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Abstract: Assessment of soil water balance is essential to understand water dynamics for optimal use
of water and fertilizers. The study intended to simulate soil water dynamics in sweet corn production
under tropical rainfed conditions. Surface runoff, subsurface leaching, and evapotranspiration are
the main components of water balance, especially in tropical environments. Therefore, intensive field
experiments and HYDRUS-1D numerical modeling were applied to investigate the water balance
components and analyzing water dynamics. The study was carried out in a sweet corn field for
two growing seasons under the rainfed conditions at the Malaysian Agricultural Research and
Development Institute (MARDI), Serdang, Malaysia. The total water inputs during the first and
second seasons were 75.8 cm and 79.7 cm, respectively. Simulated results of evapotranspiration (ET)
accounted for 40.7% and 33.1% of total water input during the first and second seasons. Surface
runoff accounted for 41% and 28.6% in the first and second season, respectively. Water leaching
accounted for 10.6%–26.8% of total water input during both seasons respectively. As rainfall fulfilled
the crop water requirement throughout the growing seasons no additional irrigation was required.
The overall simulation results validate the HYDRUS-1D as an effective tool to simulate soil water
dynamics under rainfed conditions.

Keywords: rainfed conditions; water balance; soil water; runoff and leaching losses; HYDRUS-ID
simulation

1. Introduction

Around 190.6 million hectares produced 1076.18 million tons of corn at the rate of 5.65 tons/ha
for the year 2017–2018 worldwide [1]. In 2017, Malaysia consumed around 4 million tons of grain
corn. Most of the grain corn consumed in Malaysia is imported, while sweet corn is grown locally [2].
About 10,477.30 ha of the cultivated area produced 72,560.52 tons of sweet corn for the year 2017 in the
country [3]. Sweet corn is used for both human and animal consumption, along with its use in industry
as raw material [4]. In Malaysia, sweet corn grows on acidic, weathered soils with low pH and soil
fertility, which results in low corn yield [5]. Imbalance in fertilizer application also results in low corn
production in tropical regions [6]. The change in water balance components such as evapotranspiration,
runoff, soil moisture, and rainfall might also affect this fertilizer imbalance.

Accurate estimation of water balance in agricultural fields is also key to water resources
management in agriculture, which is the primary consumer of the water. Evapotranspiration and
leaching have considered as leading sinks of water that affect soil water status in a soil–plant–atmosphere
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environment [7]. That is why devising water management strategies depend on information relating
to crop water requirement (represented as evapotranspiration). Measuring other water balance
components such as deep percolation, runoff in field conditions is also a big challenge [8]. The response
of the water balance components also varies with climate geographically. The significant differences
between regions necessitate a need to evaluate responses of water balance components in various
geoclimatic regions. Rainfall is the most investigated components of water balance. A significant
regional variation in rainfall has also been recorded [9]. Climate change also has a significant effect in
altering rainfall patterns in humid tropics [10]. Therefore, in a tropical region like Malaysia, the change
in rainfall patterns is more crucial than in temperature due to climate change.

Simulation models are recognized as a valuable tool to assess water transport and the extent
to which management practices affect crop yield and the environment. However, the validation of
simulation models for local conditions is crucial [11]. Among different available models, a software
package HYDRUS-1D [12] has been widely used for simulating water flow and solute transport in
soils, to analyze flow and transport processes in agricultural fields. Several researchers have applied
HYDRUS-1D to evaluate water balance successfully. As compared to other models, HYDRUS-1D has
the flexibility of accommodating different boundary conditions and the capability to consider the root
uptake of water and nutrient simultaneously. The model is capable of simulating soil water and solute
dynamics under different management practices [13–22]. All these researchers validated HYDRUS-1D
as a reliable tool for such investigations.

