,ε.

Stage 9. Row reconstruction. Let us calculate the errors T9,ε and errors E9,F,ε of column
reconstruction with filters L and H.

T9,1 = T7,LL,1 · SL,1, T9,2 = T7,LL,2 · SL,1, T9,3 = T7,LL,3 · SL,1, T9,4 = T7,LL,4 · SL,1,

T9,5 = T7,LL,1 · SL,2, T9,6 = T7,LL,2 · SL,2, T9,7 = T7,LL,3 · SL,2, T9,8 = T7,LL,4 · SL,2,

E9,L,1 = (T7,LL,1 + E8,L,1)(SL,1 + E1,L,1) − T9,1, E9,L,2 = (T7,LL,2 + E8,L,2)(SL,1 + E1,L,1) − T9,2,

E9,L,3 = (T7,LL,3 + E8,L,3)(SL,1 + E1,L,1) − T9,3, E9,L,4 = (T7,LL,4 + E8,L,4)(SL,1 + E1,L,1) − T9,4,

E9,L,5 = (T7,LL,1 + E8,L,1)(SL,2 + E1,L,2) − T9,5, E9,L,6 = (T7,LL,2 + E8,L,2)(SL,2 + E1,L,2) − T9,6,

E9,L,7 = (T7,LL,3 + E8,L,3)(SL,2 + E1,L,2) − T9,7, E9,L,8 = (T7,LL,4 + E8,L,4)(SL,2 + E1,L,2) − T9,8,
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E9,H,1 = E8,H,1(SH,1 + E1,H,1), E9,H,2 = E8,H,2(SH,1 + E1,H,1), E9,H,3 = E8,H,3(SH,1 + E1,H,1),

E9,H,4 = E8,H,4(SH,1 + E1,H,1), E9,H,5 = E8,H,1(SH,2 + E1,H,2), E9,H,6 = E8,H,2(SH,2 + E1,H,2),

E9,H,7 = E8,H,3(SH,2 + E1,H,2), E9,H,8 = E8,H,4(SH,2 + E1,H,2).

Stage 10. Row summation. Let us calculate the errors E10,ε of sums E9,F,ε, ε = 1, 2, 3, 4, 5, 6, 7, 8.

E10,ε = E9,L,ε + E9,H,ε.

Stage 11. Normalizing. Let us calculate the errors E11,ε of rounding downscaled E10,ε by 2−6n,
ε = 1, 2, 3, 4, 5, 6, 7, 8.

E11,ε =
⌊
2−6nE10,ε

⌋
.

The obtained values E11,ε (ε = 1, 2, 3, 4, 5, 6, 7, 8) represent the resulting error of the method and
allow for the calculation of the PSNR

PSNR = 10 log10

8M2/
8∑
ε=1

E2
11,ε

, (5)

where MSEgrayscale = MSEcolor =
1
8

8∑
ε=1

E2
11,ε.

Formula (5) allows determining the minimum quality of a 3D image db3, obtained as a result of
DWT of the original image I, depending on the maximum brightness and selected bit-width r = n + 1
of wavelet filters coefficients fF,i.

Calculations results (PSNR, dB) obtained by using our method of wavelet filters coefficients
quantizing and final Formula (5) for 3D medical grayscale and color images DWT with various BPC,
various bit-width r and numbers k = 2, 4, 6, . . . , 20 of wavelets db(k/2) filters coefficients are presented
in Tables 1–3. The cells in bold correspond to the minimum bit-widths of the filter coefficients, at which
the processing quality achieves a high level according to the formula (4).

Table 1. Calculation results (PSNR, dB) of 3D medical images (with 8 BPC) DWT by using bit-width r
of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

10 36.79 36.67 29.87 30.08 31.59 24.60 22.29 24.46 22.19 22.08
11 44.15 43.36 39.68 34.58 36.67 32.22 28.80 31.17 28.58 27.60
12 57.16 48.71 44.15 41.85 43.36 39.68 34.58 37.82 35.26 35.34
13 ∞ ∞ 51.14 51.14 51.14 47.16 43.18 43.36 43.36 39.68
14 ∞ ∞ ∞ ∞ ∞ 57.16 51.14 51.14 51.14 47.16
15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 2. Calculation results (PSNR, dB) of 3D medical images (with 12 BPC) DWT by using bit-width r
of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

12 49.43 45.01 42.18 40.05 41.80 38.21 33.76 36.69 34.47 34.40
13 57.46 52.38 49.10 46.76 46.46 44.76 41.11 41.99 41.92 39.07
14 71.28 61.23 54.39 52.38 52.27 50.35 47.91 47.73 47.65 44.90
15 70.86 71.28 61.11 59.15 57.68 57.46 55.52 52.38 53.27 52.27
16 ∞ 81.28 71.28 64.37 63.79 63.79 63.15 57.97 59.85 56.33
17 ∞ ∞ ∞ 70.86 75.26 71.28 68.49 67.30 64.37 63.79
18 ∞ ∞ ∞ ∞ 81.28 81.28 75.26 75.26 75.26 71.28
19 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 81.28
20 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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Table 3. Calculation results (PSNR, dB) of 3D medical images (with 16 BPC) DWT by using bit-width r
of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db7 db9 db10