It is necessary to improve agricultural water management and to develop new strategies to
increase agricultural productivity [23]. The heavy rainfall results in the solute loss to increase manifold
in the tropical climate. Therefore, the study was carried out to quantify water losses (surface runoff

and leaching) from the field that results in fertilizer loss in Malaysia. Quantifying the water balance
components under rainfed conditions can be useful to improve irrigation management and to assess
the scale of fertilizer loss for sweet corn production. The study can further be used to link rainfall
intensity with fertilizer loss. Besides, HYDRUS-1D has rarely been used for sweet corn production
in tropical environment. The model validation through the field experiments in quantifying water
losses is worthwhile for sweet corn production. Indeed, heavy rainfall in Malaysia can potentially
meet crop water requirements. However, the duration and frequency of rainfall are uncertain that can
affect the water availability to plant. Therefore, the objectives of the study were (1) to simulate the soil
water dynamics under rainfed conditions, and (2) to evaluate the HYDRUS-1D model for the rainfall
potential to meet the water requirement of sweet corn in the tropical region.

2. Material and Methods

2.1. Field Experiments and Measurements

2.1.1. Site Description

The experiment field located 2◦59′ N latitude and 101◦42′ E longitude, 43 m above the mean
sea level at the Malaysian Agricultural Research and Development Institute (MARDI) in Selangor,
Malaysia. Total annual precipitation of the area has been recorded as 2632 mm for the year 2017, whereas
minimum and maximum temperatures were 21.3 ◦C and 35.8 ◦C, respectively. The rainfall occurs
throughout the year, with seasonal variation. Most of the rainfall occurs in months October–December.
February and March are relatively dry months. Research work was carried out from February to May
2018 and September to November 2018. The soil layer classified as clay throughout the sampling depth
of 0–140 cm. The physical and chemical properties of soil are presented in Tables 1 and 2. The variety
of sweet corn cultivated was ‘Hibridmas’.



Appl. Sci. 2020, 10, 1219 3 of 17

Table 1. Physical properties of the soil in the experimental field at Malaysian Agricultural Research
and Development Institute (MARDI).

Depth (cm) Clay % Silt % Sand % Textural Class Bulk Density (g cm−3) Conductivity Ks (cm d−1)

0–20 65.36 09.79 24.84 Clay 1.36 12.86
20–40 53.28 15.24 31.45 Clay 1.39 12.43
40–60 58.66 13.12 28.23 Clay 1.31 12.78
60–80 70.20 20.22 09.58 Clay 1.22 18.11

80–140 71.74 18.03 10.23 Clay 1.24 17.56

Table 2. Chemical properties of the soil in the experimental field at MARDI.

Depth (cm) pH (Airdry) EC umoh/cm CEC cmol (+)/kg Organic Matter %N P mg/Kg K mg/Kg

0–20 6.87 62.80 5.88 0.14 55 74.1
20–40 5.95 64.90 5.68 0.12 26 74.1
40–60 6.20 45.75 6.49 0.12 39 19.5
60–80 5.80 41.47 7.47 0.11 30 42.9
80–140 5.98 85.78 7.13 0.09 22 19.5

2.1.2. Experimental Design and Measurements

The research work was designed based on an intensive field experiment in real field conditions.
The experiment was carried out in a 770 m2 (35 m × 22 m) field. Sweet corn ‘Hibridmas’ was planted
during both seasons at 10 kg/ha where plant-plant (P × P) and row-row (R × R) space were maintained
as 20 cm and 75 cm respectively. Harvesting dates were on 3rd May and 15th November for the first
and second season 2018 respectively. The growing period for the first season (February–May 2018) was
76 days whereas for the second season (September–November 2018) it was 71 days. The total rainfall
recorded during the first and second season is 75.8 cm and 79.7 cm, respectively.

In the experimental field, rain-gauge, RBC Parshall Flume, evapotranspiration (ET)-gauge, and
5TE sensors with EM 50 data logger were installed as shown in Figure 1; Figure 2. The sprinkler
irrigation system was installed in the field for supplement irrigation. The amount of precipitation was
measured using a data-logging rain-gauge. The amount of water drained from the field was measured
by using Parshall Flume RBC with CR200X logger (SZ-CR200X/7070) whenever the runoff event occurs
at the outlet point. ET gauge was used for evapotranspiration (ET) measurements. However, the
evapotranspiration (ET) calculations were also made using the Penman–Monteith equation. The daily
climate data required for ET calculations, i.e., temperature, humidity, radiation, and wind speed were
obtained from the adjacent meteorological station. Soil moisture measuring sensors (5TE) with EM
50 data logger was installed at 20, 40, 60, 80, and 140 cm depths. TDR-300 was used for monitoring
soil moisture of topsoil. For a few samples, soil moisture measurement was done through the oven
dry method in the laboratory. Laboratory and TDR-300 measurements also helped in calibrating
sensor measurements.

Two observation wells were installed to monitor groundwater table daily. The water fluctuated
with rainfall occurring, otherwise, it remained around 150 cm. Three tensiometers were also installed
at depths 20, 40, and 60 cm to observe pressure head within the root zone.

Soil samples were collected from the field at different depths of 0–20, 20–40, 40–60, 60–80,
and 80–140 cm to determine the physical and chemical properties of the soil. The standard pipette
method was used for soil texture analysis, which is considered as a reference method to classify
soil texture. Table 1 presents the percentages of sand, silt, and clay of soil. The textural analysis
was performed at Soil Physics Laboratory, Faculty of Agriculture, UPM. For the chemical properties,
soil samples were tested at United Plantations Laboratory, Teluk Intan, Perak.
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Figure 1. Field layout of equipment installed for investigation of water balance components.

Figure 2. A view of the installation of different equipment in the field.

The subsurface water collection system was designed and installed to collect water percolated
below the root zone (Figure 3). The concrete block of 1 m3 was buried in soil for this purpose. Soil
bulk density of a block filled with soil equal to field bulk density. The blocks drain was connected to a
bucket with a 72-L capacity to collect water leached in the block. The collected water was pumped out
at the end of each rainfall with the help of a small-diaphragm pump.
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Figure 3. View of the sub-surface water collection system in the field experiment.

2.1.3. Water Balance Components

The soil water balance equation used for determining available water in a sweet corn field as
follows:

SS = WI − RO − ET − L, (1)

where, SS is the available soil storage (cm) determined using 5TE sensor; WI is the amount of total
water input (cm) recorded using rain gauge; RO is the amount of runoff water from field (cm) measured
using RBC flume; ET is the amount of evapotranspiration (cm) observed using ET gauge; L is the
amount of water leaching (cm) calculated using the equation.

2.2. HYDRUS-ID Model

2.2.1. Model Description

The one-dimensional numerical model HYDRUS-1D [13] was used to simulate soil water dynamics
in the sweet corn field. As the water flows from surface to groundwater is in a vertical direction under
rainfall, and horizontal flow such as runoff can be covered through boundary conditions, there was no
need to simulate multi-dimensional movement. The HYDRUS-1D solves the Richards equation for
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saturated and unsaturated water flow. Following is the governing equation for water flow, which is
the modified form of Richards equation assuming water flow due to thermal gradient is neglected.

∂θ
∂t

=
∂
∂z

[
K
(
∂h
∂z

+ 1
)]
− S, (2)

where θ is the volumetric water content (cm3cm−3), h is the water pressure head (cm), t is time (day), z
is the spatial coordinate (cm), K is the unsaturated hydraulic conductivity function (cm day−1), and S
is the sink term in the flow equation (cm3cm−3day−1).

The soil hydraulic properties were modeled using [24] as follows:

θ(h) =

 θr + θs − θr
(1 + |αh|n)m h < 0

θs h ≥ 0
, (3)

K(h) = KsSl
e

[
1 −

(
1 − S1/m

e

)m]2
. (4)

Here
Se =

θ − θr

θs − θr
, m = 1 −

1
n

. (5)

Here, θs is the saturated water content (cm3cm−3), θr is the residual water content (cm3cm−3),
Ks is the saturated hydraulic conductivity (cm day−1), Se is the relative saturation, and a (cm−1), and n
(–) and l (–) are shape parameters.