16 77.35 76.55 67.85 63.56 61.94 63.27 61.70 57.52 59.24 55.92
17 93.90 77.35 76.91 68.05 71.33 67.85 66.49 65.34 63.50 62.62
18 102.35 88.73 80.42 77.35 75.56 73.79 71.69 71.42 71.36 69.35
19 105.36 95.36 85.19 86.02 81.76 81.86 78.48 76.46 78.34 75.56
20 ∞ 99.34 92.35 91.56 90.05 87.96 85.19 83.84 84.87 83.46
21 ∞ ∞ 99.34 105.36 99.34 99.34 92.57 91.38 93.45 87.88
22 ∞ ∞ ∞ ∞ 105.36 ∞ 105.36 99.34 105.36 95.36
23 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 105.36
24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Calculations results (PSNR, dB) obtained by using our method of wavelet filters coefficients
quantizing and final Formula (5) for 3D medical grayscale and color images DWT with various BPC,
various bit-width r and numbers k = 2, 4, 6, . . . , 20 of wavelets sym(k/2) filters coefficients are presented
in Tables 4–6.

Table 4. Calculation results (PSNR, dB) of 3D medical images (with 8 BPC) DWT by using bit-width r
of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

10 36.79 36.67 29.87 30.08 26.15 26.07 24.53 24.46 21.15 22.08
11 44.15 43.36 39.68 34.58 32.46 32.22 30.83 31.17 26.75 26.15
12 57.16 48.71 44.15 41.85 41.85 36.99 35.04 37.82 34.71 32.46
13 ∞ ∞ 51.14 51.14 51.14 43.18 44.15 43.18 43.18 41.85
14 ∞ ∞ ∞ ∞ 57.16 51.14 57.16 48.71 51.14 47.16
15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 5. Calculation results (PSNR, dB) of 3D medical images (with 12 BPC) DWT by using bit-width r
of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

13 57.46 52.38 49.10 46.76 46.46 41.18 42.09 41.03 40.87 39.89
14 71.28 61.23 54.39 52.38 50.44 49.10 50.46 45.91 47.65 44.90
15 70.86 71.28 61.11 61.23 57.68 59.46 56.80 51.56 52.38 53.13
16 ∞ 81.28 71.28 72.82 63.79 67.47 63.87 57.97 58.07 59.37
17 ∞ ∞ ∞ 81.28 71.28 75.26 71.28 64.37 65.96 67.30
18 ∞ ∞ ∞ ∞ 81.28 81.28 81.28 72.82 72.82 75.26
19 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 6. Calculation results (PSNR, dB) of 3D medical images (with 16 BPC) DWT by using bit-width r
of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

16 77.35 76.55 67.85 70.44 63.48 65.06 63.18 57.52 57.46 58.27
17 93.90 77.35 76.91 76.55 67.96 70.97 69.20 63.56 64.39 64.31
18 102.35 88.73 80.42 79.43 74.14 73.79 73.90 70.41 70.39 71.33
19 105.36 95.36 85.19 83.84 81.76 77.89 78.48 77.35 76.46 76.35
20 ∞ 99.34 92.35 91.56 90.05 85.19 86.02 83.84 86.02 82.16
21 ∞ ∞ 99.34 105.36 95.36 92.57 92.57 90.05 91.56 90.05
22 ∞ ∞ ∞ ∞ 105.36 105.36 99.34 96.91 99.34 95.36
23 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 105.36
24 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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Calculations results (PSNR, dB) obtained by using our method of wavelet filters coefficients
quantizing and final Formula (5) for 3D medical grayscale and color images DWT with various
BPC, various bit-width r and numbers k = 6, 12, 18, 24, 30 of wavelets coi f (k/6) filters coefficients are
presented in Tables 7–9.

Table 7. Calculation results (PSNR, dB) of 3D medical images (with 8 BPC) DWT by using bit-width r
of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

11 36.99 29.87 29.48 26.07 25.60
12 41.85 36.99 37.82 33.72 32.40
13 48.71 47.16 43.18 39.68 37.82
14 ∞ 51.14 48.71 47.16 44.37
15 ∞ ∞ ∞ 57.16 57.16
16 ∞ ∞ ∞ ∞ ∞

Table 8. Calculation results (PSNR, dB) of 3D medical images (with 12 BPC) DWT by using bit-width r
of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

14 54.39 47.96 45.87 44.09 43.24
15 61.11 56.08 52.38 50.35 49.69
16 71.28 63.79 58.82 57.46 54.94
17 81.28 75.26 65.96 63.79 60.67
18 ∞ 81.28 72.82 68.49 68.49
19 ∞ ∞ ∞ 75.26 75.26
20 ∞ ∞ ∞ ∞ ∞

Table 9. Calculation results (PSNR, dB) of 3D medical images (with 16 BPC) DWT by using bit-width r
of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

17 73.79 70.97 64.39 61.91 59.42
18 83.54 73.79 69.56 67.24 66.49
19 87.96 80.42 77.35 73.19 72.10
20 92.35 85.19 84.87 80.42 77.96
21 99.34 95.36 91.56 87.88 86.02
22 ∞ ∞ 99.34 95.36 91.38
23 ∞ ∞ ∞ 105.36 99.34
24 ∞ ∞ ∞ ∞ ∞

Let us compile Tables 10–12 based on Tables 1–9 with the minimum values of r, at which the result
of 3D medical images DWT with Daubechies wavelets, symlets and coiflets reach a high and maximum
quality. For example, the result of 3D medical images (with 8 BPC) DWT with Daubechies wavelet
db8 reaches high quality at r = 13 (PSNR = 43.36 dB) and maximum quality at r = 15 (PSNR = ∞)

according to Table 1. The remaining cells are filled in the same way.
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Table 10. Minimum values of r, at which the result of 3D medical images DWT with Daubechies
wavelets reaches high and maximum quality.