The details of simulation process and model description have been presented in the flow chart
(Figure 4).

Figure 4. Flow chart presenting model simulation process and calculation of water balance components.

2.2.2. HYDRUS-1D Input Parameters

Estimation of Soil Hydraulic Parameters

The soil hydraulic parameters such as θs, θr, m, a, and n (Table 3) were estimated using the
ROSSETA computer program for the HYDRUS-1D input. The value of the pore connectivity parameter
(l) was assumed to be (0.5) [13].
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Table 3. Optimized value of soil hydraulic properties.

Depth (cm) Soil Type θs (cm3cm−3) θr (cm3cm−3) a (cm−1) n Ks (cm Day −1) L

0–20 Clay 0.0973 0.4750 0.0250 1.1625 12.86 0.5
20–40 Clay 0.0930 0.4561 0.0252 1.2019 12.43 0.5
40–60 Clay 0.0952 0.4661 0.0254 1.1828 12.78 0.5
60–80 Clay 0.1020 0.5084 0.0201 1.1903 18.11 0.5
80–140 Clay 0.1017 0.5066 0.0203 1.1825 17.56 0.5

Estimation of Potential ET

HYDRUS-1D requires potential evaporation and potential transpiration fluxes as input values
to simulate soil water effect on transpiration. The Penman–Monteith equation [25] was used to
calculate the reference evapotranspiration (ET0) using available soil, crop, and climate data. The crop
potential evapotranspiration (ETc) was calculated from the reference evapotranspiration (ET0) and
the crop coefficient (Kc) as given in Equation (7) under normal conditions [25]. The Kc values for
four stages (early, development, mid, and late seasons) of sweet corn were 0.4, 0.8, 1.15, and 1,
respectively [26]. Potential evapotranspiration (ETP) was divided into potential evaporation (EP) and
Potential transpiration (TP) using the AquaCrop model.

ET0 =
0.408∆(Rn − G) + γ 900

T + 273 u2(es − ea)

∆ + γ(1 + 0.34u2)
, (6)

where, ET0 = reference crop evapotranspiration (mmday−1), Rn = net radiation at the crop surface
(MJm−2day), G = soil heat flux density (MJm−2day), T = air temperature at 2 m height (◦C), u2 = wind
speed at 2 m height (ms−1), es − ea = saturation vapour pressure deficit (kPa), ∆ = slope vapor pressure
curve (kPa/◦C), γ = psychometric constant (kPa/◦C), and 900 = conversion factor

ETc = ET0 × Kc. (7)

Root Water Uptake

The root water uptake was determined from [27].

S = α(h)Smax, (8)

where S is the rate of root water uptake, Smax is the maximum rate of root water uptake, and α(h) is
the coefficient of root water uptake. The values of coefficients ho, hopt, h2H, h2L, and h3 were taken as
−10, −25, −500, −1000, and −16,000 respectively [13]. It is assumed that the water uptake is zero near
saturation and for pressure heads less than the wilting point (h3). The root water uptake is assumed
optimal between pressure head hopt and h2, whereas it shows a linear increase or decrease for pressure
heads between h2 and h3.

2.2.3. Initial and Boundary Conditions

The initial conditions were defined in water contents. The soil profile was subjected to rainfall
and evaporation. Therefore, the upper boundary conditions were defined as the atmosphere boundary
condition (BC) with runoff and lower boundary condition was opted as variable pressure head.
The measured and recorded values of EP, TP, and rainfall fluxes were used to represent atmospheric
boundary conditions.