BPC PSNR, dB db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

8
40 11 11 12 12 12 13 13 13 13 14
∞ 13 13 14 14 14 15 15 15 15 15

12
60 14 14 15 16 16 16 16 17 17 17
∞ 16 17 17 18 19 19 19 19 19 20

16
80 17 18 18 19 19 19 20 20 20 20
∞ 20 21 22 22 23 22 23 23 23 24

Table 11. Minimum values of r, at which the result of 3D medical images DWT with symlets reaches
high and maximum quality.

BPC PSNR, dB sym1 sym2 sym3 sym4 sym5 sym6 sym8 sym9 sym10

8
40 11 11 12 12 12 13 13 13 13
∞ 13 13 14 14 15 15 15 15 15

12
60 14 14 15 15 16 16 17 17 17
∞ 16 17 17 18 19 19 19 19 19

16
80 17 18 18 19 19 20 20 20 20
∞ 20 21 22 22 23 23 23 23 24

Table 12. Minimum values of r, at which the result of 3D medical images DWT with coiflets reaches
high and maximum quality.

BPC PSNR, dB coif1 coif2 coif3 coif4 coif5

8
40 12 13 13 14 14
∞ 14 15 15 16 16

12
60 15 16 17 17 17
∞ 18 19 19 20 20

16
80 18 19 20 20 21
∞ 22 22 23 24 24

We could make the following conclusions based on calculation results presented in the Tables 10–12.

1. Minimum bit-width r of wavelet filters coefficients at which the result of 3D medical images with
8 BPC DWT does not contain visible distortions (PSNR ≥ 40 dB) can be determined by a formula

r = 11 +


√

k
2

, (6)

where k is the number of wavelet filters coefficients.
2. Minimum bit-width r of wavelet filters coefficients at which the result of 3D medical images with

12 BPC DWT does not contain visible distortions (PSNR ≥ 60 dB) can be determined by a formula

r = 15 +


√

k
4

. (7)

3. Minimum bit-width r of wavelet filters coefficients at which the result of 3D medical images with
16 BPC DWT does not contain visible distortions (PSNR ≥ 80 dB) can be determined by a formula

r = 18 +


√

k
3

. (8)
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4. Minimum bit-width r of wavelet filters coefficients at which the result of 3D medical images DWT
does not contain distortions (PSNR = ∞) can be determined by a formula

r = 5 + B +


√

k
2
− 1

, (9)

where B is the image BPC.

Formulas (6)–(9) are an approximate since the values r obtained at their use are sometimes
redundant, that is, exceed values presented in Tables 10–12. However, they allow one to accurately
calculate the non-redundant bit-width of the quantized wavelet filters coefficients in most cases. These
formulas are applicable to both grayscale and color images.

3.2. Experiments of the 3D Medical Tomographic Images DWT

The experiments were conducted using MatLab software version R2018b for the three 3D medical
tomographic grayscale images: “wmri” is the 8-bit image of size 128× 128× 27; “Trufi_COR” is the
12-bit image of size 320× 320× 30 and “Body_1.0” is the 16-bit image of size 512× 512× 507. These
images have the following histograms (Figure 4). The larger the image bitness, the lower its ratio of the
average voxel brightness to the maximum allowed. We show the influence of this factor on the image
processing quality further.

Images DWT performed as follows: filters coefficients fF,i of the Daubechies wavelets db(k/2)
(k = 2, 4, 6, . . . , 20), symlets sym(k/2) (k = 2, 4, 6, . . . , 20) and coiflets coi f (k/6) (k = 6, 12, 18, 24, 30)
were obtained, quantized by multiplying by 2n (n = 1, 2, 3, . . . , 25) and rounding up according to
Formula (2) and converted to fixed-point format; DWT of 3D images implemented; the voxels brightness
values of the restored images were scaled by dividing by 26n and rounding down according to Formula
(3) and converted to fixed-point format.

An example of 3D tomographic images “wmri”, “Trufi_COR” and “Body_1.0” DWT with wavelet
db8 is shown in Figures 5–7 respectively. Frames in Figures 6 and 7 are selected to illustrate the
error effect on the image processing result. Figures show a gradual improvement in the quality of
processing with an increase the bit-width r: in Figures 5b, 6b and 7b visible distortion (Figure 5b is
darkened in places, and Figures 6b and 7b are lighted); in Figures 5c, 6c and 7c processed images are
indistinguishable by eye from the original images; in Figures 5d, 6d and 7d processed images are
identical to the corresponding originals. Experimental results are of higher quality compared with the
calculation results. The values PSNR = 47.11 dB and PSNR = ∞ at r = 12 and r = 15 respectively
(Figure 5) obtained after 8-bit image “wmri” DWT with wavelet db8 exceed the corresponding calculated
values PSNR = 37.82 dB and PSNR = ∞ at r = 12 and r = 15 respectively (Table 1). The values
PSNR = 64.57 dB and PSNR = ∞ at r = 12 and r = 17 respectively (Figure 6) obtained after 12-bit
image “Trufi_COR” DWT with wavelet db8 exceed the corresponding calculated values PSNR = 36.67
dB, PSNR = 67.30 dB at r = 12 and r = 17 respectively (Table 2). Similarly, for “Body_1.0”.
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Figure 4. Histograms of used images: (a) “wmri”, average brightness 63.276 ; (b) “Trufi_COR”, 
average brightness 129.796  and (c) “Body_1.0”, average brightness 21.053 . 
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Figure 5. Example of 3D tomographic 8-bit image “wmri” DWT by 8db  wavelet: (a) original image; 
processed image: (b) 9r = , 27.62PSNR =  dB; (c) 12r = , 47.11PSNR =  dB and (d) 15r = , 
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Figure 5. Example of 3D tomographic 8-bit image “wmri” DWT by db8 wavelet: (a) original image;
processed image: (b) r = 9, PSNR = 27.62 dB; (c) r = 12, PSNR = 47.11 dB and (d) r = 15, PSNR = ∞.
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Figure 6. Example of 3D tomographic 12-bit image “Trufi_COR” (15-th frame) DWT by 8db  wavelet: 
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Figure 7. Example of 3D tomographic 16-bit image “Body_1.0” (1-st frame) DWT by db8 wavelet:
(a) original image; processed image: (b) r = 7, PSNR = 64.05 dB; (c) r = 10, PSNR = 85.30 dB and
(d) r = 17, PSNR = ∞.
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The image processing results were analyzed using PSNR and structure similarity (SSIM) [52],
calculating by formula

SSIM
(
I, Ĩ

)
=

(
2µIµĨ + c1

)(
2σĨI + c2

)(
µ2

I + µ2
Ĩ
+ c1

)(
σ2

I + σ2
Ĩ
+ c2

) ,

where: µI is the average of I; µĨ is the average of Ĩ; σ2
I is the variance of I; σ2

Ĩ
is the variance of Ĩ;

c1 = (0.01 ·M)2; c2 = (0.03 ·M)2 and M is the maximum brightness of the image voxels. Experimental
results (PSNR, dB; SSIM) of DWT of 3D tomographic grayscale images “wmri” (8-bit), “Trufi_COR”
(12-bit) and “Body_1.0” (16-bit) for various bit-width r and numbers k = 2, 4, 6, . . . , 20 of wavelets
db(k/2) filters coefficients are presented in Tables 13–18. The cells in bold correspond to the minimum
bit-widths of the filter coefficients, at which the processing quality achieves a high level according to
the formula (4).

Table 13. Experimental results (PSNR, dB) of 3D tomographic 8-bit image “wmri” DWT by using
bit-width r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

9 37.77 37.51 31.59 31.45 33.45 27.81 25.33 27.62 24.16 25.03
10 44.78 44.47 38.16 37.95 40.21 32.98 30.81 32.95 30.76 30.67
11 52.66 52.44 48.29 42.84 44.97 41.03 37.43 39.59 37.37 36.48
12 69.55 56.29 53.32 50.66 52.88 48.64 43.25 47.11 44.52 44.44
13 ∞ ∞ 70.86 60.74 60.36 56.92 52.47 53.42 53.32 50.09
14 ∞ ∞ ∞ ∞ ∞ 93.45 65.73 64.80 64.10 57.65
15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 14. Experimental results (SSIM) of 3D tomographic 8-bit image “wmri” DWT by using bit-width
r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

9 0.9998 0.9998 0.9991 0.9990 0.9993 0.9975 0.9953 0.9969 0.9936 0.9943
10 1.0000 1.0000 0.9998 0.9998 0.9998 0.9993 0.9987 0.9991 0.9985 0.9984
11 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9997 0.9998 0.9997 0.9996
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9999 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 15. Experimental results (PSNR, dB) of 3D tomographic 12-bit image “Trufi_COR” DWT by
using bit-width r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

9 55.35 55.15 49.64 49.52 51.56 46.10 43.74 46.08 42.62 43.54
10 61.94 61.74 55.93 55.74 58.14 51.13 49.08 51.29 49.14 49.10
11 69.03 69.02 65.33 60.46 62.66 58.84 55.49 57.68 55.53 54.82
12 77.25 72.30 69.89 67.43 69.64 65.88 61.00 64.57 62.24 62.33
13 88.60 81.40 78.04 75.10 75.33 73.56 69.22 70.48 70.39 67.51
14 118.20 96.42 85.23 82.51 82.65 80.99 77.38 77.57 77.62 74.43
15 129.34 119.88 99.48 93.90 90.03 91.05 88.62 84.20 85.12 84.30
16 ∞ ∞ ∞ 110.99 105.34 109.92 105.08 94.67 98.96 91.61
17 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 121.21 117.93
18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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Table 16. Experimental results (SSIM) of 3D tomographic 12-bit image “Trufi_COR” DWT by using
bit-width r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

9 0.9996 0.9995 0.9981 0.9979 0.9986 0.9948 0.9902 0.9939 0.9864 0.9884
10 0.9999 0.9999 0.9996 0.9996 0.9997 0.9985 0.9972 0.9982 0.9968 0.9967
11 1.0000 1.0000 1.0000 0.9999 0.9999 0.9998 0.9994 0.9996 0.9993 0.9991
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 17. Experimental results (PSNR, dB) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