2.3. Model Evaluation

To evaluate the model performance, the agreement between observed and modeled data was
assessed through the statistical procedure. The coefficient of determination R2, modeling efficiency
(EF) and root mean square error (RMSE) were used for this purpose, which are given as [28].
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Coefficient of determination

R2 =


∑n

i=1

(
Oi − O

)(
Pi − P

)
[∑n

i=1

(
Oi − O

)2
].5[∑n

i=1

(
Pi − P

)2
].5


2

. (9)

Modeling efficiency

EF = 1 −

∑n
i=1(Oi − Pi)2∑n
i=1

(
Oi − O

)2 . (10)

Root Mean Square Error

RMSE =

√∑n
i=1(Oi − Pi)2

n
, (11)

where Pi are predicted values; P is mean of predicted values; O are observed values; and O is mean of
observed values. The optimum value of R2 and EF is 1 while for RMSE it is 0.

2.4. Model Calibration and Validation

Data sets of the first and second seasons were used to calibrate and validate the model, respectively.
HYDRUS-1D requires soil hydraulic parameters as input. The required parameters were determined
through ROSETTA computer program [29] using field soil data. The determined soil hydraulic
parameters θs, θr, α, n, and Ks were further calibrated using observed soil water contents of the first
season. Observed and simulated soil water content were found in good agreement. The calibrated
parameters were then used to simulate soil water contents of the second season, for model validation.

The model was tested by comparing observed water content values with HYDRUS-1D simulated
values using statistical indicators including the determination coefficient (R2), modelling efficiency (EF)
and the root mean square error RMSE for both seasons as shown in Table 4. The average values of the
goodness of fit indicators: R2, EF, and RMSE for depths of 20, 40, 60, and 80 cm were 0.72, 0.68, and 0.017,
and 0.86, 0.73, and 0.014 for the first and second seasons, respectively. The goodness of fit indicators
was within the range of values reported by different researchers [22,30–34]. The statistical analysis
shows that HYDRUS-1D captured the change in water content at all depths except at 140 cm depth.
The reason for that might be the no variation in simulated water content due to the shallow water
table. Therefore, the relative change simulated water content w.r.t observed water content could not
be predicted.

Table 4. Statistical analysis of the comparison between observed and simulated water contents.

Season Depth (cm) R2 EF RMSE (cm3cm−3)

1

0–20 0.72 0.73 0.017
20–40 0.72 0.63 0.021
40–60 0.75 0.70 0.018
60–80 0.67 0.65 0.012

80–140 0.51 −8.24 0.014

2

0–20 0.84 0.70 0.013
20–40 0.85 0.82 0.014
40–60 0.94 0.72 0.017
60–80 0.82 0.69 0.013

80–140 0.36 −14.9 0.019

3. Results and Discussions

3.1. Evapotranspiration (ET)

Figure 5 presents the daily evapotranspiration data for the first and second season. The mean
simulated evapotranspiration (ETm) values for the first and second seasons were 4.1 mm and 3.7 mm,
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respectively. The mean observed evapotranspiration (ET) values for the first and second seasons were
4.0 mm and 3.7 mm, respectively. The minimum and maximum evapotranspiration during the first
season were recorded as 1.6 mm and 6.2 mm whereas for the second season the values were 1.3 mm and
5.9 mm, respectively. The evapotranspiration was low at early stages of crop due to less transpiration
requirements by crop canopy, whereas it reached to the maximum between 40 and 60 days of crop
plantation. The variation in the evapotranspiration (ET) values for peak days might be due to the
difference in sunshine hours and duration of rainfall occurrence. The rainfall durations in the region
are long, the cloudy sky also affects the evaporation. The evapotranspiration (ET) of total water use
was recorded as 40.7% and 33.1% for first and second season, respectively, i.e., the rainfall amount
was much higher than total plant water requirements for both seasons. The ratio of evaporation to
evapotranspiration (Ea/ETa) for crop during two seasons were recorded as 0.24 and 0.26 respectively.
The computed values obtained are close to reported research works [16,35].

Figure 5. Simulated and observed daily crop evapotranspiration for sweet corn during two
growing seasons.