7 77.99 77.69 70.86 68.90 68.96 65.38 65.39 64.05 62.04 59.98
8 87.98 81.65 78.77 76.46 76.54 71.53 70.89 72.11 68.08 68.88
9 88.22 88.00 82.85 82.90 84.95 79.80 77.67 79.97 76.69 77.63

10 94.84 94.62 89.15 88.98 91.67 84.80 83.03 85.30 83.27 83.27
11 101.92 101.93 98.64 93.87 96.45 92.39 89.47 91.69 89.76 89.16
12 109.95 105.14 103.17 100.98 103.38 99.76 94.87 98.86 96.63 96.80
13 120.74 114.03 111.17 108.38 108.91 107.49 103.36 104.87 104.83 102.16
14 167.56 127.71 118.07 115.86 116.02 115.25 111.44 111.96 112.20 109.24
15 166.77 169.11 131.41 126.83 122.99 125.99 123.36 119.26 119.89 119.63
16 ∞ ∞ ∞ 144.12 138.29 145.66 140.29 130.67 135.37 128.20
17 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 172.79 161.13
18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 18. Experimental results (SSIM) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of Daubechies wavelets filters coefficients.

r db1 db2 db3 db4 db5 db6 db7 db8 db9 db10

7 0.9999 0.9999 0.9996 0.9994 0.9994 0.9987 0.9986 0.9982 0.9970 0.9953
8 1.0000 1.0000 0.9999 0.9999 0.9999 0.9997 0.9996 0.9997 0.9992 0.9993
9 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9999 0.9999

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Experimental results (PSNR, dB; SSIM) of DWT of 3D tomographic grayscale images “wmri” (8-bit),
“Trufi_COR” (12-bit) and “Body_1.0” (16-bit) for various bit-width r and numbers k = 2, 4, 6, . . . , 20 of
wavelets sym(k/2) filters coefficients are presented in Tables 19–24.

Table 19. Experimental results (PSNR, dB) of 3D tomographic 8-bit image “wmri” DWT by using
bit-width r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

9 37.77 37.51 31.59 31.35 27.75 29.25 26.23 25.01 22.24 24.91
10 44.78 44.47 38.16 38.01 34.33 34.16 32.84 32.72 29.60 30.54
11 52.66 52.44 48.29 42.69 41.11 41.00 39.51 39.38 35.37 34.59
12 69.55 56.29 53.32 50.35 50.34 45.38 44.43 46.72 43.12 41.43
13 ∞ ∞ 70.86 60.35 60.06 52.29 53.30 52.18 52.18 50.82
14 ∞ ∞ ∞ ∞ 87.43 74.66 79.40 59.06 63.68 57.27
15 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
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Table 20. Experimental results (SSIM) of 3D tomographic 8-bit image “wmri” DWT by using bit-width
r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

9 0.9998 0.9998 0.9991 0.9990 0.9979 0.9982 0.9967 0.9954 0.9917 0.9944
10 1.0000 1.0000 0.9998 0.9998 0.9995 0.9995 0.9992 0.9992 0.9984 0.9985
11 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9998 0.9996 0.9995
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9999 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 21. Experimental results (PSNR, dB) of 3D tomographic 12-bit image “Trufi_COR” DWT by
using bit-width r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

9 55.35 55.15 49.64 49.35 45.83 47.40 44.46 43.29 40.55 43.33
10 61.94 61.74 55.93 55.82 52.32 52.11 50.96 50.87 47.78 48.86
11 69.03 69.02 65.33 60.22 58.78 58.74 57.42 57.33 53.42 52.74
12 77.25 72.30 69.89 67.03 67.23 62.83 61.88 64.07 60.87 59.29
13 88.60 81.40 78.04 74.82 75.01 68.86 70.12 68.84 68.94 67.90
14 118.20 96.42 85.23 82.14 80.24 78.63 80.16 74.73 76.99 73.83
15 129.34 119.88 99.48 97.83 90.32 93.04 89.60 82.15 83.43 84.56
16 ∞ ∞ ∞ ∞ 109.58 115.30 107.15 93.49 93.67 94.62
17 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 117.03 119.88 119.49
18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 22. Experimental results (SSIM) of 3D tomographic 12-bit image “Trufi_COR” DWT by using
bit-width r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

9 0.9996 0.9995 0.9981 0.9980 0.9955 0.9964 0.9932 0.9905 0.9825 0.9886
10 0.9999 0.9999 0.9996 0.9996 0.9990 0.9989 0.9984 0.9983 0.9966 0.9968
11 1.0000 1.0000 1.0000 0.9999 0.9998 0.9998 0.9997 0.9997 0.9991 0.9988
12 1.0000 1.0000 1.0000 1.0000 1.0000 0.9999 0.9999 0.9999 0.9998 0.9998
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Table 23. Experimental results (PSNR, dB) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

7 77.99 77.69 70.86 66.59 68.20 66.55 62.15 62.64 61.78 61.58
8 87.98 81.65 78.77 74.26 74.19 74.41 71.33 70.33 68.46 69.41
9 88.22 88.00 82.85 82.52 79.09 80.85 77.89 76.90 74.25 77.28

10 94.84 94.62 89.15 89.03 85.67 85.47 84.57 84.48 81.44 82.83
11 101.92 101.93 98.64 93.36 92.14 92.21 91.01 90.95 87.22 86.66
12 109.95 105.14 103.17 100.15 100.63 96.34 95.53 97.87 94.76 93.33
13 120.74 114.03 111.17 107.82 108.37 102.48 103.73 102.57 102.98 102.12
14 167.56 127.71 118.07 114.95 113.49 112.18 113.78 108.50 111.20 108.03
15 166.77 169.11 131.41 129.65 123.55 126.81 123.10 115.96 117.59 118.94
16 ∞ ∞ ∞ ∞ 142.56 147.12 140.64 127.84 128.64 129.62
17 ∞ ∞ ∞ ∞ ∞ ∞ ∞ 151.00 160.08 159.78
18 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

Table 24. Experimental results (SSIM) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of symlets filters coefficients.

r sym1 sym2 sym3 sym4 sym5 sym6 sym7 sym8 sym9 sym10

7 0.9999 0.9999 0.9996 0.9991 0.9994 0.9990 0.9974 0.9976 0.9970 0.9969
8 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998 0.9997 0.9996 0.9993 0.9994
9 1.0000 1.0000 1.0000 1.0000 0.9999 1.0000 0.9999 0.9999 0.9998 0.9999

10 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Experimental results (PSNR, dB; SSIM) of DWT of 3D tomographic grayscale images “wmri” (8-bit),
“Trufi_COR” (12-bit) and “Body_1.0” (16-bit) for various bit-width r and numbers k = 6, 12, 18, 24, 30 of
wavelets coi f (k/6) filters coefficients are presented in Tables 25–30.
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Table 25. Experimental results (PSNR, dB) of 3D tomographic 8-bit image “wmri” DWT by using
bit-width r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

9 33.91 27.72 24.02 20.62 21.25
10 40.58 34.26 30.54 27.99 27.35
11 44.93 38.35 38.25 34.55 35.28
12 50.59 45.41 46.59 43.00 41.96
13 61.35 55.11 52.12 48.07 48.21
14 ∞ 66.81 58.76 56.43 56.52
15 ∞ ∞ ∞ 99.82 96.81
16 ∞ ∞ ∞ ∞ ∞

Table 26. Experimental results (SSIM) of 3D tomographic 8-bit image “wmri” DWT by using bit-width
r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

9 0.9995 0.9976 0.9940 0.9870 0.9873
10 0.9999 0.9995 0.9987 0.9973 0.9966
11 1.0000 0.9998 0.9998 0.9994 0.9994
12 1.0000 1.0000 1.0000 0.9999 0.9999
13 1.0000 1.0000 1.0000 1.0000 1.0000

Table 27. Experimental results (PSNR, dB) of 3D tomographic 12-bit image “Trufi_COR” DWT by
using bit-width r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

10 58.14 52.30 48.76 46.38 45.24
11 62.21 56.20 56.34 52.78 53.00
12 67.16 62.90 64.06 60.82 59.41
13 75.02 71.54 68.84 65.25 64.93
14 85.17 77.12 74.73 72.81 72.40
15 99.11 87.99 83.32 81.23 80.64
16 126.33 103.94 95.26 92.00 88.75
17 ∞ ∞ 121.68 109.44 101.44
18 ∞ ∞ ∞ ∞ ∞

Table 28. Experimental results (SSIM) of 3D tomographic 12-bit image “Trufi_COR” DWT by using
bit-width r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

10 0.9998 0.9989 0.9972 0.9944 0.9918
11 0.9999 0.9996 0.9995 0.9988 0.9986
12 1.0000 0.9999 0.9999 0.9998 0.9997
13 1.0000 1.0000 1.0000 0.9999 0.9999
14 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 29. Experimental results (PSNR, dB) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

8 78.19 71.20 70.48 65.46 64.87
9 84.76 79.33 76.10 73.01 73.31

10 91.16 85.79 82.46 80.39 79.40
11 95.23 89.68 90.16 86.87 87.29
12 100.21 96.41 97.92 94.99 93.71
13 107.91 105.11 102.80 99.41 99.41
14 117.81 110.61 108.67 107.14 107.07
15 130.24 121.55 117.33 115.73 115.45
16 171.54 136.59 129.87 128.02 124.92
17 ∞ ∞ 168.53 146.89 138.98
18 ∞ ∞ ∞ ∞ ∞

Table 30. Experimental results (SSIM) of 3D tomographic 16-bit image “Body_1.0” DWT by using
bit-width r of coiflets filters coefficients.

r coif1 coif2 coif3 coif4 coif5

8 0.9999 0.9997 0.9996 0.9986 0.9983
9 1.0000 0.9999 0.9999 0.9997 0.9997

10 1.0000 1.0000 1.0000 1.0000 0.9999
11 1.0000 1.0000 1.0000 1.0000 1.0000

Calculation results from Tables 10–12 supplemented by experimental results from Tables 13–30
and the difference between them is presented in Tables 31–33.

Table 31. Minimum values of r, at which the result of 3D tomographic images DWT by Daubechies
wavelets reaches high and maximum quality.