3.2. Water Contents

The comparison between simulated and observed values of water contents in the soil profile
within the root zone (0–60 cm) during two crop seasons shown in Figure 6. During the first and
second season of field crop the simulated water content values at 60 cm depth ranged from 0.31 to
0.46 cm3 cm−3 and 0.31 to 0.49 cm3 cm−3 with average values of 0.41 and 0.43 cm3 cm−3 respectively.
Whereas observed water content values for the first season and second season of field crop at 60 cm
soil depth ranged from 0.32 to 0.45 cm3 cm−3 and 0.32 to 0.46 cm3 cm−3 with average values of 0.40
and 0.41 cm3 cm−3 respectively. The comparison between observed and simulated values of water
contents in the soil profile below the root zone (60–140 cm) is illustrated in Figure 7. The values of water
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contents at different depths increased with rainfall events and then decreased until the next event due to
evapotranspiration (ET). This variation of water content was larger in shallower depths as compared to
deeper [30]. Simulated water content results at 140 cm soil depth were found constant for both seasons
due to shallow water table, i.e., soil remained at field capacity (FC) or near saturation for all growing
season. Whereas, a small fluctuation in observed water contents was recorded for 140 cm depth.
The average simulated value at 140 cm depth for both seasons was 0.42 cm3 cm−3 whereas average
observed values were 0.43 cm3 cm−3 and 0.44 cm3 cm−3 respectively. The simulated and observed
water contents remained above the permanent wilting point (PWP, i.e., in the range of plant available
water. The performance of HYDRUS-1D in predicting water content was found satisfactory.

Figure 6. Simulated and observed soil water contents within the root zone (0–60 cm) during the (a) first
season and (b) second season.
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Figure 7. Simulated and observed soil water contents below the root zone (60–140 cm) during the
(a) first season and (b) second season.

3.3. Surface Runoff

Figure 8 shows the comparison of simulated and observed values of surface runoff for two
consecutive seasons. The results for cumulative simulated and observed values were found in good
correspondence. However, the results differ for some of the individual rainfall events. The first
few low-intensity rainfall events do not produce runoff in actual field conditions while HYDRUS-1D
simulation shows runoff for those events for both seasons. The reason for deviation seems to be fine soil
tilth at the time of crop plantations that enhance the water holding capacity of the soil. The maximum
rainfall value during the first season was recorded as 11.3 cm on the 33rd day of the plantation, which
produced peak simulated and observed runoff of 9.61 and 9.12 cm, respectively. Whereas the maximum
rainfall value during the second season was recorded as 6.47 cm on the 29th day of the plantation, that
produced peak simulated and observed runoff of 4.92 and 6.05 cm, respectively. The difference in the
ratio of runoff to total rainfall varies from event to event due to soil antecedent moisture level, rainfall
amount, and intensity. Surface runoff accounted for 41% and 28.6% of total water input for first and
second season respectively. Effective runoff simulation also shows HYDRUS-1D ability to handle the
upper boundary condition.
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Figure 8. Simulated and observed surface runoff during two growing seasons.

3.4. Root Water Uptake

Figure 9 shows the simulated results for root water uptake (transpiration). Daily and cumulative
root water uptake results for two consecutive seasons. Daily uptake mainly depends on the growth
stage of the plant. It shows relatively lower values at the initial stage and maximum values at peak
growth stages. For the time between sowing to emergence, the water uptake values were 0 for both
seasons, while maximum values for the first and second season recorded on 58th and 52nd day after
plantation were 0.56 cm/day and 0.54 cm/day, respectively. After the 60th day of the plantation, the root
water uptake started to decline during crop ripening stage for both seasons. However, as the crop
was harvested in fresh form and it was not left in the field (as in grain corn) the decline in uptake
was less. The total amount of root water uptake recorded 30.3% of total water input during the first
season and 24% in the second season. This shows the availability of water is enough to meet crop
water requirements.
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Figure 9. Simulated daily and cumulative root water uptake during two growing seasons.