BPC PSNR, dB Results db1 db2 db3 db4 db5 db6 db8 db10

8

40
Calculation 11 11 12 12 12 13 13 14

Experimental 10 10 11 11 10 11 12 12
Difference 1 1 1 1 2 2 1 2

∞

Calculation 13 13 14 14 14 15 15 15
Experimental 13 13 14 14 14 15 15 15

Difference 0 0 0 0 0 0 0 0

12

60
Calculation 14 14 15 16 16 16 17 17

Experimental 10 10 11 11 11 12 12 12
Difference 4 4 4 5 5 4 5 5

∞

Calculation 16 17 17 18 19 19 19 20
Experimental 16 16 16 17 17 17 17 18

Difference 0 1 1 1 2 2 2 2

16

80
Calculation 17 18 18 19 19 19 20 20

Experimental 8 8 9 9 9 10 10 10
Difference 9 10 9 10 10 9 10 10

∞

Calculation 20 21 22 22 23 22 23 24
Experimental 16 16 16 17 17 17 17 18

Difference 4 5 6 5 6 5 6 6
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Table 32. Minimum values of r, at which the result of 3D tomographic images DWT by symlets reaches
high and maximum quality.

BPC PSNR, dB Results sym1 sym2 sym4 sym6 sym8 sym10

8

40
Calculation 11 11 12 13 13 13

Experimental 10 10 11 11 12 12
Difference 1 1 1 2 1 1

∞

Calculation 13 13 14 15 15 15
Experimental 13 13 14 15 15 15

Difference 0 0 0 0 0 0

12

60
Calculation 14 14 15 16 17 17

Experimental 10 10 11 12 12 13
Difference 4 4 4 4 5 4

∞

Calculation 16 17 18 19 19 19
Experimental 16 16 16 17 18 18

Difference 0 1 2 2 1 1

16

80
Calculation 17 18 19 20 20 20

Experimental 8 8 9 9 10 10
Difference 9 10 10 11 10 10

∞

Calculation 20 21 22 23 23 24
Experimental 16 16 16 17 18 18

Difference 4 5 6 6 5 6

Table 33. Minimum values of r, at which the result of 3D tomographic images DWT by coiflets reaches
high and maximum quality.

BPC PSNR, dB Results coif1 coif2 coif3 coif4 coif5

8

40
Calculation 12 13 13 14 14

Experimental 10 12 12 12 12
Difference 2 1 1 2 2

∞

Calculation 14 15 15 16 16
Experimental 14 15 15 16 16

Difference 0 0 0 0 0

12

60
Calculation 15 16 17 17 17

Experimental 11 12 12 12 13
Difference 4 4 5 5 4

∞

Calculation 18 19 19 20 20
Experimental 17 17 18 18 18

Difference 1 2 1 2 2

16

80
Calculation 18 19 20 20 21

Experimental 9 10 10 10 11
Difference 9 9 10 10 10

∞

Calculation 22 22 23 24 24
Experimental 17 17 18 18 18

Difference 5 5 5 6 6

Experimental results (PSNR, dB) of various 3D tomographic 12-bit grayscale images DWT by
wavelet db4 with bit-width r = 11 of filters coefficients are presented in Table 34 and in Figure 8.
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Table 34. Experimental results (PSNR, dB) of 3D tomographic images DWT by wavelet db4 with
bit-width r = 11 of filters coefficients.

Image Name Average Brightness PSNR, dB

SUB_1st pass 16.89 74.57
cor shared echo_SUB_MIP_COR 33.92 72.87

MIP thin cor first phase 55.16 67.63
mra highres.ce_S47_DIS2D 63.74 69.07

cor thin mips ist pass 67.92 64.58
mra highres.ce_S48_DIS2D 77.29 67.32

sag timing run-flash_MIP_SAG 91.71 62.81
cine_retro_normal_lvot 109.46 63.07
cine_retro_normal_rvot 123.87 60.63

Trufi_COR 129.80 60.46
Trufi_SAG 130.79 59.97

cine_retro_normal_sa 133.50 60.17
cine_retro_normal_lvla 134.35 60.41
cine_retro_normal_hla 144.48 59.72
cine_retro_aortic valve 157.94 58.87

Trufi_TRANS 162.25 58.83
t1_fl2d_cor_pre-post 187.42 58.39
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r = 11 of filters coefficients.

The nonlinear hyperbolic regression [53] curve for the data from Table 34 was plotted in Figure 8
and has the equation PSNR = 58.98 + 328.78/A, where A is the average brightness of the image
voxels. The F-test value [54] for constructed nonlinear hyperbolic regression curve is F = 42.24 actually
observed. The F-test critical value [55] for false-rejection probability 0.001 with degrees of freedom
k1 = p − 1 = 2 − 1 = 1 and k2 = m − p = 17 − 2 = 15 is F0.001;1,15 = 16.59, where p is the regression
equation estimated parameters number and m is the images number from Table 34. Since F > F0.001;1,15

resulting regression equation is significant at false-rejection probability 0.001. Equation asymptote
exceeds the corresponding theoretical calculations values.