3.5. Water Leaching

Daily as well as cumulative water leaching results for both seasons presented in Figure 10. The total
amount of water percolated in the first and second seasons was 7.64 cm and 20.9 cm, respectively.
Water leaching accounts for 10.6%–26.8% of total water input during both seasons respectively. The
daily leaching results show negative values during early days of the experiments, i.e., days 12–15 (first
season) and days 14–17 (second season), which reflects groundwater contribution for the early days
because of capillary rise due to the shallow water table. The difference in water leaching between
the two seasons was quite significant. Relatively longer and frequent rainfall events in the second
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season caused the high antecedent moisture level, and the high antecedent moisture level resulted
in the increased water leaching. Some of the results of observed leaching losses through designed
subsurface water collection systems were missing due to difficulty in setting up the system in the first
season and leakage detection in the system in the second season. Therefore, they were not presented
for comparison with simulated results. The reason that the concrete block was sealed from the bottom
while the soil profile was exposed to the shallow water table in real field conditions, the difference in
observed and simulated leaching was higher. The designed subsurface system can be an excellent tool
to determine water leaching but needs calibration under low water table conditions to overcome the
effect of capillary rise on water leaching.

Figure 10. Simulated water leaching losses during two growing seasons.
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3.6. Water Balance

Water balance components such as water input (WI), evapotranspiration (ET), surface runoff (RO),
and leaching (L) were monitored through intensive field observations. Simulated and observed water
balance components of the soil profile are presented in Table 5.

Table 5. Simulated and observed water balance components (cm) in the soil profile during two seasons
of sweet corn in MARDI, Malaysia.

Season WI ET RO L SS Σ

First
Simulated 75.8 −30.88 −31.10 −07.64 3.70 2.48
Observed −30.84 −36.00

Second
Simulated 79.7 −26.40 −22.80 −20.90 5.90 3.70
Observed −26.70 −22.40

WI—total input water, ET—evapotranspiration, RO—surface runoff, L—water leaching, SS—soil storage, Σ water
balance error.

The total water inputs during the two seasons were 75.8 cm and 79.7, respectively. Simulation
results of evapotranspiration (ET) for the first and second season were 40.7% and 33.1% of total water
input, which shows the rainfall amount was much higher than total plant water requirements for both
seasons. Surface runoff accounted for 41% and 28.6% of total water input for the first and second
season, respectively. Water leaching accounts for 10.6% to 26.8% of total water input during both
seasons respectively. The total water balance error for both seasons was recorded as 2.48 cm and
3.70 cm, respectively, which accounted for 4.8% and 7.4% of the total water input. This shows the
model’s effectiveness in simulating the water balance components.

4. Conclusions

The HYDRUS-1D simulation model was used to evaluate water flow and water losses during two
growing seasons of sweet corn in MARDI, Malaysia under the tropical rainfed conditions in the presence
of a shallow groundwater table. HYDRUS-1D (despite considerable demand for input data) has proven
to be a reliable tool to evaluate water movement in agricultural fields under various irrigation schemes
and different crops [17,31,32]. Similarly, HYDRUS-1D was found useful in evaluating water fluxes and
to evaluate the HYDRUS-1D model for the rainfall potential to meet the water requirement of sweet
corn in the tropical region. The sprinkler system was set up to deal with water-stressed conditions.
As rainfall fulfilled the crop water requirement throughout the growing seasons no additional irrigation
(sprinkler) was applied. The soil water content and crop uptake did not drop below the threshold
level. The results suggest avoiding scheduled irrigation, which is the general practice in Malaysia.
Excess irrigation triggers the runoff and leaching losses that result in fertilizer loss. However, the study
was carried out in the presence of shallow water table that also contributes to soil water through the
capillary rise. Therefore, it is recommended to repeat the research with deep water table scenario to
establish the findings for the tropical region.
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