4. Discussion

Experimental results, the main of which are presented in Tables 31–33, show that all PSNR
values obtained as calculation results were not bigger than the PSNR values obtained as experimental
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results. This confirms the accuracy of theoretical analysis. Thus, the derived Formulas (6)–(9) could be
used for determining the minimum bit-width of wavelet filters coefficients, at which the result of 3D
medical tomographic images DWT reaches high (PSNR ≥ 40 dB for images with 8 BPC, PSNR ≥ 60
dB for images with 12 BPC and PSNR ≥ 80 dB for images with 16 BPC according to Formula (4))
and maximum (PSNR = ∞) quality respectively. Tables 13–30 show that SSIM values obtained as a
calculation result were set to one when using 4 decimal places in simulating 8-, 12- and 16-bit images
when the PSNR was approximately 45, 65 and 80 dB, respectively. Thus, both PSNR and SSIM metrics
used confirm high-quality image processing. The experiment of 3D 8-bit medical tomographic image
DWT required 1–2 bits less for wavelet filters coefficients than the calculations require for high-quality
processing since the worst case was predicted in theoretical analysis. An even greater decrease in the
bit-width of wavelet filter coefficients led to even greater savings in hardware resources. The difference
between the obtained theoretical and experimental values increased significantly in the case of 12-bit
and 16-bit images. The 12-bit tomographic image required 4–5 bits and 1–2 bits less for wavelet filters
coefficients to achieve high and maximum processing quality respectively. This difference increased to
9–10 and 5–6 bits respectively in the case of a 16-bit image. This is because the range of voxel brightness
values significantly increased in 12- and 16-bit images. The average brightness of the image voxels
varied insignificantly at this time (was within the 8-bit range) since the high-order bits were rarely
used. Thus, the ratio of the average voxel brightness to the maximum allowable value of M decreased
with increasing BPC of images, which were demonstrated by histograms in Figure 4. This led to much
faster achievement of high and maximum quality compared with the theoretical analysis results.

The darkening and lighting in Figures 5–7 were due to the low accuracy of wavelet filters
coefficients quantization used for image processing. The excessive character of quantization error led
to an increase in the voxels brightness values of the processed images. Figures 6b and 7b turned out to
be lighted since 12- and 16-bit images had a brightness margin, which is shown by the histograms in
Figure 4b,c. However, the range of brightness values of the 8-bit image was fully utilized (Figure 4a)
and the quantization error led to the computational range overflow. The voxels brightness values that
exceeded the range went to zero as a result of this.

Table 34 and Figure 8 show the dependence of the 12-bit medical tomographic images processing
quality of their average voxels brightness. This dependence had a nonlinear hyperbolic regression form.
Equation asymptote exceeded the corresponding theoretical calculation values. The processing quality
by PSNR metric (from 74.57 to 58.39) decreased with an increase in the average voxels brightness (from
16.89 to 187.42). The difference in the image processing quality with the minimum and maximum
values of the average brightness according to Table 34 was more than 15 dB. It was commensurate with
the difference in the processing quality of the same image by the same wavelet with filter coefficients
bit-width that differ by two, according to Tables 15, 21 and 27. That is, we would need 2 bits less for
wavelet filter coefficients for high-quality processing of a 12-bit image with an average brightness of
16.89 than for processing a 12-bit image with an average brightness of 187.42. The average voxels
brightness of the medical image can vary in different ranges depending on many factors: from the
medical image modalities; from the analyzing device type; from specific device settings; from the
analyzed organ or group of organs; etc. Thus, the requirements for the digit capacity of wavelet filter
coefficients can be relaxed, depending on the ability to take into account many factors related to the
nature of the images obtained as a result of medical tests. Summarizing, the quality of 3D medical
tomographic images DWT primarily depends on their bits per color, on average voxels brightness, on
the number of wavelet filters coefficients and to a lesser extent on the type of wavelet.

Minimum bit-width r of wavelet filters coefficients for 3D medical tomographic images DWT is
defined as follows: determine BPC of images (for example, 8, 12 or 16 BPC); select a quality threshold
of image processing (for example, PSNR = 40 dB, PSNR = 60 dB, PSNR = 80 dB or PSNR = ∞);
choose the wavelet with the number of coefficients k; calculate bit-width r of wavelet filters coefficients
by Formulas (5)–(9) depending on the quality threshold of image processing selected.
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5. Conclusions

The problem of analyzing the quantization noise effect in coefficients of DWT filters for 3D medical
imaging was solved. The method was proposed for wavelet filters coefficients quantizing, which
allows minimizing resources in hardware implementation. The method was developed for estimating
the maximum error of 3D grayscale and color images DWT with various BPC. The derived Formula
(5) allows determining the minimum quality of 3D medical images DWT depending on the wavelet
used, bit-width of wavelet filters coefficients and BPC. We proved that Formulas (6)–(9) can be used
to determine the minimum bit-width of wavelet filters coefficients for which the result of 3D images
DWT reaches high (PSNR ≥ 40 dB for images with 8 BPC, PSNR ≥ 60 dB for images with 12 BPC and
PSNR ≥ 80 dB for images with 16 BPC) and maximum (PSNR = ∞) quality respectively depending on
the wavelet used. The experiments of the 3D tomographic images DWT showed that the bit-width of
wavelet filters coefficients could be significantly reduced for high-quality medical imaging compared
to theoretical analysis results. All data were presented in a fixed-point format and rounding operations
were simplified in the proposed method of 3D images DWT.

The proposed DWT method could be used in a wide range of applications for denoising and
compression of 3D medical images. Given the need to improve the efficiency of medical visual data
processing methods, further research can be expected in this direction.
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